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Abstract 

 

The problem of camouflaged object detection (COD) is to identify hidden objects in their environment. This problem remained 

unsolved for many years until the advent of deep learning methods. The style of invisibility of the camouflaged object plays a 

significant role, which is difficult to capture only in the spatial area. At the same time, the structural properties of camouflaged 

patterns are characterized by a high discriminatory ability to distinguish camouflaged objects from the background. The spatial-

frequency model called SF-CODnet achieves accurate structural segmentation, realizing not only semantic but also instance 

segmentation of wildlife camouflage objects. A learning strategy to synthesize weak samples also helped to generalize the COD 

ability of the baseline model. Unlike other popular learning strategies that improve samples as much as possible before training, our 

weak sample synthesis learning strategy helps to generalize the base model's COD ability. Such augmentation strategy and the 

proposed SF-CODnet model were tested using three publicly available datasets: CAMO, COD10K, and NC4K  with good results, 

outperforming some COD models. 

 

 

1. Introduction 

There are many natural objects in the environment that have a 

protective camouflage mechanism developed by evolution. In 

recent years, camouflaged object detection (COD) has become a 

hot research topic with wide practical applications in ecology, 

agriculture, industry, military, medical imaging, and art. 

Camouflaged natural objects have a very similar texture, shape, 

colour to the background, resulting in hidden boundaries and 

deceptive textures. Object detection as a fundamental task in 

computer vision deals with various types of objects, which leads 

to different problem statements: generic object detection, salient 

object detection and camouflaged object detection. While 

salient objects stand out from the background, camouflaged 

objects, on the other hand, blend seamlessly into the 

environment, making COD an extremely challenging task. In 

contrast to COD, detection of general and salient objects has 

been well studied in recent decades and is actively used in 

practical applications nowadays. COD is classified into image-

level and video-level. Image-level COD refers to object 

detection in still images, while video-level COD extends to the 

temporal domain with additional complexity due to dynamic 

scene changes and temporal continuity. This study focuses on 

the development of an image-level COD method. 

 

The first traditional COD algorithms appeared in the 2010s and 

were based on hand-crafted features. They have proven to be 

ineffective and yielded poor detection results (Neider and 

Zelinsky, 2006; Hess et al., 2016). Traditional COD methods 

relied on low-level features specifically designed to capture 

nuances of textures, intensities, and colours. Texture-based 

methods aim to detect distinctive patterns in an image by 

analyzing the distribution of gray-scale pixels and their spatial 

neighbours. Intensity-based methods have evolved from simple 

intensity analysis to using 3D convexity, where the difference 

between 3D convex and 3D concave regions is assessed. This 

approach is similar to some deep learning COD methods based 

on depth estimation. In certain scenarios, colour contrast can 

also provide significant distinctiveness in detecting 

camouflaged objects. Often traditional algorithms used several 

features at once. However, their discriminatory ability was low 

and effective only in simple scenes. 

 

The history of deep learning COD methods is short and began 

in the 2020s when the first large-scale datasets emerged. The 

first CNN called Anabrance network (Le et al., 2019) to solve 

the COD problem was proposed in 2019. Since then, several 

dozen deep learning models have been developed for the image-

level COD task. Outstanding systematic surveys can be found in 

the literature (Liang et al., 2024; Xiao et al., 2024), where deep 

learning COD methods are broadly classified based on three 

main criteria: network architecture, learning paradigm, and 

supervision level. Systematic surveys show that CNNs are the 

most popular models, followed by transformer networks, 

diffusion networks, and capsule networks. At the same time, we 

see a gap in the application of generative adversarial networks 

(GANs), which are just beginning to be used to solve the COD 

problem (He et al., 2024a). The learning paradigm includes 

single-task learning and multi-task learning, and the supervision 

level is classified into four categories: fully supervised, weakly-

supervised, semi-supervised, and unsupervised. The aim of this 

study is to develop an original weakly-supervised GAN-style 

learning strategy in the frequency domain. Our contribution is 

threefold: 

