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Abstract 

 

The paper focuses on developing a method for evaluating the similarity between skeletal models of an instructor and a patient during 

physical therapy exercises. Unlike general-purpose measures, our approach considers the specific characteristics of therapeutic 

exercises, including initial positioning, predominant movements, and exercise pace. By incorporating the concept of informativeness 

for skeletal points and refining normalization techniques, we improve the accuracy of pairwise dissimilarity measures. Experimental 

results demonstrate improved separability of records based on the accuracy of exercise repetition, highlighting the potential of this 

approach for enhancing automated physical rehabilitation systems. 

 

 

1. Introduction 

Physical rehabilitation is a cornerstone of medical recovery, 

playing a pivotal role in restoring physical function, strength, and 

mobility of patients after serious illnesses such as trauma, heart 

attacks and strokes. However, methods of physical rehabilitation 

face significant challenges, including resource limitations, 

complex patient demands, and the need for continuous, 

personalized monitoring. 

 

Recent advancements in computer vision and artificial 

intelligence offer promising solutions to these challenges. By 

leveraging depth sensors and intellectual algorithms, it is now 

possible to develop automated systems of physical rehabilitation 

that can objectively monitor, analyze, and provide real-time 

feedback on patient movements during exercise therapy. 

 

Although numerous patient-centered systems have been 

developed for home rehabilitation, there is a notable lack of 

systems designed to support both the physiotherapist and the 

patient (Lam et al., 2016). 

 

In modern physical rehabilitation programs, patients usually 

execute exercises while receiving intermittent feedback or 

guidance after the physiotherapist (instructor) demonstrates the 

movements. The structure of these exercises enables the 

synchronization of the movement phases between the 

physiotherapist and the patient, allowing for the subjective 

evaluation of pose similarity in corresponding frames (Fig. 1). 

Thus, the similarity measure plays a critical role in forming the 

overall evaluation of the exercise and in turn in the final 

assessment of the effectiveness of patient rehabilitation. 

 

We use a skeletal description of a human pose to form the basis 

for measuring such compliance, because such an approach can 

greatly reduce the amount of personal data collected, allowing 

focus on movement analysis rather than identity and providing 

technical advantages in terms of efficiency and accuracy (Seredin 

et al., 2023). 

 

 

Figure 1. Frames from video records of the therapist and the 

patient with Microsoft Kinect v2 skeletal models 

 

Skeleton-based methods for measuring the similarity or 

dissimilarity between human figures, postures, and actions can 

be categorized into four main groups. The first group focuses on 

the 3D positions of skeleton vertices, which correspond to joints, 

using pairwise relative positions or covariance matrices to 

describe poses, though these are insufficient for accurate activity 

detection like fall detection (Hussein et al., 2013; Wang et al., 

2012; Yan et al., 2018). The second group considers general 

geometric characteristics of the skeleton, such as bounding 

rectangles, geometric moments, and distances from specific 

points like the head or center of mass of the human body, offering 

robustness to estimation errors but limited flexibility in complex 

environments (Chen et al., 2011; Zhang et al., 2017). The third 

group emphasizes the relationship between the skeleton and 

human body parts (Bian et al., 2015), recognizing that 

movements are more effectively observed through the shapes, 

lengths, and locations of bones rather than joints (Zhang et al., 

2020), and may also consider the relationships between 

neighboring body parts (Du et al., 2015). Finally, the fourth group 

adopts a featureless approach to pattern recognition, representing 

objects through pairwise similarity measures or differences, with 
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distance metric learning being a further development of this 

approach (Chen et al., 2018; Kaya and Bilge, 2019). 

 

The exercises in physical rehabilitation have their own specific 

movement patterns, which include the initial positioning of the 

patient, the predominant types of movements used, and the pace 

of the exercises. The similarity measure proposed in this work, 

unlike general-purpose skeleton-based measures, allows us to 

take these characteristics into account to improve the accuracy 

and reliability of assessing the patient's rehabilitation progress. 

