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Abstract 

 

Shifts in the habitat boundaries of woody plant species represent one of the continental-scale consequences of climate change. 

Mapping these shifts and quantitatively evaluating them is essential for an appropriate assessment of the carbon balance. Here we 

present a stepwise procedure including the selection and processing of multispectral remote sensing data from Landsat 4–9 on the 

Google Earth Engine servers. We show explicitly how these data can be used to assess the timberline boundary shift in the 

mountainous ecosystems of the Subpolar Urals (exemplified for the Sablya ridge) using such methods as pseudo–invariant feature 

matching, robust regression, principal component analysis, and logistic regression-based classification, resulting in high 

classification accuracy indicated by Intersection over Union (IoU) above 0.9. The quantitative evaluation of the overall forest 

advancement area from 1960 to 2024 — based on observations collected between 1987 and 2024 — was estimated at 4.82 km², in a 

reasonable agreement with the expert delineation estimate of 5.6 km². 

 

 

1. Introduction 

One of the consequences of ongoing climate change is the 

large–scale shift in ecological zone boundaries (Hansson et al., 

2021; Montesano et al., 2024). In the Northern Hemisphere, the 

boundary of permafrost is retreating northwards, while arctic 

deserts are gradually being replaced by tundra. In particular, the 

southern boundary of the forest–tundra zone is progressively 

colonized by forest, thereby shifting the distribution limits of 

woody vegetation. Concurrently the southern edge of forested 

areas retreats under the influence of natural and anthropogenic 

factors detrimental to tree growth, including prolonged 

droughts, wildfires, and the intensification of agricultural 

practices. This retreat ultimately gives way to the establishment 

of steppe. Evaluating the balance between these divergent 

processes represents a complex and large‐scale challenge, one 

that is also critical for a proper assessment of the carbon 

balance. 

 

At the same time, mountain ecosystems serve as local models of 

global change. Typical of these regions is a division of the 

landscape into three primary zones: extensive areas devoid of 

forest but covered by herbaceous vegetation (e.g., cold rock 

deserts, stony debris fields, or wetlands); mountain tundra, 

characterized by the emergence of low-stature vegetation — 

mosses, lichens, herbaceous plants, small shrubs, and sporadic 

trees; and extensive forested areas (closed forest stands) 

(Gorchakovskiy and Shiyatov, 1985). Notably, these three zones 

are all subject to shifts under climatic forcing. For instance, 

mountain tundra gradually becomes colonized by woody 

vegetation — a process analogous to the northward shift of the 

southern continental boundary of forest–tundra zones (Harsch et 

al., 2009). Using mountain ecosystems as prominent examples, 

one can investigate processes comparable to those on a 

continental scale, yet restricted to small, locally defined study 

areas where several ecological zones may transition over 

distances of only a few hundred meters (as opposed to hundreds 

or thousands of kilometers on the plains) (Gorchakovskiy and 

Shiyatov, 1985). This scale-dependent heterogeneity facilitates 

the application of automated methods for analyzing and 

interpreting long-term Earth observation data, while still 

allowing for manual tuning, quality control, and cross-

validation with expert assessments and local ground 

observations. 

 

In modern conditions, remote sensing datasets from various 

sources enable the analysis of long-term changes in forest cover. 

Among these, multispectral Landsat data are of particular 

interest given their global scope and the continuity of their 

spatial and temporal coverage (Banskota et al., 2014). 

Moreover, state-of-the-art cloud computing tools and platforms 

now allow processing of massive remote sensing datasets 

without burdens such as data storage, database management, or 

extensive computational infrastructure (Hemati et al., 2021). 

This technological progress has allowed researchers to move 

from paired comparisons of multispectral images toward the 

automated analysis of time series that carry substantially more 

information — including the dynamics of ecological boundaries 

(Kennedy et al., 2010; Zhu and Woodcock, 2014; Huang et al., 

2010). 

 

2. Materials and Methods 

The primary input data for this study consist of Landsat datasets 

and expert delineations of ecological zone boundaries obtained 

during field expeditions, as well as through the analyses of 

aerial photographs and satellite imagery. For the analysis, 

multispectral images from Landsat satellites 4 through 9 

(second collection) (Crawford et al., 2023) acquired in July and 

August — available since 1984 for the study area — were 
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selected. The study area is defined as a square with 30-

kilometer sides centered at the coordinates 59.05° E, 64.82° N. 