1. We propose a learning strategy to synthesize weak 

samples in order to generalize the COD ability of the 

baseline model 

2. The spatial-frequency model called SF-CODnet 

achieves accurate structural segmentation, realizing not 

only semantic but also instance segmentation of wildlife 

camouflage objects 

3. We tested our augmentation strategy and the proposed 

SF-CODnet model using three publicly available datasets: 

CAMO (2,852 images), COD10K (6,000 images), and 

NC4K (4,121 images) with results superior to 3 models 

 

The structure of this paper is following: Section 2 introduces 

the related work on four main categories of learning strategies 
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aimed at solving the COD problem, augmentation methods and 

frequency-based COD methods. Background is presented in 

Section 3. The proposed augmentation approach using weak 

samples is discussed in Section 4. Our GAN-based detection of 

camouflaged wildlife objects in the spatial-frequency domain is 

described in Section 5. Section 6 contains the main 

experimental results. Section 7 concludes the paper. 

 

2. Related Work 

Four basic categories of learning strategy used to address the 

COD problem include: 

1. Fully supervised strategy using complete ground truth 

data, typically ground truth masks of camouflaged objects 

created manually or using third party resources 

2. Weakly-supervised strategy that applies limited or 

imprecise annotations (He et al., 2023) 

3. Semi-supervised strategy that combines labeled and 

unlabeled data, generating pseudo labels for the latter (Fu 

et al., 2024) 

4. Unsupervised strategy in which no explicit labels are 

specified (Zhang and Wu, 2023) 

 

Besides these categories, we can mention aggregating multi-

scale features, fusing multi-source data, multi-task learning, the 

“training-free” mode (Hu et al., 2024), among others. 

 

Recently, many models have been proposed to solve the COD 

problem based on supervised strategy. Most COD models focus 

on the fully supervised strategy with original CNC and 

transformer-based architectures (Liang et al., 2024; Xiao et al., 

2024). However, sometimes interesting learning ideas become 

the basis for implementation. Thus, a joint training method 

using camouflaged and salient objects was developed as an 

uncertainty-aware framework in (Li et al., 2021). First, the easy 

samples in COD dataset were applied to train a robust salient 

object detection model. Second, the similarity measure module 

explicitly modelled the contradicting attributes of the two tasks. 

Third, the uncertainty in salient and camouflaged object 

annotations was estimated using an adversarial learning 

network. This approach showed good COD results, especially 

on datasets with uncluttered images (DUTS, ECSSD, DUT, 

HKU-IS, and THUR). 

 

Pre-training and fine-tuning are commonly used paradigms for 

training deep neural networks that detect objects, including 

camouflaged ones. The recent development of new pre-training 

methods, such as self-supervised training, has facilitated the 

transition from supervised strategies to unsupervised strategies, 

making pre-training easier for end users. 

 

The first weakly supervised COD dataset with scribble 

annotations was presented in (He et al., 2023) with the aim of 

quickly labelling images with blue scribbles for background and 

red scribbles for foreground. This solution made it possible to 

speed up labelling by 360 times compared to pixel-wise 

annotation, but required the developing a new network that 

learned low-level contrast to expand scribbles to wider potential 

regions, and then analyzed logical semantic relations to 

determine the real foreground and background. Weakly-

supervised concealed object segmentation (WSCOS) model was 

based on the “segment anything model” (SAM) to generate 

dense masks as pseudo labels (He et al., 2024b). 

 

The first semi-supervised COD framework with a small amount 

of samples having noisy/incorrect annotations was developed in 

(Fu et al., 2024). To facilitate annotations, two techniques have 

been proposed, including loss re-weighting and ensemble 

learning. These authors calculated the loss weights specific to 

each pixel according to the neighbour information within the 

window (a window-based voting strategy) to check whether it 

belongs to a camouflaged object or not. Furthermore, the 

knowledge from different training moments provided by the 

momentum network allowed ensemble learning to be used to 

discard noise/outliers and generate relatively robust pseudo-

labels for unlabeled images. A semi-supervised COD 

framework called CamoTeacher (Lai et al., 2025) incorporates 

dual-rotation consistency learning to effectively compensate for 

pseudo-label noise at both pixel and instance levels. 

