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Abstract 

 

Adverse weather conditions can be an obstacle to recognizing animals in images captured by camera traps. Obviously, recognizing 

night images becomes more difficult when artifacts such as snow, rain, fog, or haze appear during shooting. Typically, the model is 

trained to remove any artifact, and very rarely two imposed meteorological artifacts, such as snow and rain. The diversity of deep 

neural models indicates interest to this problem, especially using unsupervised learning when there are no paired images – without 

and with artifact. The aim of this study is to develop a generalized framework for natural image restoration under adverse weather 

conditions based on mutual GAN training to simultaneously generate clean image and improve artifact mask. The core of image 

restoration depends on the physical features of a particular meteorological phenomenon and can be selected for different weather 

conditions. Analysis of images included in the dataset captured by camera traps in Ergaki National Park, Russia, shows that the most 

common artifacts are snow in winter and fog in summer and autumn. These artifacts were given special attention when building the 

framework. Additionally, the CSD, Rain100L, and O-Hazy datasets were utilized to evaluate the effectiveness of the proposed 

method under various adverse weather conditions. This comprehensive approach ensures that the framework is robust and adaptable 

to different types of artifacts encountered in real-world scenarios. 

 

 

1. Introduction 

Image quality degradation caused by adverse weather 

conditions can severely reduce the accuracy of object detection 

and recognition due to the appearance of additional 

meteorological artifacts in cluttered urban or natural 

surveillance scenes. Such artifacts can be streaks, drops or 

whitening the entire image. Most existing removal methods 

focus on learning the mapping of a degraded image to its clean 

content using pairs of clean and degrade images. Based on this 

assumption, the methods decompose the degraded image into a 

clean image and a mask with visual distortions. However, in 

many scenarios such image pairs are not available, leading to 

the need for unsupervised learning. 

 

Typically, the study of this problem focuses on developing the 

following methods (in order of decreasing interest): rain streak 

removal, raindrop removal, snowflake removal, snow streak 

removal, haze removal, and fog removal. Most methods process 

the degraded image in the spatial domain (Wen et al., 2024; 

Park et al., 2024), but streak removal methods often use the 

frequency domain under the assumption that streaks are 

characterized by high-frequency components (Hsu and Chang, 

2023). However, images captured by camera traps, which are 

located more often in the northern forest than in the open 

spaces, have a different distribution of distortions. First of all, 

we meet with snow streaks, rain streaks and fog. Therefore, 

these artifacts are considered in more detail. 

 

Methods for eliminating meteorological effects can be divided 

into two main types: those based on the physical model and 

those based on image enhancement methods. Physical-based 

methods prevailed until the mid-2010s, but in the era of deep 

learning, research has shifted to the image enhancement 

methods. Physical methods require multiple images, whereas 

currently a single degraded image can be successfully 

recovered. Nevertheless, single task image processing such as 

image rain removal, image snow removal, and dehazing, often 

including additional denoising, deblurring and super-resolution, 

does not match real world scenarios (Xiao et al., 2025). 

 

It is worth noting that image restoration methods are mainly 

divided into end-to-end supervised methods and unsupervised 

generative methods based on prior data. Unsupervised 

generative methods are more suitable for real-world image 

restoration, which explains rapid development of such methods 

at present. 

 

In this study, we consider a single-image multi-task framework 

including snow removal, rain removal and defogging using 

three kernels. The snow removal and rain removal kernels have 

a similar GAN-based architecture with the idea of enhancing the 

extracted map with weather artifact. For image defogging, a 

GAN-based kernel is developed that uses a Retinex module to 

improve image contrast and a texture restoration module to 

recover image texture details. 

 

The organization of the paper is as follows. Section 2 introduces 

various methods for restoring images degraded by adverse 

weather conditions. Problem statement is formulated in  

Section 3. The proposed framework is described in detail in 

Section 4. The experimental results are discussed in Section 5, 

and finally Section 6 concludes the paper. 

 

2. Related Work 

The recent research trends of image restoration under adverse 

weather conditions are based on U-Net models, Transformers 

and GANs. The U-Net model is a deep learning model 

originally developed for medical image segmentation tasks. An 
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encoder and a decoder learn the mapping relationship from 

input images to output segmentation maps using skip 

connections. An end-to-end deep residual haze removal network 

(DRHNet) was proposed to restore the haze-free and rain-free-

images (Wang et al., 2020). This network included context-

aware encoder, nonlinear transformation and haze decoder. 

