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Abstract

In this paper a neural network method for iris image key points detection based on handcrafted features using the Key.Net architec-
ture is proposed. Due to the use of the handcrafted features in CNN, the proposed method combines the robustness of classical key
points detection methods and high accuracy of neural networks. Additional Hermite-based convolutional filters are integrated into
the network to improve keypoint localization. A synthetic dataset is generated from normalized iris images using geometric and
photometric transformations. Matching of iris image key points is performed using HardNet descriptors, followed by geometric fil-
tering and confidence-based ranking. Experimental evaluation demonstrates the robustness of the proposed method to the presence
of eyelids and eyelashes without using any segmentation masks. The proposed approach achieves an Equal Error Rate (EER) value
of 0.096% on the CASIA-IrisV4-Interval database. These results show the potential for the combination of handcrafted filtering
with deep learning for accurate and interpretable iris recognition.

1. Introduction

Human iris identification is considered one of the most reliable
approaches in biometrics. At the same time, the data collection
process is quite simple and does not require special equipment,
which makes iris biometrics promising for research.

Different iris recognition methods are based on both classical
mathematical and neural network solutions. Classical mathe-
matical methods are mostly based on handcrafted features that
are focused on edge distribution (Alonso-Fernandez et al., 2009)
or that are derived from Gabor (Daugman, 2009), Fourier (Vi-
jaya Kumar et al., 2003), Hermite (Pavelyeva, 2013) or wavelet
transforms (Ma et al., 2004). Furthermore, some approaches
such as Difference of Gaussians (Lowe, 2004), Harris-Laplace
and Hessian-Affine (Mikolajczyk and Schmid, 2004) use com-
binations of image derivatives to compute image feature maps,
that is similar to the operations performed in the layers of trai-
ned convolutional neural networks (CNNs). Neural network
methods are based on deep learning models for feature extrac-
tion, such as ResNet (Boyd et al., 2019), VGG (Minaee et al.,
2016), DenseNet (Hafner et al., 2021), some methods also use
attention mechanisms (Luo et al., 2021). Complex-valued net-
works (Nguyen et al., 2022) can extract both phase and amp-
litude information for improved feature quality. FeatNet (Zhao
and Kumar, 2019) is designed specifically for iris recognition
and performs detection, segmentation, and recognition in a uni-
fied pipeline using spatially corresponding features. Addition-
ally, Capsule Networks have been explored for their ability to
model spatial hierarchies in iris patterns (Kuhifayegh and Ra-
jabi, 2025). Some deep learning methods do not require clas-
sical iris image normalization or precise image segmentation.
For example, DeepIrisNet2 uses spatial transformer layers and
dual CNN pipelines to extract robust features under non-ideal
conditions (Gangwar et al., 2019).

One of the approaches to iris recognition feature extraction in-
volves iris image key points detection. Often the key points

and their descriptors are obtained using the scale-invariant fea-
ture transform (SIFT) algorithm. In (Quinn et al., 2021) the
authors analyze the distribution, stability, and distinctiveness
of key points and demonstrate that local feature-based match-
ing can be effective for images captured at visible wavelengths.
In (Rathgeb et al., 2019) the binary SIFT-based feature vec-
tors from the key points descriptors are obtained. In (Alvarez-
Betancourt and Garcia-Silvente, 2016) three detectors are used
to identify distinctive key points: Harris-Laplace, Hessian-Lap-
lace and Fast-Hessian, and three information sources of SIFT
features are combined at matching score level. To construct the
iris image key points descriptors, the phase congruency inform-
ation can be used, since phase congruency is invariant to light-
ing and contrast (Protsenko and Pavelyeva, 2019). Key points
descriptors can also be constructed using fractional phase con-
gruency, calculated by the fractional wavelet transform (Prot-
senko and Pavelyeva, 2023).

This paper proposes a neural network method for detecting iris
image key points based on handcrafted features using the Key.-
Net architecture. Due to the use of the handcrafted features in
CNN, the proposed method takes advantage of both classical
key points detection methods and neural network approaches:
robustness combined with high accuracy.

2. Key.Net Neural Network Application

In our work the Key.Net neural network architecture (Barroso-
Laguna and Mikolajczyk, 2022) is used (Figure 7). The choice
of Key.Net as the keypoint detector is motivated by its hybrid
architecture and stability on limited datasets. It combines both
handcrafted and learned CNN filters to highlight objects at dif-
ferent scale levels. Due to this, the model maintains a balance
between quality and speed of operation and can obtain more
consistent localization of iris image key points compared to
pure learning-based detectors.