 

One of the main advantages of unsupervised methods is that 

they are able to perform pixel-wise classification at the instance 

level without using any manually created annotations. The 

unsupervised camouflaged object segmentation as domain 

adaptation (UCOS-DA) model proposed in (Zhang and Wu, 

2023) consisted of three components: a self-supervised source 

model, a light-weighted target model and an adversarial domain 

adaptation module. This approach was based on the assumption 

that the blurriness of object boundaries is one of the main 

reasons for the large discrepancy between the camouflaged and 

the generic visual objects. 

 

The three learning strategies mentioned above usually require 

augmentation as a way to increase the size and diversity of the 

training data. This is a challenging problem for camouflaged 

object detection and camouflaged instance segmentation that 

has not yet been thoroughly studied. Augmentation of images 

with camouflaged objects in the spatial domain may results in 

occlusions, deformations, or noise. Therefore, augmentation in 

the frequency domain is more preferable. An original 

augmentation method called CamoFA using the Fourier 

transform was proposed in (Le et al., 2024). This method 

involves mixing the low-frequency component of the reference 

image and the high-frequency component of the input image in 

order to transfer texture and colour information to the input 

image. A conditional GAN and cross-attention mechanism with 

adaptive parameters allowed to synthesize more visible 

camouflaged objects. Another strategy, the “prey-vs-predator” 

game, embodied in adversarial training framework called 

Camouflageator was implemented in (He et al., 2024a). The 

“prey” generates more deceptive camouflage objects while the 

“predator” should provide more precise detection results. Thus, 

the generator learns to generate more camouflaged objects, in 

other words, the generalizability of the model increases. 

 

The main limitation of spatial-based COD methods is the 

inaccurate detection of object edges in complex natural scenes. 

Nowadays, the frequency-based COD methods do not 

predominate among the COD family. However, this branch of 

the COD family deserves attention, as does the development of 

hybrid models. In (Zhong et al., 2022), the frequency clues were 

embedded into a CNN model that had two separate flows – 

RGB flow and frequency flow. In this model, a frequency 

enhancement module based on the offline discrete cosine 

transform and a high-order relation module for handling the rich 

fusion features were developed. The two-stage frequency 

perception network (FPNet) included a frequency-guided coarse 

localization stage and a detail-preserving fine localization stage 

(Cong et al., 2023). The mechanism for separate frequency 

perception using offline discrete cosine transform was driven by 

a semantic hierarchy in the frequency domain. The feature 

decomposition and edge reconstruction (FEDER) model was 
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developed to learn the intrinsic similarity of foreground and 

background using deep wavelet-like decomposition (He et al., 

2023). The auxiliary task of edge reconstruction helped to 

generate precise masks of camouflaged objects with accurate 

boundaries. A COD model with edge perception in frequency 

domain (EPFDNet) was developed in (Fang et al., 2025). In this 

model, Res2Net-50 was used as the basis for initial feature 

extraction. The frequency components were obtained through 

deep wavelet-like transformation. The edge-target interaction 

and frequency-spatial fusion network (EFNet) proposed in 

(Guan et al., 2025) realized the idea of embedding frequency 

information into the spatial domain, facilitating frequency-

spatial fusion. The frequency decomposition branch simulated 

the JPEG image compression process, using block-wise discrete 

cosine transformation, while the edge detection and object 

segmentation branches extracted spatial information. 

 

A brief review of the literature indicates high activity in the 

field of COD. Although several dozen deep models have been 

developed in recent years, researchers continue to study 

increasingly complex cases in such a difficult problem, taking 

into account multimodality, depth, and various transforms. 