Compared with traditional methods such as dark channel 

method, DRHNet is more complex, requires a large training 

dataset and consumes significant computational resources. 

Transformer can perform parallel calculations, while Vision 

Transformer (ViT) divides images into small blocks for parallel 

processing. These architectures actively use the attention 

mechanism. For example, a progressive network for image 

deraining based on detail scaling employed optimized 

transformer blocks for texture extraction (Huang et al., 2024). 

The CNN-ViT hybrid model based on wavelet transform was 

developed for image desnowing (Dai et al., 2024). GAN 

consisting of a generator and a discriminator uses adversarial 

learning to generate high-quality samples. It is mainly applied 

for both image generation and restoration. An end-to-end two 

stage conditional generative adversarial network applied a 

coarse-to-fine single image de-rained method to remove rain 

streaks (Wang et al., 2021). Two-stage generator produced more 

clear de-rained images with good visual quality and the 

discriminator enhanced the de-raining result. Conditional GAN 

(UnfairGAN) can effectively preserve essential details caused 

by heavy raindrops thanks to its advanced attention module and 

advanced activation function (Nguyen et al., 2022). 

 

In the field of image restoration, a unified processing concept 

for image restoration under multi-weather conditions, called 

All-In-One, was introduced in 2020 and has since attracted 

wide attention. Let us consider several interesting approaches 

using U-Net, Transformer and GAN architectures. 

 

Initially, the method for simultaneously learning multiple 

weather degradations assumed the translation into three 

domains: hazy, rain with veil and snow with veil (Patil et al., 

2023). Then, a progressive multi-domain feature alignment 

module effectively extracted invariant cues across different 

weather conditions and the results were merged with a cascaded 

multi-head attention module. The practical advantage was that 

the proposed feature extractor can be used for real data even if it 

was trained using synthetic data. Another learning strategy 

based on a multi-teacher network and student network was 

proposed in (Chen et al., 2022). The two-stage knowledge 

distillation mechanism included knowledge collation and 

knowledge examination. Also multi-contrastive knowledge 

regularization function was embedded in the two-stage 

knowledge learning process. Three types of weather were 

investigated: haze, rain, and snow. 

 

A transformer-based end-to-end model called as TransWeather 

compensated the rain, fog, and snow artifacts in corrupted 

image (Valanarasu et al., 2022). TransWeather had a specific 

transformer encoder with intra-patch transformer blocks to 

effectively remove non-significant weather degradations. The 

transformer decoder for restoring a clear image including small-

scale weather degradations utilized learnable weather-type 

queries to identify different types of weather degradation. In the 

work (Luo et al., 2023), a neural network called “mixture-of-

experts” first applied in natural language processing was used to 

process different types of blind adverse weather conditions. The 

proposed transformer-based weather-aware multi-scale mixture-

of-experts framework included special key components such as 

weather-aware router, weather guidance fine-grained contrastive 

learning and multi-scale experts. Weather guidance fine-grained 

contrastive learning separated the weather (rain, raindrops, 

snow, and haze) and content information from the input image. 

An efficient histogram transformer (Histoformer) for unified 

adverse weather removal categorized pixel values that are 

similar in intensity but different in spatial location into 

histogram bins (Sun et al., 2024). To facilitate the extraction of 

complex features at both local and global scales, two types of 

histogram self-attention were utilized: bin-wise histogram 

reshaping and frequency-wise histogram reshaping. Weather-

affected pixels and background pixels were divided into 

separate categories in descending order of intensity. 

 

Recently, GAN-based image restoration methods have attracted 

significant attention in many field of image processing. The 

current topic is no exception. One of the first works was the 

GAN model, where the generator consisted of several task-

specific encoders, each of which was associated with a specific 

adverse weather condition (Li et al., 2020). In addition, these 

authors introduced a series of tensor-based operations that 

encapsulate the basic physical principles of rain, fog, snow, and 

adherent raindrops. The discriminator simultaneously evaluated 

the correctness and classified the degradation type of the 

resorted image. Multiple weather translation GAN was a dual-

purpose framework for simultaneously learning weather 

generation and removing artifacts from image data (Yang et al., 

2023). The CycleGAN-based model consisted of four 

generators and four discriminators for haze, rain, snow, and 

clear weather conditions. Three GANs were used to generate 

three weather effects separately, and one GAN removed the 

weather effect. 