Key.Net model has three levels of scale for the input image,
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Figure 1. Key.Net architecture.

each with reduced discretization by a downsampling factor of
1.5. Handcrafted filters generate feature maps that are conca-
tenated and processed through a set of learnable filters. The
idea behind this multiscale approach is that the model processes
images with different resolutions and generates a response map,
where each pixel in the image is assigned an estimate of how
likely it is a key point.

3. Dataset Preparation and Synthetic Pair Generation

The Key.Net training takes place on the basis of a synthetic
dataset generated from normalized iris images. These images
are obtained by preprocessing of the CASIA-IrisV4-Interval da-
tabase images, that contains 2654 iris images from 249 indi-
viduals (Figure 2). The dataset is split into ~70% for the train-
ing set (1858 images, 158 individuals), ~10% for the validation
set (261 images, 38 individuals), and ~20% for the test set (535
images, 53 individuals). Each class corresponds to a unique eye
of a specific individual.

Figure 2. Some examples of iris images from the
CASIA-IrisV4-Interval database.

Each image is normalized to a fixed size of 64×512 pixels using
iris boundary segmentation and unwrapping (Figure 3). In this
work only 3/5 part of the height of the initial normalized image
(closer to the iris pupil) is taken as the normalized iris image,
since the areas around iris pupil have more sharp iris texture in
the taken iris image database.

From the normalized dataset, we create synthetic training pairs
by extracting small patches and applying random geometric
transformations: scale [0.5, 1.5], skew [−0.3, 0.3], and rota-
tion [−5◦, 5◦] (Figure 4). These known transformations define
ground truth mappings between pairs of patches, allowing us
to obtain the fully supervised training of the detector. Areas
without meaningful texture are discarded based on the response
of handcrafted filters falling below a predefined threshold. To

Figure 3. The iris image and iris normalization.

simulate real-world variability, additional photometric augment-
ations are applied to one image in each pair, including random
changes in contrast and brightness.

Figure 4. Synthetic dataset generation.

In Key.Net the different combinations of first and second image
derivatives are used to create the handcrafted filters. A learned
block consists of the convolutional layer with 8 filters, batch
normalization layer and ReLU activation function. In addition,
we incorporate the convolutions with Hermite transform filters
to the handcrafted features to expand the representation of fea-
tures. The Hermite transform functions show promising results
for iris image key points detection (Pavelyeva, 2013), so these
functions are integrated to our architecture.

The Hermite transform functions are given by:

φ(σ)
n (x) =

1√
2nn!

· 1

σ
√
π
e−(x/σ)2Hn

(x

σ

)
, n = 0, 1, 2, . . . ,

(1)

where σ — scale parameter.

Hermite polynomials Hn(x) are defined by recursion as fol-
lows:

H0(x) = 1;

H1(x) = 2x;

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x).

(2)

All Hermite transform functions for n > 0 have zero mean
value and are Gaussian function derivatives up to a constant
factor. Two-dimensional Hermite transform functions (Figure 5)
can be represented as

φ
(σx,σy)
m,n (x, y) = φ(σx)

m (x)φ
(σy)
n (y). (3)
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Figure 5. 2D Hermite functions: φ1,1 (left), φ2,0 (center), and
φ2,1 (right).

In Hermite transform the convolution of the image with the
Hermite transform function is applied. The Hermite transform
kernel configurations used in this article to extend the handcraf-
ted features are as follows (Figure 6):

φ
(3,3)
2,0 (x, y), φ

(3,3)
0,2 (x, y), φ

(3,5)
1,1 (x, y). (4)

Figure 6. The normalized iris image and the results of applying
2D Hermite filters with 2D Hermite transform functions.

To identify key points across various scales, a Multi-scale Index
Proposal (M-SIP) layer is employed. It is based on the Index
Proposal (IP) layer, a differentiable module designed to extract
key point coordinates from local maxima in a response map.
The IP layer divides the response map into fixed-size windows
and applies a spatial softmax operation within each window to
estimate the position of a dominant key point as a weighted
average of response scores. Given images Ia and Ib, and the
ground truth homography Hb,a, which defines the geometric
relationship between the image pairs, the loss L is based on the
squared difference between the points extracted by IP layer and
the actual maximum coordinates (NMS) in the corresponding
windows of Ia and Ib:

LIP (Ia, Ib, Ha,b, N) =
∑
i

αi∥[xi, yi]
T
a −Hb,a[x̂i, ŷi]

T
b ∥2,

(5)
αi = Ra(xi, yi)a +Rb(x̂i, ŷi)b,

where [xi, yi]
T
a - coordinates of the i-th key point in Ia;

[x̂i, ŷi]
T
b - corresponding key point coordinates in Ib;

Ra and Rb - response maps;
N - window size for key point extraction.