 

3. Background 

In general, the deep learning-based COD problem can be 

formulated as follows. Let I be an input RGB image, I 

 RHW3, where H and W represent the width and height of the 

image. The input image I needs to be transformed into a 

predicted camouflaged map Cmap using a network Fmap with 

trainable parameters map: 

  

    ; 0,1
H W

map map mapC F I


  ,    (1) 

 

where  Cmap RHW1 

 Fmap = the network 

 map = the trainable parameters 

 I = the image 

 H, W = the width and height of the image 

 

Let extend Equation 1 by adding the contour Ccon of the 

camouflaged object: 

  

    0,1con map conC C   ,     (2) 

 

where  Ccon RHW1 

 con = the trainable parameters 

 

Let the dataset D contains N images, D = {In  RHW3}, 

n = 1,..., N and corresponding ground-truth map labels 

Gmap  {0, 1}HW and ground-truth contour labels Gcon  {0, 1}. 

The goal is to find optimal parameters  ˆ ˆ,map con   that 

minimize the prediction error: 

  

      
,

ˆ ˆ, argmin , , ,
map con

map con map map con conLoss C G C G
 

   ,   (3) 

 

where  Loss() = the loss function 

 

The ground-truth labels Gmap and Gcon can be collected by 

different techniques, including manually annotated pixel-level 

masks and contours. 

 

4. Augmentation 

The traditional augmentation techniques include stochastic 

augmentations randomly selected by flipping, rotation, and 

scaling within the given ranges of values. However, these types 

of data augmentation do not efficiently improve the model’s 

ability to discriminate the foreground objects. We would like to 

discuss a special approach to augmentation related to the COD 

problem. The difficulty in distinguishing most camouflage 

objects is primarily due to their structure, texture or colour. 

 

Detecting the boundaries of camouflaged objects is a more 

challenging task compared to detecting common and salient 

objects. Most COD-based augmentation techniques generate 

“good” samples for training with explicit boundaries of 

camouflaged objects. In contrast to this, we believe that 

generating weak samples with relatively blurred or distorted 

boundaries of camouflaged objects helps generalize the learning 

process. In other words, if we train the network to segment 

weak samples at the training stage, then at the testing stage the 

network will segment normal samples better. 

 

Not all from possible types of blurring such as motion blur, 

defocus blur, lens blur, Gaussian blur, radial blur, zoom blur 

and natural blur (caused by environmental changes, such as 

heavy rain, snow, fog, dust, and so on) are suitable for our goal 

of controlled blurring of the boundaries of camouflaged objects. 

It is worth noting that we are talking about small local 

anisotropic or isotropic changes in boundaries. We used simple 

low-pass filters to smooth randomly selected areas of the 

boundaries as anisotropic blur and a slight Gaussian blur in the 

area of the camouflaged object as isotropic blur. Weak samples 

generated using these techniques with the OpenCV library are 

depicted in Figure 1. 

 

 
           a        b  c          d 

Figure 1. Visualization of generated weak samples: a original 

image, b, c, d generated samples with different Gaussian blur 

locally applied (b – 5% blur, c – 7% blur, d – 10% blur). 

 

Figure 2 and Figure 3 show samples with randomly distorted 

texture and colour parameters, respectively. 

 

 
           a        b  c          d 

Figure 2. Visualization of generated samples with randomly 

distorted texture parameters: a original image, b, c, d generated 

samples. 
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           a        b  c          d 

Figure 3. Visualization of generated samples with randomly 

distorted colour parameters: a original image, b, c, d generated 

samples. 

Besides those mentioned above, there are other interesting 

augmentation methods, such as contrastive learning (Guo and 

Huang, 2025) or Fourier-based augmentation (Le et al., 2024). 

However, these augmentation methods are beyond the scope of 

the current study. 

