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Abstract

This paper presents a novel reinforcement learning (RL) framework for automated vectorization of high-resolution aerial imagery,
addressing key challenges in geospatial analysis through adaptive feature extraction and sequential decision-making. Our hybrid
architecture combines a modified ResNet-50 backbone with atrous spatial pyramid pooling (ASPP) for multi-scale feature extrac-
tion and bidirectional GRUs for spatial context modeling, integrated with a dueling double DQN agent that optimizes vectorization
through reward-driven policy learning. The proposed method demonstrates significant improvements over conventional approaches,
achieving about 10% increase in mean Intersection-over-Union (mIoU) on the CrowdAI Mapping Challenge dataset while reducing
processing time by 29% through optimized RL-based decision sequences. A multi-component reward system balances geometric
accuracy (boundary F1-score: 0.79), topological correctness (94.1% Cycle Consistency and 93.4% Junction Accuracy), and com-
putational efficiency, enabling robust performance across diverse urban and rural landscapes. This work establishes a new paradigm
for adaptive geospatial vectorization that combines deep learning’s representational power with RL’s sequential optimization cap-
abilities.

1. Introduction

Aerial imagery plays a pivotal role in geospatial analysis,
providing essential data for digital mapping, urban monitoring
(Zhou et al., 2016), agricultural land management (Zhang et al.,
2019), and environmental change detection (Wang et al., 2023).
However, traditional manual vectorization of such images re-
mains a labor-intensive process requiring substantial time and
human resources. Existing automated methods based on clas-
sical computer vision (Noronha and Nevatia, 2001) and ma-
chine learning algorithms (Maloof et al., 2003) often demon-
strate insufficient accuracy due to high object variability, noise,
occlusions, and complex textural characteristics inherent in aer-
ial photography.

Modern approaches to automated vectorization, including
methods based on convolutional neural networks (CNNs) (Wei
et al., 2019, Emelyanov et al., 2024a) and semantic segmenta-
tion (Zhao et al., 2020, Emelyanov et al., 2024b), show limited
effectiveness when processing context-dependent objects such
as buildings with complex shapes or road networks with het-
erogeneous surfaces. Furthermore, these methods require large
volumes of annotated training data, significantly increasing im-
plementation costs.

This paper proposes a novel approach to aerial image vector-
ization based on reinforcement learning (RL). The primary ob-
jective is to develop an adaptive model capable of sequential
decision-making during object extraction, thereby improving
vectorization accuracy compared to conventional methods. The
key distinction of the proposed approach lies in applying RL
to vectorization tasks, enabling the model to account for spatial
context and dynamically adapt to various object types. Unlike
CNN-based methods, our approach employs a reward mechan-
ism to optimize boundary extraction, facilitating more accurate
recognition of complex structures. In summary, the main con-
tributions of this paper are follows:

Figure 1. Example of extracting a building boundary.

• We investigate how reinforcement learning can improve
the accuracy and adaptivity of the model.

• One of the most popular datasets for vectorization
(CrowdAI (Mohanty et al., 2020)) is used to analyze the
results and compare them with existing methods for high-
lighting building boundaries.
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Figure 2. The proposed algorithm’s structure.

2. Related work

Reinforcement Learning (RL) has emerged as a powerful
framework for solving complex decision-making and optimiza-
tion problems, demonstrating remarkable achievements across
diverse domains from robotics to strategic games (Mnih et al.,
2015, Kniaz et al., 2021, Alyrchikov et al., 2024). The found-
ational work of Sutton and Barto established the theoretical
basis of RL methods by introducing Markov Decision Processes
(MDPs) and temporal difference (TD) learning algorithms (Sut-
ton and Barto, 2018). Breakthrough developments by Deep-
Mind, including DQN for Atari games (Mnih et al., 2013) and
AlphaGo for the game of Go (Silver et al., 2016), showcased
the potential of combining deep neural networks with reinforce-
ment learning methods. Particularly noteworthy are modern
variations of these approaches, such as actor-critic algorithms
including PPO (Schulman et al., 2017) and SAC (Haarnoja et
al., 2018), which demonstrate improved training stability and
efficiency in continuous action spaces. In computer vision ap-
plications, RL has found successful implementation in object
segmentation and detection tasks, where its sequential decision-
making capability enables effective incorporation of spatial de-
pendencies and global scene context (Chen et al., 2017).