The multi-scale loss function is computed as the sum across all
scaling levels:

LMSIP (Ia, Ib, Ha,b) =
∑
s

λsLIP (Ia, Ib, Ha,b, Ns) (6)

where s - scale level index;
λs - scaling factor decreasing with window area,
balancing larger losses in larger windows;
Ns - window size at scale s.

Key.Net is trained using the Siamese process, where each key
instance passes through the same neural network. This means
that two versions of the same input — typically a patch and its
geometrically transformed counterpart — are processed in par-
allel by identical network branches. The model is optimized to
produce similar key point responses for corresponding locations
in both images.

4. Data Post-processing

After receiving the model results, the data post-processing stage
begins. Initial matches of key points are made based on the sim-
ilarity of their descriptors, which are extracted using HardNet
model (Mishchuk et al., 2017). HardNet is a descriptor extrac-
tion model based on a convolutional neural network trained to
compare small patches around key points. It learns to produce
feature vectors (descriptors) such that similar regions in differ-
ent images are mapped to nearby points in descriptor space,
while dissimilar regions are moving apart. The model is trained
on patch pairs with known similarity labels, allowing it to learn
discriminative representations useful for matching ( Figure 7).
The matching process is performed using a brute-force approach
with cross-checking. Then the matches received are sorted by
the distance between them, and only those whose distance is
below the specified threshold value are accepted.

Figure 7. HardNet sampling procedure.

To refine the matches, geometric constraints are applied. If
the distance between the key points of two iris images is less
than a given threshold, they are considered to belong to the
same iris image texture area. We assume that the spatial shift
between the matched key points corresponds to an eye rotation
angle of no more than ∼20 degrees. Therefore, only key points
P1 = (x1, y1) and P2 = (x2, y2) satisfying |x1 − x2| ≤ 30
pixels (taking into account the cyclic shift of the normalized iris
image, see Figure 3) and |y1−y2| ≤ 5 pixels are considered as
potential matches. Then we find the most frequent horizontal
shift between the matched key points – this shift determines
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the global shift between normalized iris images and the rotation
angle between the eyes. The final matches are filtered taking
into account the horizontal shift relative to the global one by
no more than 5 pixels. These steps effectively remove outliers
and apply global geometric constraints, which significantly im-
proves the overall quality of matches.

The resulting key points are sorted by the score value obtained
for each key point by Key.Net. This value reflects the confiden-
ce level of the model at this key point. At the end, no more than
150 of the best key points are saved.

5. Results

The initial weights of the Key.Net model are obtained from
publicly available pretrained parameters (Barroso-Laguna and
Mikolajczyk, 2022). We fine-tuned the network on our syn-
thetic dataset pairs generated from normalized iris images. Each
patch is of size 40×40 pixels. The fine-tuning is performed us-
ing the Adam optimizer for 50 epochs with a learning rate of
0.0001 and a batch size of 32. After training, the model is eval-
uated on the test subset of the CASIA-IrisV4-Interval database.

Some results are shown in Figure 8 and Figure 9. These ex-
amples demonstrate the effectiveness of the proposed method in
finding reliable keypoint correspondences for both genuine and
impostor image pairs. Importantly, although no eyelid and eye-
lash masks are applied, the algorithm avoids matching points in
these regions. This visual evidence indicates that the model is
robust to the presence of eyelids and eyelashes.

Figure 8. The examples of key points matching for two iris
images of one eye.

The following biometric error values are used to evaluate the
quality of the algorithm.

• False Acceptance Rate (FAR) — the probability that the
system incorrectly matches the input pattern to a non-mat-
ching template in the database. It measures the percent of
invalid inputs that are incorrectly accepted.

• False Rejection Rate (FRR) — the probability that the sys-
tem fails to detect a match between the input pattern and a

Figure 9. The examples of key points matching for two iris
images of different eyes.

matching template in the database. It measures the percent
of valid inputs that are incorrectly rejected.

• Equal Error Rate (EER) is the rate at which FAR and FRR
are equal. In general, the lower the EER, the more accurate
the biometric system is.

