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Abstract

Time series forecasting and data gap filling are significant tasks in applied science. Nowadays there are a lot of different useful
methods for forecasting missing gaps in the data. However, it should be taken into account that the inclusion of a large number of
features may lead to overfitting of the model and a decrease in the forecast quality. This paper examines the problem of forecast
error minimization in time series with exogenous variables, in which the missing gaps are forecasted by the SARIMAX model.
The analysis of Tver region data showed that the selection of significant exogenous variables using Lasso-regression allows for
minimization of the forecast error and prevents model overfitting. The obtained results confirm that the correct choice of exogenous

variables significantly improves the forecast quality.

1. Introduction

A time series is a sequence of random variables so that each
value of the series corresponds to a certain point in time. The
time interval over which the values of a time series are
recorded is constant and does not change for a particular
series. Examples of time series can be data from a variety of
fields, including economics (e.g., data on the daily flow of
customers), finance (e.g., data on stock price fluctuations), and
engineering (e.g., weather data). Time series are divided into
one-dimensional, in which the target variable is analyzed and
predicted only on the basis of its previous values, and
multidimensional, in which additional (exogenous) variables
are used in addition to the target variable (for example, the
target variable can be the value of electricity consumption in
the city and the additional variable can be the value of
electricity consumption in the suburbs) (Brockwell and Davis,
2016, Chatfield, 1995, Hyndman and Athanasopoulos, 2018,
Montgomery et al., 2015).

There is a wide range of forecasting tools, including statistical
and neural networks. One of the most widely used statistical
models is SARIMAX (Seasonal AutoRegressive Integrated
Moving Average with eXogenous regressors). SARIMAX is
an extension of the ARIMA model that accounts for seasonal
patterns and incorporates external (exogenous) variables that
may influence the target variable. This makes SARIMAX
particularly useful for making forecasts in time series in which
the predicted values depend not only on past values, but also
on external factors such as economic indicators, weather
conditions or market trends.

However, working with multidimensional time series may
require a method of selecting significant features to increase
the quality of the forecast and avoid overfitting the model. In
this paper, Lasso-regression is used to select the significant
exogenous features. Lasso-regression (Least Absolute
Shrinkage and Selection Operator) is a linear regression
method that applies regularization to feature selection. Further
results can be taken into account for choosing the right
combination of exogenous variables. This can be particularly

useful in multidimensional time series
exogenous factors are involved.

analysis where

2. Statistical models
2.1 MA model

MA (Moving Average) is a statistical model used to analyze
time series, based on the assumption that each value of a time
series can be expressed as the sum of weighted random errors
and the initial value of the time series (Brockwell and Davis,
2016, Chatfield, 1995, Hyndman and Athanasopoulos, 2018,
Montgomery et al., 2015).

Definition: y. is a Moving Average (MA) process of order g in
relation to white noise u; if:

Yt =p+ur+ar-u—1+...
+a11'ut—¢17 (1)

where aq #0
Pk = cov(Yt, Yi—k) =

pq 7# 0,pq+1 = pgy2 = ... =0

The MA process can also be written with the usage of the lag
operator:

Yt = P’ma(L) s Ut, (2)

where Pro(L) =141 L+ as-L* + ...
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2.2 AR model

AR (AutoRegressive) is a statistical model used to analyze
time series, based on the assumption that each value of a time
series can be expressed as a linear combination of previous
values of the time series (Brockwell and Davis, 2016,
Chatfield, 1995, Hyndman and Athanasopoulos, 2018,
Montgomery et al., 2015).

Definition: 1y, is an AR(p) model in relation to white noise u;
if:

(yt—u)=51-(yt71—u)+ﬁ2~(yt72—u)+...

+ Bp - (Yt—p — 1) + us, 3
where y¢ is a MA(oc0) process
in relation to white noise wu;

2.3 ARMA model

ARMA (AutoRegressive Moving Average) is a statistical model
for analyzing time series, which is a combination of AR model
and MA model. The ARMA model describes a time series as a
linear combination of its past values and white noise. The AR
part of the model uses previous values of the series, and the MA
part uses white noise (Brockwell and Davis, 2016, Chatfield,
1995, Hyndman and Athanasopoulos, 2018, Montgomery et al.,
2015).

Definition: y: is an ARMA(p,q) process in relation to white
noise u if it fits the equation:

Par(L) -yt = Pywa(L) - u, %)
where degree (Par) =p
degree (Pyva) =g
Par(0) =1, Pua(0) =1
PaRr, Pra are irreducible
y¢ is @ MA(o0) process
in relation to white noise wuy

2.4 ARIMA model

ARIMA (Autoregressive Integrated Moving Average) is an
extension of the ARMA model that includes an integrating
component (I). Integration is used to transform non-stationary
time series into a stationary ARMA model (Brockwell and
Davis, 2016, Chatfield, 1995, Hyndman and Athanasopoulos,
2018, Montgomery et al., 2015).