 

5. Proposed COD Method in Spatial-Frequency Domain 

There are many strategies to solve the COD problem. One of the 

reasonable ideas is to develop strategies based on the natural 

camouflage functions of animals. We suppose that colour, 

texture and shape are more likely to deceive human vision, as 

are deep learning models built on the biological principals of 

the human brain, than general biological features of wildlife. In 

other words, the invisibility style of the camouflaged object 

plays a significant role, which is difficult to capture in the 

spatial domain. Our experiments show that the structural 

properties of camouflaged patterns are characterized by high 

discriminating ability to distinguish camouflaged objects from 

the background. One of the ways to extract the structural 

properties from an image is to move to the frequency domain 

and analyze high-frequency components. 

 

The GAN-based architecture of the proposed COD network is 

presented in Figure 4. We offer architecture with two generators 

and three discriminators. The fusion of spatial and frequency 

masks allows to obtain a pseudo mask with subsequent 

visualization of the camouflaged object. Spatial generator 

analyzes semantic information, and frequency generator extracts 

structural information. 

 

Since the COD task is very challenging, we decided to use one 

of the most effective segmentation models capable of capturing 

contextual information at multiple scales, i.e. DeepLabv3+ 

(Chen et al., 2018). The classical Encoder-Decoder architecture 

includes an encoding network to obtain rich semantic 

information and a decoding network to extract the detailed 

object boundaries. The outstanding segmentation capabilities of 

the DeepLabv3+ model are based on the use of depth-wise 

separable convolution and atrous spatial pyramid pooling, and 

continue to be improved with additional blocks. Note that to 

avoid analysis of channel components, the RGB image is first 

converted to a YUV colour space with the Y intensity 

component and U and V components that define the colour 

components. The frequency generator has a typical structure 

with, firstly, a two-level discrete wavelet transform of the gray 

image and, secondly, a CNN-based inverse wavelet transform 

architecture providing a so-called “frequency mask” with 

structured information. 

 

 

 

 

Figure 4. Architecture of the proposed SF-CODnet during training. 
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Let us consider the loss functions of the members of the 

proposed SF-CODnet. Adversarial loss Ladv can be reduced to 

relativistic loss according to (Naseer et al., 2020): 

  

      
      

log

log

adv fg ps fg gt

bg ps bg gt

L D G I D I

D G I D I





  

 

,    (4) 

 

where  Dfg, Dbg = the object and background discriminators 

 G = the generator 

 Igt, Ips = the segmented ground truth image and 

segmented pseudo image 

  = the sigmoid layer 

 

Object and background discriminators generate output pixel 

losses Lpx(fg) and Lpx(bg), respectively. Separate generation of 

output pixel losses is required since they have different degrees 

of influence on the total losses. Both discriminators have 

identical Siamese CNN-based architecture. The pixel losses 

Lpx(fg) and Lpx(bg) estimate the texture component based on the 

element-wise mean aggregation according to the following 

equation: 

  

         
1

1
max ,

n

px gt gt ps
i

L I I I
n

  
   ,   (5) 

 

where  Lpx() = the pixel loss of foreground Lpx(fg) or pixel 

loss of background Lpx(bg) 

 Igt() = the segmented ground truth image of 

foreground or background 

 Ips() = the segmented pseudo image of foreground or 

background 

 ||||1 = the L1-form 

 max() = the element-wise maximum selection 

 n = the number of pixels 

 

Mask discriminator is trained to accurately segment the pseudo 

mask of the camouflaged object with summarized loss Lpm 

calculated as follows: 

  

     , ,pm BCE m ps gt IoU m ps gtL L D M M L D M M  ,   (6) 

 

where  LBCE() = the weighted binary cross-entropy loss 

(Jadon, 2020) 

 LIoU() = the weighted intersection-over-union loss 

(Rahman and Wang, 2016) 

 Dm = the mask discriminator 

 Mps = the pseudo mask 

 Mgt = the ground truth mask 

 

The total loss function is a weighted sum of all sub-loss terms: 

  