 

The primary contribution of this work is the introduction of the 

concept of informativeness of skeletal points during the 

execution of physiotherapy exercises. The incorporation of 

informativeness enabled us to adjust the pairwise dissimilarity 

function between skeletal models, considering the specifics of 

each particular exercise and varying attention to movements of 

certain directions.  

 

Additionally, we propose a more robust normalization 

mechanism for skeletal models aimed at aligning the coordinate 

systems of different sensors and accounting for the peculiarities 

of software libraries used for generating skeletal pose 

descriptions.  

 

The experimental results demonstrate an improvement in the 

efficiency of distance estimation. This enhancement is attributed 

to the refined dissimilarity function and the robust normalization 

mechanism, which together ensure more accurate and consistent 

comparisons of skeletal models across different exercises and 

sensor systems. The proposed approach thus contributes to more 

reliable assessment and feedback in physiotherapy exercise 

analysis. 

 

2. The problem of measuring dissimilarities between 

skeleton descriptions in physical rehabilitation 

Basic rehabilitation programs usually include the predefined set 

of physical exercises with specially designed movement patterns. 

Such exercises are rather formal and consist of simple cyclic 

movements of the body parts. The physiotherapist provides 

patients with a demonstration of the exercise. The patient's task 

is to repeat movements after the physiotherapist as accurately as 

possible. Besides the therapeutic effect, the ability of the patient 

to mimic certain movement patterns characterizes the 

effectiveness of patient rehabilitation (Lam et al., 2016).  

 

In most cases assessment of the patient's progress is performed 

by the physician based on subjective impression and experience. 

The development of an automated system of physical 

rehabilitation control let to obtain more unbiased and accurate 

results for comparison of patients and physiotherapist 

movements and provides the precise daily profile of patient’s 

activity.  

 

A predefined sequence of actions, repetition of exercises after a 

physiotherapist either live or using a pre-recorded video, as well 

as the primarily cyclical nature of these exercises, allows for the 

identification and comparison of similar phases within the 

exercises. In this context, a critical aspect in both the temporal 

alignment of movement sequences recorded during therapy 

sessions, and in determining the differences between poses of the 

instructor and the patient, is provided by a two-argument 

function. This function takes descriptions of the compared poses 

as its arguments and outputs a measure of their difference. A 

method for constructing such a function is proposed in this work.  

 

The skeleton-based model of a human figure, adopted here, 

allows us to reduce the problem of measuring the dissimilarity 

between physiotherapist and patient execution of an exercise to 

the problem of evaluation of distances between two skeleton 

sequences, recorded during the therapeutic process. We do not 

address here the process of skeleton model construction, it can be 

obtained by the special sensors like Microsoft Kinect or Intel 

RealSence or by using a special neural network-based solutions 

that build skeleton models from images produced by a 

conventional RGB camera like YOLO11-pose, Alphapose (Fang 

et al., 2023), Google MediaPipe Pose Landmarker and others.  

 

Regardless of the specific source used to obtain the skeletal pose 

model, all skeletal models can be standardized through the 

methods proposed in (Surkov et al., 2024). These methods 

involve a series of transformations and normalizations that ensure 

consistency across different models, enabling direct comparison 

and integration of data. Thus, we will assume that the skeletal 

model is represented in the standard form shown in Figure 2. 

 

 

Figure 2. Standard skeletal model with point numbers. 

 

Direct use of Euclidean distances between corresponding points 

of skeletons can lead to inaccurate or incorrect results due to 

several key factors. First, skeletal representations often involve 

landmarks that may vary significantly in their spatial 

configuration depending on the body proportions, or perspective 

distortions caused by camera angles. Second, Euclidean distances 

are sensitive to global transformations such as rotation, and 

scaling. This lack of invariance makes direct distance measures 

unreliable for comparing poses across diverse scenarios. Finally, 

human motion involves complex articulations and hierarchical 

dependencies between joints, which cannot be adequately 

captured by simple point-to-point distance metrics. A more 

robust approach requires incorporating domain-specific 

knowledge, to ensure accurate and meaningful comparisons. 