Recent advances in RL for visual tasks have introduced in-
novative architectures that bridge the gap between perception
and decision-making. Transformer-based RL agents (Tao et
al., 2022) and graph neural network policies (Gammelli et
al., 2021) now enable better handling of long-range depend-
encies in image data, while meta-RL approaches (Zhang et al.,
2021) address the challenge of adapting to new environments
with limited samples. These developments are particularly
relevant for geospatial applications, where the non-stationary
nature of aerial imagery demands robust adaptation capabilit-
ies. The emergence of self-supervised RL paradigms (Wang
et al., 2022) further reduces dependency on costly manual an-
notations, opening new avenues for large-scale remote sensing
applications.

In the domain of aerial image vectorization, modern meth-
ods can be categorized into three evolutionary stages. Tradi-
tional computer vision approaches (e.g., Canny edge detection
(Canny, 1986) or watershed segmentation) suffer from low ac-
curacy and require extensive manual post-processing. The ad-

vent of deep learning brought a qualitative leap forward - ar-
chitectures like U-Net and DeepLab enabled automated object
extraction with precise boundary preservation (Ronneberger et
al., 2015, Chen et al., 2018). However, these methods demand
large annotated datasets and often show insufficient robustness
to varying imaging conditions. Current research focuses on hy-
brid approaches combining CNN and transformer advantages,
along with methods preserving topological consistency (Doso-
vitskiy et al., 2021, Long et al., 2015). Particularly valuable are
studies on weakly-supervised learning and active model refine-
ment that significantly reduce annotation requirements (Zhou
et al., 2023). A promising direction involves integrating se-
mantic information with geometric constraints, especially cru-
cial for mapping applications where both boundary accuracy
and structural relationships between objects are essential (Li et
al., 2019).

The integration of RL with modern vectorization techniques
opens new possibilities for developing adaptive systems cap-
able of handling complex spatial dependencies and dynamic-
ally optimizing image processing workflows. Unlike traditional
static processing methods, RL-based approaches formulate vec-
torization as a sequential decision-making process where each
action considers both local image features and global context.
This proves particularly valuable for aerial imagery where ob-
jects often exhibit complex structures and spatial relationships.
Recent studies demonstrate that combining deep reinforcement
learning with computer vision (Le et al., 2021) can overcome
many limitations of existing methods, offering more flexible
and adaptive solutions for automated vectorization tasks.

3. Method

This paper uses a combination of convolutional neural net-
works (CNN) for feature extraction and recurrent neural net-
works (RNN) for taking into account temporal dependencies
(sequential object selection). The following RL algorithms are
also used in the paper: Deep Q-Network (DQN) (for training
the agent based on the Q-function) and Proximal Policy Op-
timization (PPO) (for optimizing the agent’s policy). The re-
ward function is calculated based on the IoU (Intersection over
Union) quality metrics, namely, the agent receives a positive re-
ward for correct object selection and a penalty for errors. Figure
2 displays the layout of the algorithm.
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3.1 System Architecture

The developed system represents an integrated neural network
architecture combining modern advances in deep learning and
reinforcement learning. The proposed framework employs a
hybrid neural architecture integrating three key components:

• Feature Extraction Module: Implemented using an en-
hanced ResNet-50 backbone (He et al., 2015) modified for
high-resolution aerial imagery processing with:

– Spatial attention gates between convolutional
blocks.

– Atrous spatial pyramid pooling (ASPP) for multi-
scale context.

– Attention-gated skip connections between encoder
and decoder.

• Sequential Context Module: Bidirectional GRU network
(Cho et al., 2014) with 256 hidden units with layer normal-
ization, dropout (p = 0.2) for regularization, scan-line tra-
versal with 8 connectivity patterns and memory-efficient
implementation using grouped convolutions.

• Reinforcement Learning Agent: Dueling Double DQN
architecture (Wang et al., 2016):

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑

A(s, a′)

)
(1)

where V(s) - state value stream, A(s,a) - advantage func-
tion stream and target network updated via polyak aver-
aging (τ = 0.01).