Definition: y; is an ARIMA(p,q) process if:

Ay - non-stationary
A%y, - non-stationary

A3y, - non-stationary

A1y, - non-stationary

A%y, — ARM A(p, q), Q)

where Ay, = 1- L)d Yt

The ARIMA model equation can be rewritten in the following
form:

G(L)(1 — L)"ye = p+ 0(L)es, (©)
where

(L) =(1—¢1L— —¢pL")
O(L) = (1+ 6L+ -+ 0,L7)

2.5 SARIMAX model

SARIMAX (Seasonal Autoregressive Integrated Moving
Average with Exogenous Variables) is an extension of the
classical ARIMA model by including exogenous variables
(Brockwell and Davis, 2016, Chatfield, 1995, Hyndman and
Athanasopoulos, 2018, Montgomery et al., 2015).

Definition: y: is a SARIMAX(p,d,q)(P,D,Q)[T] is a process in
relation to white noise u; if:

Par(L) - Psar(L")-A%; = Paya(L) - Psma(L") - uet

+3°0; -4, )
=1

]DAR(L)7 PSAR(LT) are not
conjugate with Para(L), Psara(LT)
degree Par(L) =p

degree Psar(L™) =P

degree Pya(L) =g

degree Psyra(LT) = Q

Par(0) = Psar(0) =

=Puya(0) = Psma(0) =1

d, D are the smallest possible values
A=1-L A, =1-L"

L is the lag operator

x! - exogenous variables

where

In this paper, the SARIMAX model is used as a key method to
fill in data gaps:

1. The SARIMAX model combines additional components
to provide a more accurate prediction of real data.

2. Weather data has a strong seasonality, so it is necessary to

use models that take this into account.

3. Forecasting process using SARIMAX models
3.1 Dickey-Fuller test

The Dickey-Fuller test is used to determine whether a time
series is stationary or non-stationary. The Dickey-Fuller test is
a statistical test that checks the presence of unit roots in a time
series (Hyndman and Athanasopoulos, 2018).
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Let the model of a series be given by the formula:

p
Ayt:/i‘i’ﬂ‘t‘i"}/’yt—l‘i’zai'yt—i

=1

q
) 0w, ®)
=1

where Ayy =y — yr—1 — first difference of series
[ -t — trend of series

- - stationarity test parameter

yt—i - lag values of the target variable

ut—; - lag values of the white noise

The Dickey-Fuller test is a hypothesis testing task:

Hypothesis: v = 0.

Even with trend subtraction, the process remains
non-stationary.

Alternative: ~ < 0.

Non-stationarity is removed by subtracting the deterministic
trend.

If the p-value (significance level) is less than the specified level
(usually: 0.05), the hypothesis is rejected and it is concluded
that the time series is stationary.

3.2 Information criteria

Information criteria are used to determine model orders. In this
paper, the AIC criterion was used:

AIC = 2logL+2-(p+q+k+1), 9

L is the likelihood function

k = 1 if the series has non-zero
mathematical expectation

k = 0 if the series has zero
mathematical expectation

where

The best model is selected by finding the smallest possible
value of the AIC criterion among all possible values. This
follows from maximizing the likelihood function (the
logarithm of the likelihood function enters the formula with a
negative sign, so the criterion itself is minimized), as well as
the penalty for choosing too many parameters (Hyndman and
Athanasopoulos, 2018).

It is important to note that information criteria are good
optimization methods to find the best orders of p, q. However,
they are not capable of picking the order of differentiation - for
this purpose, stationarity tests must be used. A series is
differentiated until the p — value in the Dickey-Fuller test is
less than a given significance level. The inability to use
information criteria to determine the order d is due to the fact
that differentiation changes the data from which the likelihood
function is computed. This makes the AIC values for models
with different orders of differentiation incomparable.

3.3 Forecasting procedure

For making a forecast with a usage of the SARIMAX model,
the following procedure should be followed (Hyndman and
Athanasopoulos, 2018).