For some operations, an extended study area — a square 

measuring 90 kilometers on each side with the same center — 

was also employed (hereafter referred to as the extended area). 

 

Cloud-free Tier 1 (T1) multispectral images of Top-Of-

Atmosphere (TOA) reflectance that have undergone relative 

radiometric correction along with Surface Reflectance (SR) 

products were used in the analysis. The T1 data exhibits a 

Radial Root Mean Square Error (RMSE) of less than 12 meters 

between images, making them suitable for time-series analysis. 

All multispectral images include blue (B), green (G), red (R), 

near infrared (NIR), short-wave infrared (SWIR1 and SWIR2), 

and thermal bands that are common to all Landsat sensors. TOA 

images were used directly for assessing the boundary shift, 

whereas SR images served as auxiliary data during the 

classification stage. The exclusive use of SR products as 

supplemental information is motivated by inherent differences 

among sensors onboard Landsat 4–9. Time series constructed 

from SR images inevitably present trends in band brightness 

and in all derivative indices due to the gradual transition from 

older to newer sensor technologies. Therefore, relative 

radiometric correction — capable of mitigating sensor-transition 

effects — is more effectively executed from the base-level TOA 

data rather than by performing SR-to-SR correction. This is 

attributed to the fact that SR images already represent the 

outcome of an absolute radiometric correction; further relative 

correction these products would introduce additional error 

(Young et al., 2017). 

 

Data processing was performed using Google Earth Engine 

(GEE), a cloud-based geospatial analysis platform that 

harnesses Google’s computing capabilities and simplifies the 

processing of large remote sensing datasets (Gorelick et al., 

2017). Within GEE, all operations related to individual image 

processing and time-series formation — including initial 

filtering, relative radiometric correction, and compositing — 

were executed. The time series were generated as sets of 

seasonal composite images, which were then exported from 

GEE for further local processing. The assessment of the forest 

boundary shift was carried out by performing a binary 

classification of pixels into forested and non-forested classes, 

followed by a temporal regression analysis of the resulting 

classifications. 

 

2.1 Preliminary Filtering 

The first step in processing the TOA data was to exclude all 

images that were more than one-quarter covered by dense 

clouds or semi-transparent haze in the extended area. To 

accomplish this, the Simple Cloud Score algorithm available on 

the Google Earth Engine (GEE) platform was applied to the 

images. This algorithm computes a cloud probability (in 

percentage) for each pixel of a multispectral Landsat TOA 

image using spectral brightness, temperature, and the 

Normalized Difference Snow Index (NDSI). Next, images for 

which the upper quartile of the cloud probability exceeded one 

percent were removed. This selection is justified by the fact that 

further relative radiometric correction may introduce substantial 

errors when applied to images with a high cloud load, and the 

early exclusion of such data accelerates the necessary 

calculations and transformations. On the remaining images, 

dilated clouds and their shadows were masked using the 

QA_PIXEL bit mask. 

 

2.2 Relative Radiometric Correction 

For the relative radiometric correction, a single TOA image (ID: 

LANDSAT/LE07/C02/T1_TOA/LE07_168015_20010717), 

which exhibits minimal cloud cover and the maximum overlap 

with the extended area, was chosen as the reference. Relative to 

this reference image, the remaining TOA images were corrected 

using the Pseudo-Invariant Feature Matching (PIF) method 

(Schroeder et al., 2006). This method is based on establishing a 

linear relationship between the spectral brightness of pseudo-

invariant features on the reference image and their 

corresponding brightness on the image to be corrected. Pixels 

corresponding to pseudo-invariant features were determined by 

applying a similarity measure between spectral signatures using 

the Spectral Correlation Mapper (De Carvalho et al., 2013): 
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where  SCM = Spectral Correlation Mapper 

 ref
P = sample pixel from the reference image 

 ref
P = average brightness of the bands of the 

reference pixel 

 P = sample pixel from the image to be corrected 

 P = average brightness of the bands of the pixel 

from the image to be corrected 

 N = number of bands 

 i = band iterator 

 

This measure represents the Pearson correlation coefficient 

computed on a pixel-by-pixel basis and enables the selection of 

those pixels with the highest linear correlation. The top 10% of 

the most correlated pixels were selected — independently in 

four brightness ranges defined by the quartiles and the median 

of each band of the reference image — by applying a logical 

OR condition, and pixels with a correlation below 0.8 were 

excluded. Using these selected pixels, the coefficients for linear 

transformation for each band were computed via robust linear 

regression employing iteratively reweighted least squares with 

the Talwar cost function. As a result, every spectral band of 

each TOA image was transformed according to the derived 

linear coefficients. 