The False Acceptance Rate (FAR), False Rejection Rate (FRR),
and Equal Error Rate (EER) values are used to evaluate the ef-
fectiveness of the proposed method. The similarity between
two iris images is defined as the number of matched key points.
This value is then compared to a threshold.

• If the similarity score is greater than or equal to the thresh-
old (≥) — the pair is accepted (same identity).

• If the similarity score is less than the threshold (<) — the
pair is rejected (different identity).

In our experiments, the decision threshold T = 6 is selected as
the optimal value where FAR and FRR are intersected.

Figure 10 and Figure 11 demonstrate the comparison between
the baseline and Hermite-based algorithms. In the baseline al-
gorithm only handcrafted features based on combinations of
first and second image derivatives are used, while in Hermite-
based algorithm the convolutions with Hermite transform fil-
ters are also used to create the handcrafted features. Figure 10
shows the distributions of genuine and impostor scores, and
Figure 11 shows the corresponding FAR and FRR curves used
to compute the EER.

• Baseline algorithm: EER=0.103%

• Hermite-based algorithm: EER=0.096%

The marginal improvement achieved by the Hermite-enhanced
version highlights its superior discriminative power in iris fea-
ture extraction.
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Figure 10. Distribution of genuine (blue) and impostor (red)
scores. Left: baseline algorithm. Right: Hermite-based

algorithm.

Figure 11. FAR and FRR curves used to calculate EER. Left:
baseline algorithm. Right: Hermite-based algorithm.

As shown in Table 1, the proposed method outperforms several
iris recognition techniques in terms of EER. All methods in the
comparison are evaluated on the CASIA-IrisV3-Interval/CASIA-
IrisV4-Interval dataset under the same preprocessing and eval-
uation protocol to ensure fairness.

6. Conclusions

In this paper the algorithm for effective iris image key points
construction and matching is proposed. The algorithm is based
on combination of handcrafted and learned features in Key.Net
architecture. The proposed algorithm achieves fairly good res-
ults and can be promising for the use in biometric identification
systems. The method remains robust to the presence of eyelids
and eyelashes on iris images, as it avoids matching key points
in these regions even without explicit masking.

References

Alonso-Fernandez, F., Tome-Gonzalez, P., Ruiz-Albacete, V.,
Ortega-Garcia, J., 2009. Iris recognition based on sift features.
2009 First IEEE International Conference on Biometrics, Iden-
tity and Security (BIdS), IEEE, 1–8.

Method EER (%)
SIFT-based (Alvarez-Betancourt and
Garcia-Silvente, 2016)

0.550

SIFT-based (Rathgeb et al., 2019) 0.225
LSC (Sadhya and Raman, 2019) 0.105
DeepIrisNet2-NIR (Gangwar et al.,
2019)

0.280

Phase Congruency (Protsenko and
Pavelyeva, 2019)

0.226

Dadcnet+VGG (Chen et al., 2022) 0.188
StandardR (Yassir et al., 2024) 0.169
HybridR (Mohammed et al., 2025) 0.161
Proposed 0.103
Proposed + Hermite Transform 0.096

Table 1. Comparison with existing iris recognition methods on
CASIA-IrisV3/V4 datasets.

Alvarez-Betancourt, Y., Garcia-Silvente, M., 2016. A
keypoints-based feature extraction method for iris recognition
under variable image quality conditions. Knowledge-Based Sys-
tems, 92, 169–182.

Barroso-Laguna, A., Mikolajczyk, K., 2022. Key. net: Keypo-
int detection by handcrafted and learned cnn filters revisited.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45(1), 698–711.

Boyd, A., Czajka, A., Bowyer, K., 2019. Deep learning-based
feature extraction in iris recognition: Use existing models, fine-
tune or train from scratch? 2019 IEEE 10th International
Conference on Biometrics Theory, Applications and Systems
(BTAS), IEEE, 1–9.

Chen, Y., Gan, H., Zeng, Z., Chen, H., 2022. DADCNet: Dual
attention densely connected network for more accurate real iris
region segmentation. International Journal of Intelligent Sys-
tems, 37(1), 829–858.

Daugman, J., 2009. How iris recognition works. The essential
guide to image processing, Elsevier, 715–739.

Gangwar, A., Joshi, A., Joshi, P., Raghavendra, R., 2019.
Deepirisnet2: Learning deep-iriscodes from scratch for
segmentation-robust visible wavelength and near infrared iris
recognition. arXiv preprint arXiv:1902.05390.
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