Thus, relying solely on Euclidean distances without considering 

these factors can lead to misleading conclusions in pose analysis 

and movement comparison tasks.  

 

Besides the commonly used normalizations, the main idea 

proposed here, is that points of the skeleton that are more mobile 

during the exercise contribute more significantly to the similarity 

assessment, whereas stationary points may be disregarded since 

the differences in these points are primarily due to anatomical 

variations between the instructor and the patient and have 

minimal impact on the evaluation of exercise performance 

quality. The instructor's recording can naturally serve as a basis 

for determining the mobility of the skeletal model points during 

the exercise. 

 

3. The proposed method of skeletons distance evaluation 

To address the above-mentioned problems, the estimation of the 

dissimilarity measure between skeletal models is performed in 

several key stages.  
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1. To ensure independence from the type of cameras used, the 

skeletal models obtained from the sensor are standardized 

(Fig. 2) using transformations proposed by the authors in (Surkov 

et al., 2024).  

2. Normalization for height and preliminary translation to match 

base points (point 0 in Fig. 2) are carried out (Seredin et al., 

2023). 

3. The weights of importance for skeleton points are evaluated 

based on the standard deviations, calculated using the instructor 

record. 

4. The transformation matrix is estimated based on four points 

that are least susceptible to relative changes during movement. 

5. A correspondent transformation is applied to patient skeletons. 

6. The weighted average Euclidean distance between the 

corresponding points of two skeletons is then computed.  

 

The first stage is carried out according to (Surkov et al., 2024). 

 

On the second stage the human height estimation calculated 

(Seredin et al., 2023) as the geodesic distance between points 3 

and 15 and between points 3 and 19 (Fig. 2). The value of height 

is averaged between the ten largest values obtained after a certain 

time of a person's staying in the sensor's field of view. Then, the 

coordinates of the points in the compared skeletal models are 

shifted such that the reference point numbered 0 is positioned at 

the origin of the coordinate system. 

 

Using the recording of the instructor's exercises as a reference, it 

is possible to assess the degree of mobility of the skeleton points 

by calculating their standard deviation during the execution of 

movements. The greater the value of the standard deviation, the 

larger the contribution that a particular skeleton point should 

make to the final dissimilarity score (Fig. 3).  

 

 
(a) 

 
(b) 

Figure 3. Standard deviations for coordinates of instructor 

skeletal model points: (a) – hand movement in sagittal plane 

(standing position) (b) – hand movement in frontal plane (sitting 

position 

 

Thus, the standard deviation values of the instructor's skeleton 

points characterize the informativeness or attention given to each 

specific point. 

 

Let 
,
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represents a coordinate axis, k  is the frame number and i  is the 

number of skeleton point, be a set of skeletal models, estimated 

from the therapist or instructor video sequence. Each skeleton 

model corresponds to the k -th frame, consists of 17 points and 

each point has three coordinates. All skeletons are normalized as 

described in the first two stages. 

 

The standard deviation of skeleton points could be computed in 

the following way: 
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where 
m
iS  is the mean value of the i - th point on the coordinate 

axis m  for the entire video. 

 

The final weights are normalized as: 
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Note that the weight calculation is performed only once for each 

exercise. 

 

While normalizing skeletal models by height and translating the 

base point to the origin reduces some variability, it remains 

insufficient for accurately measuring dissimilarity due to 

systematic errors arising from differences in pose orientation, 

body proportions, and sensor-specific biases (Fig. 4). To 

overcome these limitations, advanced normalization techniques 

are applied in stage four to ensure robust and meaningful 

dissimilarity measurements. 

 

We applied here the simplified version of Kabsch algorithm 

(Kabsch, 1976) to compute the optimal rotation and scaling 

matrix R  that aligns two sets of 3D points, x  (source) and y  

(transformed), under the assumption that translation has already 

been applied and the centroids of both point sets are at the origin. 