 

Thus, the relative radiometric correction was performed under 

the assumption that any TOA image intersecting with the 

reference image in the extended area contains enough spectrally 

similar pixels, the differences of which are attributable to 

variations in Landsat sensors, solar illumination angles, and 

atmospheric transparency — but not to phenological differences 

in vegetation (Young et al., 2017). 

 

2.3 Compositing 

After cloud removal and relative radiometric correction, the 

TOA images were merged into seasonal composites using the 

Normalized Difference Vegetation Index (NDVI): 

NIR R
NDVI .

NIR + R

−
=     (2) 

 

A composite was generated by selecting the pixel whose NDVI 

corresponded to the upper quartile of the seasonal distribution. 

This approach favors pixels near the seasonal peak of vegetation 

activity while excluding anomalous pixels whose high NDVI 
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values result from atmospheric effects rather than vegetation. In 

doing so, the composites become more consistent among 

themselves and further suppress any residual clouds and other 

anomalies. Seasonal composites of Surface Reflectance (SR) 

images were generated as median images for the period 2019–

2024. 

 

2.4 Expert Delineation of Ecological Zones 

Expert delineations of ecological zones were obtained from 

field expeditions and through the expert analysis of multi-

temporal aerial photographs and satellite imagery. In Figure 1, 

an example is shown where such delineations are visualized 

both as a closed boundary on a map and as a binary mask. 

  
a    b 

Figure 1. Example of expert delineation of the boundary 

between mountain tundra and dense forest: (a) Closed 

boundary; (b) Binary mask. 

 

 
Figure 2. Example of corrected binary mask 

 

These expert delineations identify a set of pixels corresponding 

to non-forest areas, while the information regarding forest areas 

is used to generate training labels for subsequent classification 

into forest and non-forest classes. It is well established that, due 

to significant shadows cast by trees, forested areas generally 

appear darker than other vegetated surfaces, thereby producing 

a distinct “forest peak” in the histograms of certain spectral 

bands (Huang et al., 2008). Non-forest dark areas can be 

identified and masked using NDVI. Accordingly, the previously 

obtained SR composites were divided into square blocks of 200 

pixels per side, and histograms for the G band and NDVI were 

computed for each block. Pixels considered to belong to 

forested areas were selected based on thresholds corresponding 

to the frequency peak in these histograms — specifically, by 

selecting pixels with NDVI above a set threshold and G values 

below a specified level. Figure 2 illustrates an example of the 

corrected binary mask obtained through the thresholding 

process, overlaid on a map. Blocks with a median NDVI below 

0.8 were excluded, as these areas are less than half covered by 

dense vegetation and their histogram peaks are therefore 

unlikely to accurately represent closed forest stands. These 

outputs now serve directly as the training data for the 

subsequent classification of imagery into forest and non-forest 

areas. 

 

2.5 Assessment of Timberline Boundary Shift 

The assessment of the timberline boundary shift comprised two 

stages: classification of seasonal composites from the relative 

radiometrically corrected TOA images into forest and non-

forest classes, and regression analysis of the classification 

results (i.e., the time series of decision statistics) to delineate the 

timberline boundary. 

 

In the first stage, Principal Component Analysis (PCA) was 

applied to the B, G, R, and NIR bands, and the first two 

principal components (PC1 and PC2) were selected. The 

SWIR1 and SWIR2 bands, being moisture-dependent and not 

significantly enhancing the classification, were omitted. 

Training and classification were performed based on the 

features PC1, PC2, and NDVI — which, owing to its 

normalized nature, is independent of illumination and provides 

a straightforward means of partially mitigating illumination 

effects without resorting to a digital elevation model (Young et 

al., 2017). Corrected binary masks (a total of six masks 

spanning 2019–2024) were used as training labels for a logistic 

regression model, resulting in a time series of decision statistics 

from 1987 to 2024. In this way, forest and non-forest areas were 

clearly delineated, and the timberline boundary was defined as a 

transition zone between these areas. Classification quality was 

evaluated by comparing the predicted labels (obtained by 

binarizing the decision statistics using a threshold of 0.5) with 

the training labels via K-Fold Cross-Validation. For this 

purpose, the Intersection over Union (IoU) metric was 

employed: 

P GT TP
IoU =  = ,

P GT TP + FP + FN




      (3) 

where  IoU = Intersection over Union 

 P = predicted class labels 

 GT = ground truth (training) labels 

 TP = True Positives 

 FP = False Positives 

 FN = False Negatives 

 

The average IoU for the forest class was 0.9114 and 0.9371 for 

the non-forest class, yielding an overall average IoU of 0.9242. 