 

Numerous fully supervised methods, including those discussed, 

require the paired images – distorted and clean images. While 

they achieved good results using synthetic datasets, they suffer 

from poor generalization when applied to real scenes. To 

improve the generalization ability, semi-supervised and 

unsupervised methods are recommended. This requires further 

exploration of learning paradigms, architectures and 

experiments with real unpaired images under adverse weather 

conditions. 

 

3. Problem Statement 

A commonly used mathematical model of a rainy or snowy 

input image involves decomposing it into two components: a 

clean image and an imposed rain or snow masks: 

  

 ;r cl r s cl sI I S I I S    ,     (1) 

 

where  Icl = clean image 

 Ir, Is = input image of rain or snow 

 Sr, Ss = intensity fluctuations caused by rain and snow 

 

Intensity fluctuations Sr and Ss can have different shapes, such 

as rain streaks, raindrops, snowflakes or snow streaks. Usually 

they are defined by mask creation, which is not an easy task, 

especially in unsupervised learning. To obtain a clean image we 

need to subtract the masked regions from the input image and 

then reconstruct these regions into the clean image: 

  

    ;cl rain r r cl snow s sI f I S I f I S    ,   (2) 

 

where  frain = rainy image restoration function 

 fsnow = snowy image restoration function 
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A view of functions frain and fsnow can be different, for example 

based on inpainting or contrastive learning in the spatial domain 

or high-frequency analysis in the transform domain. 

The nature of fog and haze is different from the nature of rain 

and snow, so images resulting from fog and haze should be 

processed in another way. There are two main methods for 

image defogging: one based on the atmospheric scattering 

theory with better texture extraction and the other based on 

Retinex theory with improved contrast but loss of texture 

details. Since we do not need detailed texture extraction in the 

animal recognition task, the second approach was chosen. We 

do not have paired images – a foggy image and a foggy-free 

image, which is also in favour of Retinex. 

 

The Retinex model assumes that an image is decomposed into 

two components: reflection and illumination: 

  

 
fI R L  ,      (3) 

 

where  If = foggy image 

 R = reflection component, desired recovered image Icl 

 L = illumination component 

 

The Retinex algorithm assumes applying Gaussian convolution 

to the illumination map of the foggy image, which results in 

artifacts in the recovered image. In work (Galdran et al., 2018), 

this drawback was overcome using inverted intensities based on 

the following equation: 

  

    255 255fog f ff I Retinex I   ,   (4) 

 

where  ffog = fog removal function, RGB component 

composition 

 

This approach was initially applied for image dehazing (Galdran 

et al., 2018) rather than image defogging due to high fog 

concentration and the inability to estimate the Gaussian 

coefficients. The Retinex network (RetNet) proposed in (Liu et 

al., 2019) helped solve the problem of eliminating fogging with 

the good visualization. 

 

4. Proposed Framework 

The proposed training strategy is presented in Figure 1. The 

main idea is that Desnowing, Deraining and Defogging modules 

learn to remove the corresponding artifact by learning to 

generate distorted image. This idea was originally proposed 

(Wang et al., 2024) as a good solution for rain streak removal 

for unpaired images, i.e., unsupervised learning. In this study, 

we extend this idea to snow and fog removal, with a view to 

future implementation of the All-In-One learning strategy. The 

architectures of Desnowing and Deraining modules are similar. 

The first branch is trained on snow images, and the second 

branch is trained on snow-free images, with the parameters of 

both branches shared during training. The Mask queue plays a 

role of a semi-dictionary when not only a single mask can be 

imposed to a synthetic snow-free image, but all available masks 

are applied to select the best option. 

 

First, a real snowy image Is is fed on the GENERATOR 

desnowing network Gs-f and transformed into a synthesised 

snow-free image Js-f. Then the real snowy image Is and the 

synthetic Js are fed to DISCRIMINATOR snowing Ds. The 

architectures of generators desnowing and snowing are similar 

but they solve direct and inverse problems. It is evident that a 

single image enhancement is a mathematically ill-posed 

problem when recovering image J from image I. Second, mask 

is extracted and placed it into the queue. Third, the generated 

snow-free image Js-f and the mask are fed to the GENERATOR 

snowing network Gs to produce the synthesised snowy image 

Js. Then the synthetic Js-f and Js-f are fed to DISCRIMINATOR 

desnowing network Ds-f. The generators are trained using the 

patch-wise contrastive learning method proposed in the work 

(Park et al., 2020). 