Such assumption based on the previous normalization stage with 

special selection of points, and let us to slightly reduse the 

computetional cost. The Kabsch algorithm minimizes the root-

mean-square deviation (RMSD) between corresponding points in 

the two sets by solving the orthogonal Procrustes problem: 

 
2

min ,
F

−
R

Y XR‖ ‖  

 

where 
3n

X  and 
3n

Y  are matrices formed by stacking 

the coordinates of the source and transformed points, 

respectively, and 
3 3

R  is the rotation and scaling matrix to 

be determined.  

 

The algorithm begins by computing the covariance matrix H , 

which captures the correlation structure between the two point 

sets: 

 

1
.

n
=H X Y  
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This step assumes that the data is already centered, meaning the 

centroids of both point sets are zero. The covariance matrix is 

then decomposed using singular value decomposition (SVD): 

 

,=H UΣV  

 

where U  and V  are orthogonal matrices containing the left and 

right singular vectors, respectively, and Σ  is a diagonal matrix 

of singular values. The optimal rotation and scaling matrix R  is 

computed as: 

 

.=R VU  

 

A critical step in the algorithm is to check for improper rotations 

by evaluating the determinant of R . If det( ) 0R , the 

transformation represents a reflection, which is corrected by 

flipping the sign of the last row of V  and recomputing R . This 

ensures that the resulting transformation corresponds to a proper 

rotation ( det( ) 1=R ). 

 

 
 (a) (b) 

Figure 4. Illustration of systematic error arising from 

differences in initial joint position (a) and its correction (b) 

 

To estimate the transformation matrix, we selected four points of 

the skeletal model that, due to anatomical features of the human 

body, are least susceptible to mutual coordinate changes during 

various movements. These are points numbered 0, 1, 10, and 13 

in Figure 2. 

 

After applying the found transformation, all that remains is to 

calculate the weighted Euclidean distance between the sets of 

points of the compared models. The distance between pairs of 

skeletons I  (instructor) and P (patient) could be determined by 

the following expression: 

 

 ( )
1

2

0 { , , }

1
( , )

N
m m m

i i i

i m x y z

R I P w I P
N

−

= 
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where N  – number of used points of skeletons, 
m

i
I  –  m -th 

coordinate of i -th point of skeletal model I , 
m

i
P  –  m -th 

coordinate of i -th point of skeletal model P , 
m

i
w  - weights of 

importance, represented the degree of attention to the m -th 

coordinate of i -th point (2). 

 

4. Dataset for quality assessment 

A special dataset was created for experimental evaluation of the 

proposed dissimilarity measure. We collected video records of 

instructor (physiotherapist) and 22 persons in laboratory 

environment. There were two kinds of exercises – in sitting 

position and in standing position. Each person repeated the 

instructor's exercises three times. The first time, they did it as 

accurately as possible. The second time, they did it less precisely, 

simulating a patient with minor motor impairments. The third 

time, they did it even less accurately, simulating a patient with 

severe motor impairments. We will denote these three classes of 

repetition as “good”, “intermediate” and “bad”. Thus, the total 

number of records in the dataset (including instructor) is equal to 

134. 

 

All data were obtained using Microsoft Kinect v2 and include the 

coordinates of 17 points of the standard skeletal model for each 

frame of the video recordings.  

 

In the preprocessing stage the dynamic time warping (DTW) was 

applied to each instructor – patient records pair and optimal 

alignment was obtained. In this work, we do not consider the 

aforementioned transformation, assuming that when determining 

the difference between two video sequences, skeletal models 

were compared at corresponding frames. 

 

5. Experimental results 

In the experiments conducted, we investigated the influence of 

both the refined normalization process and the consideration of 

varying informativeness of skeletal points during exercise 

execution. The distance between the instructor's and patients' 

sequences was computed based on the averaging of dissimilarity 

scores between corresponding skeletal models in matched 

frames. The matching between two sequences was obtained by 

DTW with correspondent dissimilarity measure. 

 

On one hand, in our collected data, the similarity of a patient's 

exercise performance to that of the instructor is measured on an 

ordinal scale. On the other hand, from the perspective of 

rehabilitation after illness, the numerical assessment of progress 

may vary significantly among different patients. Comparing the 

scores of various patients in terms of recovery degree and the 

condition of specific bodily systems remains a subject for further 

research. In this work, it was important for us to maintain 

correspondence between the increase in dissimilarity and the 

levels of “good”, “intermediate”, and “bad” execution.  