1. Determine whether a series is stationary or non-stationary
by using the stationarity test (Dickey-Fuller test). If the
data are non-stationary, differentiate the series and use the
test. If necessary, repeat the procedure until the
differentiated series becomes stationary. The number of
differentiations of the series will determine the order d in
the SARIMAX-model,

2. Put the required seasonality 7" in the model parameters
3. Find the best model. Two options are possible:

(a) Use automatic algorithms, which are able to find
right p and ¢ orders by minimizing AIC value,

(b) Manual search by modeling and comparing several
models with different p and q orders,

4. Analyze the residuals of the selected models. If the
distribution of residuals is similar to the distribution of
white noise, then this model is suitable for further
forecasting

3.4 Lasso-regression

The ordinary least squares approach (OLS) with regularization
is an improved version of the OLS that adds a penalty term to
the target function. The penalty parameter helps not only find
the optimal coefficients, but also select the necessary features to
avoid overfitting the model (Draper and Smith, 1986, Harrell,
2015, Pyt’ev, 1990, Serdobolskaya, 2014).

Lasso-regression is a least squares method with
L1-regularization. The L1-norm of the coefficient vector is

added as a penalty term.

Lasso-regression can be written as a regularization problem

S(B) =Y = XBII* + A8l ~ mjn, (10)
Decision:
Brasso = argmin(|[Y = XBI” + A1), (D
where A > 0 - regularization parameter

Lasso-regression compares insignificant features with the zero
value of their corresponding coefficients.  This happens
because L1-regularization creates diamond-shaped constraints
on the coefficients (the contours of the penalty look like a
rhombus). That is why in solution optimization, the
intersection of Lasso diamond-shaped constraints with error
levels often occurs on the axes, driving the coefficients to zero.
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4. Research question

4.1 The selection of exogenous variables using lasso
regression for SARIMAX models

If the exogenous variables z: are highly correlated with the
target variable y; or, on the contrary, do not affect the final
forecast value, their influence on y; may become excessive,
leading to overfitting and, consequently, to an increase in the
error. Thus, it is important to select those z that complement
the forecast information ¢; rather than duplicate this
information or make no contribution to the forecast value ;.

As mentioned in the previous chapter, Lasso-regression allows
selection of only significant features that contribute to the
information about the target variable. It can help identify those
variables among the x! variables that have predictive power
and can reduce the error in predicting the target variable.

An optimization problem can be written based on the formula
10:

k 2 k
i 5 (n-Ywest) a3h o
St =1 =1

i — exogenous variables
x:i — coefficients of exogenous variables,
which are subject to regularization

where

If there is a need for the addition of the lag values of the target
variable, they should be added to the part with exogenous
variables. In this case, the regularization has to be done for
both lag values and exogenous variables. However, it has to be
taken into account that the variables which are highly
correlated with the target variable may be detected by
Lasso-regression as unnecessary features. — Hence, both
variants of regularization have to be done to reach more
precise results.

4.2 Data description

In this paper, real weather and atmospheric data from Tver
region were taken as an example of working with time series.
The values data were measured every half hour, the beginning
of data collection was November 12, 2011 at 11:00, the end of
data collection was December 23, 2020 at 14:00. Data
collection included the measurement of several weather
parameters.

In this paper the problem of the gap filling in the carbon
dioxide concentration variables was studied. Hence, the carbon
dioxide concentration (million™!) was taken as the target
variable.  The following data were taken as additional
parameters (exogenous variables): Temperature at 30 meters
(°C) (further Temperature), Relative humidity at 50 meters
(%) (further Relative humidity), and Solar radiation (W/ m?)
(further Solar radiation).

The following procedure was done to find the best combination
of exogenous variables:

1. 70 artificial gaps containing 3 to 47 missing values were
randomly cut out in the carbon dioxide concentration data
for subsequent filling and estimation of the prediction
error.

2. The gaps were cut in such a way that there was a distance
of at least 500 points between them.

3. 240 points were used for model training to fill in the gaps.

4. The exogenous variables did not contain gaps in either the
training sample or the test sample (where gaps in the
carbon dioxide concentration data were filled in).

5. The obtained gaps were predicted using the SARIMAX
model with different sets (combinations) of exogenous
variables with a preliminary check for stationarity using
the Dickey-Fuller test to assess the adequacy of the
selected model parameters.

6. The model parameters were selected automatically using
the auto_,ARIMA (Python, sktime library).

7. The predicted residuals were analyzed for the lack of
correlation (the residuals should be white noise).

8. RSS (Residual Sum of Squares) was calculated for each
gap, then the total SSE (Sum of Squared Error) value was
found for the entire sample of gaps, which was then
normalized by the total size of all gaps and reduced to the
RMSE form.

9. RMSE (Root Mean Squared Error) values were compared
for different combinations of exogenous variables to
identify the best model implementation.