 

 

Figure 1. The proposed training strategy. 

 

The architecture of the defogging module is the same, but the 

architectures of the generators are fundamentally different. The 

GENERATOR defogging network Gf-f creates the synthesised 

foggy-free image Jf-f using the inverted real input image If, 

which is fed to the RetNet (Retina network), and then re-inverts 

the output result. At the same time, the GENERATOR fogging 

network Gf uses the atmospheric scattering model (Liu et al., 

2019): 

  

 
          

   

1

d x

J x J x T x A x T x

T x e


    



,   (5) 

 

where  J(x) = the synthesised foggy image 

 J(x) = the synthesised foggy-free image 

 T(x) = the transmission map as the portion of light 

which reaches the camera from the object 

 A(x) = the atmospheric light 

 x = the image point 

  = the scattering coefficient of the atmosphere 
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 d(x) = the depth from scene point to the camera 

 

The two networks included in the GENERATOR fogging sub-

module – AtmLightNet and TranNet have an encoder-decoder 

architectures and are trained to simulate the unknown 

parameters A(x) and T(x), respectively. 

 

Loss functions for the Desnowing, Deraining and Defogging 

modules are composite functions. The loss functions for 

Desnowing and Deraining modules are identical and include 

adversarial loss, identity mapping loss, cycle consistency loss, 

and patchwise contrast learning loss. The LGAN() adversarial 

losses for two GANs included in the Desnowing module have a 

view: 

  

     

     

     

     

, log

log 1

, log

log 1

s s s

s s

s f s f s f

s f s f

GAN s s s sI P I

s s sJ P J

GAN s f s f s f s fJ P J

s f s f s fJ P J

L G D D I

D G I

L G D D J

D G J

  

 
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  

    

   
 

     
 

     
 

,  (6) 

 

where  P = data distribution 

 G() and D() = GENERATOR and DISCRIMINATOR 

 Is, J() = original snowy image and synthesised image 

 

The Lidt() identity mapping loss optimises the two generators in 

order to keep the colour unchanged (Taigman et al., 2016): 

  

 
     

     

1

1

,
s s s

s f s s

idt s s s sJ P J

idt s f s f s sJ P J

L G G J M J

L G G J J
   

   
 

      
 

,   (7) 

 

where  ||||1= L1 norm of regularization 

 M = mask 

 

Minimizing cycle consistency loss (from CycleGAN) helps to 

achieve similarity between the recovered image and the original 

snow-free image: 

  

      

 

    

1

1

, ,

,

,

s s s

s f

s f s f

cyc s f s s s f s sI P I

cyc s s f

s f s s f s fJ P J

L G G G G I M I

L G G

G G J M J



 

 



  

   
 

 

    
  

.   (8) 

 

The patch-wise contrast learning loss called PatchNCE (Park et 

al., 2020) allows to generate images with more realistic details 

and textures. The total loss function for the Desnowing module 

is summarized as follows: 

  

        

    

    
 

, , ,

, ,

s s f

s s f

s s f

s GAN s s GAN s f s f

s idt s idt s f

s cyc s f s cyc s s f

s PatchNCE s f

L G D L G D L G D

L G L G

L G G L G G

L G













  



 



  

 

  



,   (9) 

 

where  s, s, s = hyperparameters for training the 

Desnowing module 

The total loss function for the Defogging module includes 

adversarial loss, identity mapping loss and cycle consistency 

loss and has a view: 

  

        

    

    

, , ,
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f f f

f f f

f f f

f GAN f f GAN f f f f
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f cyc f f f cyc f f f
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









  



 

  

 

  

,(10) 

 

where  f, f = hyperparameters for training the Defogging 

module 

 

All loss components for the Defogging module are calculated 

using Equations 6-8, but without the M mask in Equations 7-8, 

which are defined the identity mapping loss and cycle 

consistency loss. 

 

5. Experimental Results 

Experiments were conducted using a dataset collected from 

camera traps in Ergaki Park, Russia and images found on the 

Internet. The effectiveness of our framework was evaluated 

using quantitative metrics as well as qualitative visual 

comparisons. 