 

To this end, for the overall evaluation of a series of exercises 

performed by patients, we used Spearman's rank correlation 

coefficient (Spearman, 1904) with averaging across all dataset. 

This approach ensured a robust alignment between qualitative 

rankings and quantitative differences in performance.  

 

In the study, four variants of distance estimation between skeletal 

models were compared: weighted Euclidean distance (3) with 

normalization based on an affine transformation, weighted 

Euclidean distance with height-based normalization, average 

Euclidean distance with normalization based on an affine 

transformation, and average Euclidean distance with height-

based normalization (Seredin et al., 2023). 

 

The results of the study are illustrated in Fig. 5. Each line 

corresponds to the records of certain patient (P_patient number) 

in dataset, 01 corresponds to standing position, 02 corresponds to 

sitting position. The color bars reflect the exercise execution 

levels: green color for “good”, blue color for “intermediate”, and 

red color for “bad”. The proper sequence should be green, blue 

red. Different order signals for error. The column (a) presents 

weighted Euclidean distance (3) with normalization based on an 
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affine transformation, column (b) – weighted Euclidean distance 

with height-based normalization, column (c) – average Euclidean 

distance with normalization based on an affine transformation, 

and column (d) – average Euclidean distance with height-based 

normalization. 

 

 

Figure 5. Results of the ablation study: (a) weighted Euclidean 

distance with normalization based on an affine transformation, 

(b) weighted Euclidean distance with height-based 

normalization, (c) average Euclidean distance with 

normalization based on an affine transformation, (d) average 

Euclidean distance with height-based normalization 

 

Average Spearman's rank correlation coefficients avr  for all 

four measures: 

(a): avr = 0.987; 

(b): avr = 0.966; 

(c): avr = 0.909; 

(d): avr = 0.864. 

 

Experiments show a clear improvement in the separability of the 

dataset records by the degree of accuracy of repetition when 

using the proposed measure of difference between skeletal 

models. The most significant improvements are associated with 

the use of the proposed method for considering the varying 

informativeness of skeleton points for different movements. 

 

6. Conclusion 

In this study, we developed and evaluated a method for assessing 

the similarity between skeletal models of an instructor and 

patients during physical therapy exercises. The proposed 

approach addresses key challenges in traditional rehabilitation 

programs by leveraging advancements in computer vision and 

artificial intelligence to provide automated, objective feedback 

on exercise performance. Our contributions can be summarized 

as follows. We introduced the concept of informativeness for 

skeletal points, allowing us to adjust the pairwise dissimilarity 

function based on the specific characteristics of each exercise. 

This ensures that more mobile points, which are critical for 

evaluating movement quality, contribute significantly to the 

similarity assessment, while stationary points, influenced 

primarily by anatomical differences, are de-emphasized. A 

refined normalization process was proposed to align coordinate 

systems across different sensors and account for variations in 

pose orientation, body proportions, and sensor-specific biases. 

By applying affine transformations based on four stable skeletal 

points, we achieved improved consistency in comparing skeletal 

models. Through experiments with a custom dataset comprising 

video records of one instructor and 22 participants performing 

sitting and standing exercises, we demonstrated significant 

improvements in the separability of records based on the degree 

of exercise accuracy. The proposed method outperformed 

existing approaches, achieving high Spearman's rank correlation 

coefficients (up to 0.987).  

 

While our work provides a robust framework for objectively 

assessing the effectiveness of patient physical rehabilitation, 

further research is needed to compare patient scores in terms of 

recovery degree and motor disorders. Additionally, extending the 

method to diverse exercises and populations could enhance its 

applicability in clinical settings.  

 

Overall, this study highlights the potential of automated systems 

in objective rehabilitation assessments, offering a new tool for 

both physiotherapists and patients in monitoring progress of 

physical rehabilitation. Future work will focus on expanding the 

scope of the method and integrating it into therapeutic physical 

training.  
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