Figure 3 displays the ROC curves derived from cross-

validation, with the area under the curves (AUC) averaging 

0.9938. Regression analysis was then performed by applying 

linear regression individually to the decision statistic time series 

for each pixel to estimate the temporal movement of the 

timberline boundary. 
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3. Results 

Figure 4 visualizes the outcome of the linear regression applied 

to the time series. In the visualization, green is proportional to 

the mean value of the regression line, red indicates a negative 

derivative, and blue denotes a positive derivative. This map 

depicts long-term forest gain (blue) and forest loss (red) from 

1987 to 2024. By extrapolating the regression to 1960 and 

binarizing the decision statistic time series at a threshold of 0.5, 

an estimated total forest advancement area of 4.82 km² was 

obtained for the expert-assessed vicinity of the Sablya ridge. 

 

Figure 5 presents a graph showing the relationship between the 

forest advancement area and time, with red dots marking the 

start and end of the satellite observation period (1987 and 2024, 

respectively). The curve preceding 1987 results from 

extrapolation. From 1995 to 2024 the trend is linear; from 1970 

to 1995, forest advancement occurred with an accelerating pace, 

while prior to 1970 the trend was linear. Dashed lines on the 

 

Figure 4. Visualization of linear regression of the local trend in the forest cover status over time: green indicates the mean value of 

the regression line, red indicates a negative derivative (forest loss), and blue indicates a positive derivative (forest gain) 
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Figure 3. ROC curves derived from cross-validation 
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graph indicate the approximations for these linear segments. 

 

4. Conclusion 

In the present study, the timberline boundary shift was assessed 

using multispectral Landsat 4–9 images and expert evaluations 

of ecological zone boundaries in the mountain ecosystem of the 

Sablia ridge in the Subpolar Urals. Based on the decision 

statistic time series from 1987 to 2024, a map delineating forest 

gain and forest loss was produced. The map shows that forest 

gain is concentrated near the mountains — an expected upward 

shift of the forest edge under the influence of observed climate 

change. Although some forest loss is evident, these losses are 

distributed more randomly and uniformly across the study area. 

The assessment of the timberline boundary shift — extrapolated 

from the decision statistic time series — yields an advancement 

area of 4.82 km² from 1960 to 2024, while expert evaluations 

for the same period and area indicate an advancement of 

5.6 km². These results are considered consistent, given the 

spatial resolution constraints of Landsat 4–9 (30 m) and the fact 

that approximately 30% of the expert-documented forest 

advancement involves shifts smaller than this resolution. The 

relationship between forest advancement area and time exhibits 

an inflection between 1970 and 1995, which aligns with 

climatic meta-analysis data indicating a significant pivot in 

temperature trends in the late 1980s (Reid et al., 2016). 

Conversely, linear extrapolation captures only trends observed 

during the study period and omits pre-observation dynamics. 

This limitation may affect the curve’s shape, though likely only 

marginally due to the very slow and protracted processes 

occurring in the mountain ecosystems of the Subpolar Urals. 

 

The use of the GEE platform allowed the most resource-

intensive operations to be offloaded to Google’s servers, rapidly 

condensing large volumes of long-term remote sensing data into 

compact seasonal composite time series that can be easily 

exported and processed locally. This setup not only mitigates 

many challenges associated with local processing of big data 

but also significantly streamlines and accelerates experiments in 

other regions.  

 

The results presented here can serve as a foundation for more 

advanced mathematical models of forest cover change and 

timberline dynamics. For instance, a more effective approach to 

capturing the temporal dynamics of forest advancement may 

involve piecewise-linear approximation of the decision statistic 

time series. A notable example of such an approach is the 

LandTrendr temporal segmentation algorithm (Kennedy et al., 

2010). In regions with climates more favorable to vegetation 

than the high mountains of the Subpolar Urals — and in areas 

affected by fire or other anthropogenic disturbances — 

piecewise-linear approximation can effectively accommodate 

abrupt and nonlinear changes in forest cover. Additionally, the 

use of optical flow methods holds promise for developing 

predictive models of timberline movement. 
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