    ,total adv px px BCE IoUL L L fg L bg L I       ,  (7) 

 

where  , , ,  = the hyper-parameters tuned empirically 

 

6. Experimental Results 

Experiments were conducted to evaluate the performance of the 

proposed model on three benchmark datasets: CAMO, 

COD10K, and NC4K. These datasets were selected due to their 

diverse characteristics and their relevance to the task of 

camouflaged object detection (COD), which involves 

identifying objects that are partially or fully camouflaged within 

complex backgrounds. Below, we provide a brief description of 

each dataset used in our experiments: 

1. The CAMO dataset (Le et al., 2019) contains more 

1,250 images with camouflaged objects that are partially or 

fully masked by complex backgrounds, making detection 

particularly challenging. This dataset focuses on evaluating 

models in detecting objects under various levels of 

occlusion, noise, and background clutter, requiring 

advanced contextual understanding and multiscale 

detection abilities 

2. The COD10K dataset (Fan et al., 2020) includes 

10,000 images containing camouflaged objects, with 

paired “before” and “after” images from remote sensing 

and surveillance environments. The task involves detecting 

subtle changes in the scenes, where camouflaged objects 

may be revealed or altered. Ground truth annotations 

indicate the regions where changes occurred, challenging 

the model to detect camouflaged elements even in the 

presence of significant background variation 

3. The NC4K dataset (Lv et al., 2021) consists of 4,121 

images from natural environments, such as forests and 

wildlife habitats, containing camouflaged objects that 

blend seamlessly into their surroundings. These images are 

annotated with pixel-level segmentation masks 

highlighting the camouflaged objects 

 

To enhance model robustness, we utilized a dual-sample 

training strategy, where the network was trained on both strong 

examples (original images) and weak examples (Gaussian 

blurred images). This approach allows the model to generalize 

better and improves its ability to detect camouflaged objects in 

varying conditions. The training process for SF-CODnet 

followed a structured pipeline to ensure robust camouflaged 

object detection. 

 

First, data preprocessing was applied to all input images, 

resizing them to 513×513 pixels to match the input dimensions 

of DeepLabV3+ (ResNet-101 backbone). Standard 

normalization was performed using mean aligning the data 

distribution with ImageNet statistics. To improve the model's 

ability to detect camouflaged objects in challenging conditions, 

we incorporated weak sample generation by applying Gaussian 

blur to selected training images. This augmentation technique 

forces the model to focus on key structural features rather than 

fine-grained textures, improving generalization to low-contrast 

and low-texture scenarios. Feature maps from these modules are 

then combined and passed through the DeepLabV3+ classifier, 

which generates the final segmentation mask, accurately 

detecting camouflaged objects in both strong and weak 

examples. The network was trained using the Adam optimizer. 

Training was conducted for 60 epochs, alternating between 

strong and weak samples every batch to ensure balanced 

learning. 

 

The model was evaluated on a separate validation set after every 

epoch. The best model was selected based on F-measure and 

Mean Absolute Error on the validation data. By training SF-

CODnet with both high-quality (strong) and weak examples, the 

model learned to generalize across different levels of 

camouflage complexity, resulting in improved detection 

performance across various datasets. 

 

To analyze the contribution of different components of SF-

CODnet, we performed an ablation study by sequentially 
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disabling key blocks and evaluating segmentation performance 

on strong and weak examples. We used for standard metrics: 

1. Mean Absolute Error (M) measures the pixel-wise 

difference between the predicted and ground-truth masks 

(lower is better). 

2. F-measure (Fβ) assesses the balance between precision 

and recall (higher is better). 

3. E-measure (Eϕ) captures local and global similarity 

between prediction and ground truth (higher is better). 

4. S-measure (Sα) evaluates the structural similarity of 

the segmentation (higher is better). 

 

Experiments were conducted on both strong examples (source 

images) and weak examples (Gaussian blurred images). Table 1 

and Table 2 show the results of the averaged values of 

segmentation metrics for strong and weak examples tested on 

different datasets. 