 

It is worth noting that about 10% of the images include various 

weather artifacts such as snow, rain, and fog. Therefore, 

additional datasets were used to create synthetic images: СSD 

dataset for snowfall (Chen et al., 2021), Rain100L dataset for 

rain (Yang et al., 2017), and O-Hazy dataset for fog (Ancuti et 

al., 2018). During the pre-training of the GAN models, all 

images were divided into positive and negative examples. The 

goal of using positive examples is to minimize the distance 

between their representations in the model’s feature space. This 

helps the model understand which elements remain unchanged 

despite the added weather effects. For negative examples, the 

goal is to maximize the distance between their representations. 

This allows the model to learn to distinguish what exactly 

makes images different and to understand how weather 

conditions affect visual features. 

 

To evaluate the obtained results on synthetic image sets, we 

used two quality assessment metrics: PSNR (Peak Signal-to-

Noise Ratio) and SSIM (Structural Similarity Index). PSNR is a 

widely used metric for assessing the quality of recovered images 

compared to their original counterparts. It measures the peak 

error between the two images, providing an indication of the 

maximum possible signal-to-noise ratio. The PSNR is expressed 

in dB and is calculated using the mean squared error (MSE) 

between the original and processed images. A higher PSNR 

value indicates better quality, as it suggests that the recovered 

image is closer to the original, with less distortion. 

 

SSIM is a perceptual metric that quantifies the similarity 

between two images based on structural information. Unlike 

PSNR, which relies solely on pixel-wise differences, SSIM 

considers changes in structural patterns, luminance, and 

contrast. The metric assesses the correlation between local 

patterns of pixel intensities in the original and processed 

images, providing a more holistic evaluation of perceived visual 

quality. The SSIM value ranges from –1 to +1, where a value of 

1 indicates perfect structural similarity. This makes SSIM 

particularly useful for applications where human perception of 

quality is critical. 
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To evaluate the obtained results on real images set, we used 

three no-reference metrics: BRISQUE, NIQE and Entropy. 

BRISQUE (Blind/Referenceless Image Spatial Quality 

Evaluator) is a metric designed to evaluate the quality of images 

without the need for references. It analyzes local patterns and 

statistics of images to determine how distorted or degraded they 

are. In the evaluation process, each image is divided into small 

blocks, for which statistical features are calculated. The 

extracted features are compared with a model based on 

statistical data. 

 

NIQE (Naturalness Image Quality Evaluator) is another metric 

for evaluating the quality of images without using references. It 

measures the naturalness of images based on statistical models 

trained on a set of natural images. In the evaluation process, 

various characteristics such as texture and contrast are 

calculated for each image. The extracted features are still 

compared with certain statistical models. 

 

Entropy is a measure of the uncertainty or complexity of an 

image. It is used to evaluate the diversity and information 

content of an image. In the evaluation process, all images are 

converted to grayscale to simplify the analysis. For each 

brightness level, the probability of its appearance in the image is 

calculated. After that, using Shannon's formula, the entropy 

value is calculated using Equation 11: 

  

      2

1

log
n

i i

i

H X p x p x


  ,  (11) 

 

where  H(X) = the entropy of the random variable 

 p(xi) = the probability of occurrence of the event x 

 n = the total number of possible events 

 

The average objective values for the synthetic images and for 

the real images with weather artifacts and the corresponding 

recovered images are presented in Tables 1 and 2, respectively. 

 

Dataset Image Type PSNR, dB ↑ SSIM ↑ 

CSD Snowy images 14.27 0.70 

Recovered images 18.94 0.83 

Rain100L Rainy images 25.52 0.81 

Recovered images 30.87 0.89 

O-Hazy Foggy images 13.68 0.59 

Recovered images 17.12 0.62 

Table 1. Comparative evaluation of synthetic images with 

weather artifacts and recovered images 

 

Image Type BRISQUE  NIQE  Entropy 

Snowy images 40.0 4.8 7.8 

Recovered images 32.5 4.1 7.2 

Rainy images 38.5 4.2 7.0 

Recovered images 29.8 3.7 6.8 

Foggy images 42.0 4.6 7.6 

Recovered images 35.2 4.5 7.5 

Table 2. Comparative evaluation of real images with weather 

artifacts and recovered images 

 

The PSNR and SSIM values show that the quality of the 

recovered images from the CSD and O-Hazy datasets is slightly 

lower compared to the images from the Rain100L dataset. This 

indicates that the model is able to preserve the structural 

integrity of rain-affected images, resulting in a more visually 

coherent reconstruction. In the case of snow and foggy images, 

the values indicate the complexity of the artifacts present. 