3.2 Reinforcement Learning Optimization

The reinforcement learning optimization framework employs
two complementary approaches to ensure stable and efficient
training:

3.2.1 Enhanced DQN Algorithm Our modified Deep Q-
Network architecture incorporates three key innovations:

• Double Q-learning Mechanism: The target value calcu-
lation is decoupled to prevent overestimation bias:

target = r + γQtarget(s
′, argmaxaQ(s′, a; θ); θ′) (2)

where θ represents the parameters of the online network,
θ′ denotes the parameters of the target network and γ is
the discount factor (0.99) that determines the importance
of future rewards.

• Prioritized experience replay: The replay buffer samples
transitions according to:

P (i) = |δi|+ ε, δi = r + γQ̂(s′, a′)−Q(s, a) (3)

where δi is the temporal difference (TD) error, ε is a
small constant (1e-6) ensuring all transitions have non-
zero probability.

• Parameterized Exploration: Noisy Nets introduce noise
into the network weights, namely fully connected layers
are replaced by noisy counterparts, noise parameters are
learned along with the regular weights, and the noise scale
is automatically adapted during training.

3.2.2 PPO Implementation The policy optimization em-
ploys clipped objective function:

L(θ) = E[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (4)

where rt(θ) is the probability ratio, Ât represents the general-
ized advantage estimate and ε is the clipping parameter (0.2):

rt(θ) =
πθ(at|st)
πθold(at|st)

, Ât =

T−t+1∑
k=0

(γλ)kδt+k (5)

3.3 Reward System

The multi-component reward function incorporates:

• Geometric Accuracy:

Rgeo = 0.7 · IoU + 0.2 · Precedge + 0.1 · Shapereg (6)

with differentiated penalties for various error types.

• Topological Correctness:

Rtopo =
∑
v∈V

conn(v)− 0.5
∑
e∈E

cross(e) (7)

including +0.05 for proper vertex connections, +0.1 for to-
pology preservation and -0.2 for self-intersections.

• Computational Efficiency:

Reff = −0.01 · tstep + 0.1 · I(terminate early) (8)

Final reward formulation:

R(s, a) = αRgeo + βRtopo + γReff (9)

where α = 0.6, β = 0.3, γ = 0.1 are adaptive coefficients.

At the training stage, a composite loss function is used:

L = 0.7 · Dice + 0.3 · Focal(γ = 2, α = 0.8) (10)

where Dice loss enhances region-based segmentation and Focal
loss addresses class imbalance:

Dice = 1− 2|X ∩ Y |
|X|+ |Y | , Focal = −α(1− p)γ log(p) (11)

For optimization, the AdamW optimizer is used with a learning
rate lr = 3× 10−4 and weighted delay 1× 10−5.

4. Results

4.1 Evaluation metrics

The proposed methodology undergoes rigorous quantitative and
qualitative assessment through a multi-dimensional evaluation
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framework designed to capture all critical aspects of aerial im-
age vectorization performance. The geometric accuracy as-
sessment employs mean Intersection over Union (mIoU) as the
primary metric.

Intersection-over-Union (IoU) or the Jaccard index, is the ratio
of the intersection area of the predicted and ground truth mask
to their union:

IoU =
Intersection

Union
=

TP

TP + FP + FN
(12)

In this work mIoU calculated across all object classes as:

mIoU =
1

C

C∑
c=1

TPc
TPc + FPc + FNc

(13)

where C represents the number of classes (buildings, roads, wa-
ter bodies, etc.), TPc denotes true positives for class c, FPc
indicates false positives, and FNc accounts for false negatives.

Boundary quality receives special attention through the Bound-
ary F1-score (BD-F1), which is calculated using the precision
and recall values:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(14)

BD − F1 =
2 · Precision ·Recall
Precision+Recall

(15)

Topological correctness evaluation incorporates two specialized
metrics: Junction Accuracy measures the percentage of cor-
rectly identified intersection points between linear features:

Jacc =
1

N

N∑
i=1

I(||J ipred − J igt|| < εjunction) (16)

where εjunction represents a 5-pixel acceptance radius, while
Cycle Consistency evaluates polygon closure integrity through
graph theory analysis of vertex connectivity.