 

Block Disabled M (↓) Fβ (↑) Eϕ (↑) Sα (↑) 

None (Full Model) 0.065 0.572 0.752 0.788 

Spatial Generator 0.065 0.000 0.741 0.789 

Frequency Generator 0.066 0.000 0.741 0.792 

Background Discriminator 0.065 0.183 0.742 0.789 

Foreground Discriminator 0.074 0.000 0.741 0.791 

Mask Discriminator 0.070 0.364 0.748 0.794 

Table 1. Ablation study on SF-CODnet for strong examples 

 

Block Disabled M (↓) Fβ (↑) Eϕ (↑) Sα (↑) 

None (Full Model) 0.068 0.781 0.795 0.813 

Spatial Generator 0.071 0.000 0.780 0.810 

Frequency Generator 0.071 0.000 0.780 0.810 

Background Discriminator 0.070 0.251 0.783 0.811 

Foreground Discriminator 0.070 0.000 0.780 0.810 

Mask Discriminator 0.069 0.428 0.790 0.812 

Table 2. Ablation study on SF-CODnet for weak examples 

 

Training on weak examples with stronger Gaussian blur 

significantly enhances segmentation performance. The F-

measure (Fβ) is notably higher for blurred images, indicating a 

better balance between precision and recall. Additionally, both 

the E-measure (Eϕ) and S-measure (Sα) improve, confirming that 

the model retains object structure even under extreme blurring. 

The Mean Absolute Error (M) decreases, demonstrating that the 

model makes fewer pixel-wise mistakes when trained with weak 

examples. Figure 5 and Figure 6 show the results of ablation for 

the strong and weak examples respectively with sequential 

disconnection of the model blocks.  Disabling Spatial Generator 

and Frequency Generator results in no segmentation being 

performed and the image matches the original image. This 

proves that the value of the metric Fβ is zero. 

 

As can be seen from the Figures 5 and 6, the image processed 

with Gaussian blur demonstrates better object boundary 

detection, as it effectively reduces background noise and 

prevents non-relevant elements, such as leaves, from being 

included in the contours. The Spatial and Frequency Generators 

play a crucial role in camouflaged object detection. Disabling 

either module results in Fβ dropping to 0, meaning the model 

completely fails to segment objects. This highlights the 

importance of spatial and frequency-based features in detecting 

camouflaged objects. The Background Discriminator enhances 

object-background distinction, though its impact is less critical. 

When disabled, Fβ and Eϕ decrease, but the model is still able to 

segment objects. This suggests that while background 

differentiation improves segmentation, it is not the most crucial 

factor. Finally, the Mask Discriminator contributes to refining 

object boundaries. Disabling it leads to a decrease in structural 

similarity (Sα) and a slight reduction in Fβ, indicating that this 

module helps define object edges more clearly, improving the 

overall segmentation quality. 

 

 
           a        b  c          d 

Figure 5. Contour visualization of generated samples from 

ablation study on strong example: a full model, b, c, d 

generated samples without background, mask and object 

discriminators, respectively. 

 
           a        b  c          d 

Figure 6. Contour visualization of generated samples from 

ablation study on weak example: a full model, b, c, d generated 

samples without background, mask and object discriminators 

respectively. 

 

To further evaluate our approach, we compare SF-CODnet with 

state-of-the-art camouflaged object detection models, including 

SINet (Fan et al., 2022), MirrorNet (Yan et., 2021), and BasNet 

(Qin et al., 2019). The results are summarized in Table 3 

(Camouflaged Object Segmentation on CAMO Open Source, 

2025). 