4.3 Evaluation
This subsection contains tables that were obtained in the study.

Firstly, the table of significance coefficients (3) is presented.
The results were obtained by the usage of Lasso-regression on
all available data, regarding the target variable with exogenous
variables as regressors (features).

It can be seen from the Table 1 that the use of Lasso-regression
allowed us to identify the most significant variables —
Temperature and Relative humidity with no zero coefficients,
excluding Solar radiation, which has zero coefficients for
some of the penalty parameters.

Secondly, the error table for the SARIMAX models with
different sets of exogenous variables is presented (error values
are obtained using the procedure described in the previous
subsection).

Overall, it can be seen from the Table 2 that the forecast error
can be decreased by the usage of excluding redundant features.

As presented in the Table 2, the SARIMAX model with the
Relative humidity as the exogenous variable has the forecast
error less than the SARIMAX model without any exogenous
variables. Hence, including Relative humidity as a significant
variable is bound to reduce the error.
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Figure 1. The result of filling the gap with the SARIMAX model with exogenous variables:
Temperature, Relative humidity, Solar radiation together with graphs of exogenous variables

Exogenous variable A=0.001 | A=001 | A=01| A=1] A=10
Relative humidity 8.905 8.899 8.794 7.741 2.536
Solar radiation 3.110 3.090 2.795 0.000 0.000
Temperature -10.676 -10.665 -10.458 | -8.390 | -3.198

Table 1. Significance coefficients of exogenous variables obtained by Lasso-regression
for different values of the penalty parameter

Including Temperature into the model can reduce the forecast
error, however, the difference in the errors (comparing the
SARIMAX model with Temperature as the exogenous variable
and the SARIMAX model without any exogenous variables) is
not as big as it might be expected. Nevertheless, including
Temperature into the model at least is not likely to spoil the
forecast error. Also, it has to be taken into account that
Temperature has a negative correlation with the target variable
(Table 1). Consequently, the forecast error could be higher
than in the model with exogenous variables which have a
positive correlation with the target variable since the
exogenous variables are included in the model linearly.

As it was expected from the Table 1, the inclusion of Solar
radiation as an insignificant variable worsened the forecast
error compared to the SARIMAX model without exogenous
variables. Hence, insignificant variables should be excluded
from the construction of the forecast, as they are more likely to
increase the error and affect the accuracy.

4.4 Results

This subsection contains some examples of the final graphs that
were obtained in the study.

Firstly, Figure 1 shows the results of gap filling by the
SARIMAX model with the following set of exogenous
variables: Relative humidity, Temperature and Solar radiation,
as one of the examples of gap filling.

It is shown that

e Relative humidity has the same pattern as the target
variable

e Solar radiation and Temperature have a negative
correlation with the target variable

e Temperature and Relative humidity have the similar
pattern, with the difference in the correlation with a target
variable

Thus, the usage of Lasso-regression allows us to exclude the
exogenous variable - Solar radiation, to avoid overfitting.

Secondly, Figures 2 and 3 show the results of gap filling by the
SARIMAX model with Relative humidity and Solar radiation
respectively. It can be seen from the graphs that the SARIMAX
model with Relative humidity (Figure 2) has the better forecast
(with the less RMSE) than the the SARIMAX model with Solar
radiation (Figure 3).
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Parameters: exogenous variables RMSE | Error*, %
Without exogenous variables (SARIMA model) 17.50 4.23
Temperature 17.40 4.20
Relative humidity 15.96 3.85
Solar radiation 21.98 5.31
Temperature + Relative humidity 17.02 4.11
Temperature + Solar radiation 20.17 4.87
Relative humidity + Solar radiation 20.05 4.84
Temperature + Relative humidity + Solar radiation 19.42 4.69

Table 2. RMSE values for different sets of exogenous variables in the SARIMAX model

* Error is RMSE/mean, where mean of CO2 concentration = 414.01 min " in the given period

Figure 2. The result of filling the gap with the SARIMAX model
with exogenous variables: Relative humidity

Figure 3. The result of filling the gap with the SARIMAX model
with exogenous variables: Solar radiation

5. Conclusion

Lasso-regression can be used for exogenous variables’
selection. This allows to minimize the forecast error and
prevent overfitting of the SARIMAX model for forecasting
time series.

Thus, in the following weather data of Tver region it has been
concluded that Temperature and Relative humidity showed a
positive effect, reducing the forecast error. At the same time,
the inclusion of Solar radiation in the model led to an increase
in the error and possible overfitting. This confirms the
advisability of pre-processing the data using Lasso-regression
to incorporate the final results into the SARIMAX model.

The obtained results can be useful in various fields of science

where time series analysis is required.
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