4.2 Experiment

The algorithm was trained on the open CrowdAI Mapping
Challenge database (Mohanty et al., 2020), consisting of more
than 280k satellite images for training and 60k images for test-
ing. The training images were split into two portions: 80%
of the images were utilized for training the algorithm, while
the remaining 20% were set aside for validation. The training
was conducted using CUDA 11.8 on an NVIDIA GeForce RTX
3090 GPU equipped with 16 GB of memory.

The meaning of the calculated metrics is given in Table 1. To
understand the level of efficiency of the algorithm, the table also
includes the results of the leading methods on similar data.

The comprehensive evaluation of our proposed methodology
demonstrates significant improvements across all key perform-
ance metrics. Qualitative assessment reveals the system’s ro-
bust performance across diverse object categories, with building

Figure 3. Some images from the CrowdAI Mapping Challenge
dataset.

Method mIoU BD-F1 Time(ms) Memory(GB)

U-Net 0.75 0.66 120 6.2

Proposed RL 0.82 0.79 85 9.8

HRNet 0.84 0.81 210 12.4

Table 1. Results on the CrowdAI test dataset for all vectorization
experiments.

footprints showing particularly precise boundary delineation
(average vertex positioning error of 1.2 pixels) and road net-
works maintaining excellent topological connectivity (93.4%
Junction Accuracy and 94.1% Cycle Consistency). The vec-
torization outputs maintain cartographic quality with clearly
defined vertices and minimal redundant points, reducing av-
erage polygon complexity by 28% compared to conventional
segmentation-based approaches.

Quantitative analysis confirms significant performance gains,
with our method achieving by 9.3% improvement in mean In-
tersection over Union (mIoU) compared to the U-Net-based ap-
proach (0.82 vs. 0.75). Boundary quality metrics show even
more significant improvements, with the boundary F1 score
increasing by 19.6% (0.79 vs. 0.66) compared to the U-Net
baseline. Computational efficiency measurements show a 29%
reduction in processing time per image (85 milliseconds vs.
120 milliseconds) while maintaining higher accuracy, achieved
through an optimized reinforcement decision process that re-
duces redundant computation. However, it is worth noting that
our method is slightly inferior in efficiency to multi-level ar-
chitectures such as HRNet in mIoU (0.82 vs. 0.84) and in
estimating the F1 boundary (0.79 vs. 0.81), but takes 60%
less time to process an image (85 milliseconds vs. 210 milli-
seconds), which can be important for solving real-time vector-
ization tasks. Memory footprint analysis shows particularly im-
pressive results for large domain processing, with our method
requiring only 9.8 GB of GPU memory compared to 12.4 GB
for HRNet variants, allowing for practical deployment on stand-
ard hardware.

5. Conclusion

The proposed methodology demonstrates several compelling
advantages that address key challenges in aerial image vectoriz-
ation while also presenting certain limitations that warrant con-
sideration. The system’s most significant strength lies in its ex-
ceptional adaptability to diverse object types, achieved through
the synergistic combination of multi-scale feature extraction in
the CNN backbone and context-aware decision-making in the
RL component. This adaptability manifests particularly well in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-2/W9-2025 
ISPRS Intl. Workshop “Photogrammetric and computer vision techniques for environmental and infraStructure monitoring, Biometrics and Biomedicine” 

PSBB25 , 9–11 June 2025, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-2-W9-2025-57-2025 | © Author(s) 2025. CC BY 4.0 License.

 
60



Figure 4. Experiment results.

handling the heterogeneous nature of urban landscapes, where
the method maintains consistent performance across buildings
and road networks, outperforming specialized single-purpose
algorithms in cross-category generalization tests. The architec-
ture’s capacity for learning from limited datasets stems from
three key design elements: the attention mechanisms that focus
learning on semantically important regions, the hybrid train-
ing protocol that bootstraps from synthetic data, and the reward
shaping that provides dense learning signals - collectively en-
abling effective training on small number of annotated samples
while maintaining most part of the performance achieved with
full datasets.
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