 

Model M (↓) Fβ (↑) Eϕ (↑) Sα (↑) 

SF-CODnet (Ours) 0.068 0.781 0.795 0.813 

SINet 0.082 0.750 0.606 0.751 

MirrorNet 0.084 0.780 0.719 0.785 

BasNet 0.056 0.618 0.413 0.618 

Table 3. Ablation Study on SF-CODnet for weak examples 

 

Figure 7 illustrates a qualitative comparison of these existing 

models with our proposed SF-CODnet. Unlike these models, 

SF-CODNet is trained using both strong and weak examples, 

which allows it to better generalize and improves its ability to 

preserve object boundaries even in low-contrast environments. 

 

The SF-CODnet model presents several advantages and 

disadvantages in camouflaged object detection. Advantages 

include its improved performance across complex datasets, such 

as CAMO, COD10K, and NC4K, which contain images with 

varying levels of difficulty and noise. This demonstrates the 

model's versatility and ability to handle diverse camouflaged 

objects. A dual learning strategy that uses both strong and weak 

examples (with Gaussian blur) improves the model's 
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generalization ability, allowing it to detect objects in low-

contrast and low-texture conditions. Additionally, the model's 

performance is strongly influenced by the Spatial Generator and 

Frequency Generator, which are crucial for detecting 

camouflaged objects. If either of these components is disabled, 

the model fails completely, emphasizing their importance. The 

model also achieves high segmentation accuracy, with good 

precision-recall balance (Fβ), structural similarity (Sα), and 

local-global similarity (Eϕ) for both strong and weak examples. 

Moreover, when compared to other state-of-the-art models such 

as SINet, MirrorNet, and BasNet, SF-CODnet outperforms 

them in terms of both accuracy and error metrics, confirming its 

superiority in camouflaged object detection. 

 

 
                 a      b        c      

 
                 d      e        f   

 
                 g      h        i  

 
                 j      k        l  

 
 m      n        o 

 
 p      q        r 

Figure 7. Comparison of detection models of masked objects in 

identical images: a, b, c original images, d, e, f ground truth 

masks, g, h, i SF-CODNet (Ours), j, k, l MirrorNet, m, n, o 

BasNet, p, q, r SINet. 

 

Disadvantages, however, include its dependence on high-quality 

data. The model's performance may degrade when working with 

lower-quality or noisy images, requiring improvements in data 

pre-processing or training techniques. Furthermore, the model's 

computational complexity is high due to the use of multiple 

components, such as the Spatial and Frequency Generators, and 

the need to train on both strong and weak examples, resulting in 

increased computational demands and longer training times. 

While the Background Discriminator improves object-

background differentiation, its impact is less critical, suggesting 

that the model could be simplified without significantly 

affecting performance, which could reduce computational costs. 

The model also poses challenges in interpretability, as it relies 

on complex components, making it difficult to understand 

which specific features are being leveraged for object detection. 

Lastly, achieving optimal results requires careful tuning of 

hyperparameters, such as the degree of Gaussian blur in weak 

examples, which may require additional effort during the 

training process. 

 

7. Conclusions 

In this study, we introduced SF-CODnet, a novel approach for 

camouflaged object detection that leverages spatial-frequency 

features and weak sample learning to improve segmentation 

performance. The model was trained on both strong examples 

(original images) and weak examples (Gaussian blurred 

images), allowing it to generalize better and detect camouflaged 

objects in diverse conditions. Compared to state-of-the-art 

camouflaged object detection models (SINet-, MirrorNet, 

BasNet), SF-CODnet achieved superior performance, 

particularly in Fβ and Eϕ, demonstrating better balance between 

precision and recall. Moreover, the model exhibited a lower 

mean absolute error (M), indicating improved pixel-wise 

segmentation accuracy. However, structural similarity (Sα) 

remains an area for potential refinement, and the model’s 

computational complexity could be optimized for real-time 

applications. 

 

Overall, SF-CODnet provides a significant advancement in 

camouflaged object detection, proving that weak sample 

training with strong Gaussian blur is an effective strategy for 

improving segmentation robustness. Future work will focus on 

further enhancing structural refinement, reducing computational 

cost, and exploring additional augmentation techniques to 

improve model generalization across complex environments. 
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