However, the results are clearly positive, as most of the artifacts 

are either eliminated or masked quite well. 

 

The BRISQUE metric values indicate that the quality of rainy 

and snowy images improved significantly compared to foggy 

images. This observation suggests that the model demonstrates 

superior performance in removing rain artifacts, likely due to 

the relatively less complex nature of rain-induced distortions 

compared to those caused by fog, which often results in more 

complex visual challenges. 

 

The NIQE results further support the findings of the BRISQUE 

metric, showing that rainy images tend to look more natural 

than their snowy and foggy counterparts. This trend highlights 

the model's success in effectively restoring visual characteristics 

in rainy conditions, where preserving naturalness is paramount. 

 

High entropy values for foggy and snowy images imply that 

these images exhibit greater variety and complexity, which can 

complicate the restoration process. The presence of numerous 

artifacts and distortions in these images presents significant 

challenges for accurate restoration. In contrast, the lower 

entropy values associated with rainy images suggest that they 

were processed more successfully, resulting in a clearer and 

more coherent visual output. 

 

Visual examples of the synthetic and real snowy images are 

presented in Figure 2. Visual evaluation of both synthetic and 

real snow images shows good results. Monochrome 

backgrounds provide the best visual results of snowfall removal. 

Large snow-covered areas and areas with complex backgrounds 

present the greatest challenge. 

 

 
a) b)                               c) 

Figure 2. Visual comparison of synthetic (1st and 2nd rows) and 

real (3rd row) snow images: a) ground images; b) snow images; 

c) recovered images. 

 

Visual examples of synthetic and real rainy images are 

presented in Figure 3. Visual evaluation of both synthetic and 

real rainy images also shows good results. The most difficult 

ones are those with heavy rain. 
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a) b)                               c) 

Figure 3. Visual comparison of synthetic (1st and 2nd rows) and 

real (3rd row) rainy images: a) ground images; b) rainy images; 

c) recovered images. 

 

Visual examples of synthetic and real foggy images are 

presented in Figure 4. Visual evaluation of both synthetic and 

real images with fog shows good results. Lighting correction 

allows to preserve image contrast. 

 

 
a) b)                               c) 

Figure 4. Visual comparison of synthetic (1st and 2nd rows) and 

real (3rd row) foggy images: a) ground images; b) foggy 

images; c) recovered images. 

 

Visual presentation of the resulting images confirms the data 

obtained using the objective metric. The resulting images 

indeed have significantly fewer meteorological artifacts, making 

it easier to distinguish the desired object against a complex 

background. Unfortunately, not all generated areas have the 

same clarity, but even in this case, the images retain sufficient 

detail. Additional use of other image processing methods can 

help preserve even more useful information. 

 

Overall, the results demonstrate that the proposed framework 

excels in processing images affected by various weather effects. 

The processed images exhibit a high level of quality with 

notable preservation of detail and satisfactory removal of 

weather artifacts. These findings highlight the potential of 

framework to enhance image restoration tasks across various 

adverse weather conditions, paving the way for future 

applications in fields such as image processing, surveillance, 

and environmental monitoring. 

6. Conclusions 

In this study, we developed an unsupervised framework for 

restoring natural images affected by adverse weather conditions, 

focusing on the removal of snow, rain, and fog using a GAN-

based architecture. Our framework demonstrates significant 

performance according to reference and no-reference metrics. 

Improvements in both image quality and object visibility are 

observed. Its modular design provides adaptability to various 

weather conditions, making it suitable for applications like 

wildlife monitoring and environmental studies. Each 

component, especially the mask queue, is crucial for improving 

restoration quality. Looking ahead, we plan to extend our 

framework to tackle more complex weather scenarios and 

explore its practical applications in diverse settings. Overall, our 

research significantly contributes to the field of unsupervised 

image restoration by offering a robust solution for enhancing 

image quality in challenging environments. 
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