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Abstract 

 

The exploration of underwater environments poses significant challenges due to the optical properties of water, leading to color 

distortion, reduced contrast and blurring in images. This work aims to enhance the clarity and fidelity of underwater images and videos 

in near real-time. The SeaThru physics-based color correction method was suitably adapted for obtaining target images across a diverse 

collection of underwater datasets considered. Based on these target images, the MIMO-UNet model is used to address the processing 

speed limitations of the physics-based correction methods, enabling near real-time image and video processing without explicit depth 

information. The proposed method has been integrated into autonomous underwater observation systems and remotely operated vehicle 

(ROV) cameras, offering enhanced visibility. Additionally, we build a MIMO-UNet network for generating realistic synthetic 

underwater images, valuable for training and simulation. This research advances underwater imaging enhancement and restoration, 

significantly improving visual data quality and vision-dependent tasks in submerged environments. The public release of the dataset 

aims to facilitate further research and development in this field.

1. Introduction & Related Work 

The exploration of underwater environments presents unique 

challenges due to the complex optical properties of water, which 

significantly affect visibility and image quality. Traditional 

methods have struggled with color distortion, low contrast, and 

blurring caused by light scattering and absorption. To address 

these challenges, various image restoration methods have been 

proposed in the literature.  

Underwater image enhancement methods can be broadly 

categorized into traditional and learning-based approaches. 

Traditional methods, such as dark channel prior (He et al., 2010) 

and histogram equalization (Chen et al., 2022), rely on prior 

assumptions regarding image formation and distortions to obtain 

clear images. However, these methods may fail when the 

assumptions do not hold. On the other hand, learning-based 

methods are typically trained using synthetic underwater images 

because obtaining clear underwater images is very challenging. 

Synthetic training data provide clear reference images 

corresponding to degraded original images, allowing to train 

models that restore original colors from underwater images (Z. 

Wang et al., 2023). However, models trained solely on synthetic 

data may struggle to perform well on real-world underwater 

images, due to the domain gap. While some learning-based 

methods developed using Generative Adversarial Networks 

(GANs) (Li et al., 2017), (Q. Wang et al., 2023) do not require 

synthetic images and focus on improving perceptual quality, they 

can sometimes result in significant color artifacts.  

Our approach builds on the "SeaThru" method (Akkaynak & 

Treibitz, 2019), a color correction algorithm in underwater 

imaging, which employs the revised physics-based model of 

(Akkaynak & Treibitz, 2018) for removing the effects of water 

from underwater images. This method diverges from other 

techniques that prioritize aesthetic enhancement over scientific 

accuracy, focusing instead on the accurate restoration of true 

colors by accounting for light's behavior through water in 

different wavelengths.   

 

 

As an official implementation of SeaThru was not available, we 

developed our own to apply and refine the algorithm across our 

datasets, producing a large collection of reference data suitable 

for training deep learning methods. Ensuring consistency and 

robustness through fine-tuning of the hyperparameters and post-

processing steps like white balancing was a demanding and time-

consuming task. 

To supply depth information essential for the SeaThru algorithm, 

we incorporated outputs from a pre-trained monocular depth 

estimation approach based on a neural network. Recent 

advancements in monocular depth estimation, such as (Godard et 

al., 2019) and (Ranftl et al., 2021), have shown promising results 

in providing accurate depth cues from single images. We utilize 

(Ke et al., 2023) in our framework, as it produces the most robust 

results on our datasets, even if it is not explicitly trained in 

underwater images. 

Aiming to assimilate the application of the reference underwater 

restoration method using an efficient neural network, we adjusted 

and trained the MIMO-UNet (Cho et al., 2021), as its architecture 

is proven to function well on the image restoration task of 

deblurring, utilizing end-to-end supervised learning and 

addressing the processing speed limitations inherent in the 

SeaThru method. The developed model directly transforms 

underwater RGB images into restored images in real-time, 

without requiring explicit depth information. This advancement 

facilitates near real-time processing of images and videos, 

enabling numerous practical applications involving real-time 

image streams in dynamic underwater environments. 

Additionally, we developed and trained the same neural network 

architecture to perform the reverse transformation: adding back 

the effects of water into corrected images. This process is 

essential for creating realistic synthetic underwater data for 

simulations and lab testing, where access to actual underwater 

environments may be limited. Our approach facilitates the 

generation of synthetic images that are affected by the distortions 

caused by water, offering a convenient tool for training and 

refining underwater imaging and analysis algorithms, similarly 

to the work of (Li et al.,2020) and (Wen et al., 2023) where the 
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revised underwater image formation model suggested in 

(Akkaynak & Treibitz, 2018) is used to produce synthetic 

underwater images. The proposed method leverages the actual 

distortions and color changes captured in the original underwater 

images, offering an efficient and more realistic underwater image 

simulation.  

The deep learning models that are developed are also evaluated 

on embedded AI computational platforms like the NVIDIA 

Jetson Nano, ensuring that they operate efficiently even in 

hardware-constrained environments. This consideration is 

crucial for deployment in autonomous underwater vehicles, 

where power and processing capabilities are often limited. 

To demonstrate the applicability and versatility of our method, 

we integrated the proposed efficient correction model into remote 

sensing applications within autonomous underwater systems, 

such as an autonomous underwater observation system and the 

camera of a Remotely Operated Vehicle (ROV). This integration 

allows for the real-time correction of underwater scenes, greatly 

enhancing the visibility and color fidelity of the environment. 

Additionally, this correction aids in improving the functionality 

of other vision-based algorithms by providing them with clearer 

and radiometrically accurate visual data. For instance, the 

application of the proposed method has notably enhanced the 

performance of an underwater bubble identification neural 

network for an autonomous underwater observation system 

(Spanos et al., 2024). 

In summary, the proposed StreamUR method introduces several 

novel contributions to the field of underwater computer vision: 

1. Physics-based, robust reference data: Unlike other learning-

based methods that rely on synthetically enhanced images for 

training, our approach uses physics-based corrected images as 

reference, ensuring higher fidelity. 

2. Real-Time Processing: The MIMO-UNet enables near real-

time (5-10 fps) correction of underwater images and video 

streams, a significant improvement over the much less efficient 

SeaThru implementation, ensuring the feasibility of near real-

time visual applications in underwater robotics. 

3. Independence from depth information: By relying on depth 

cues intrinsic in underwater images, the dependency on depth 

data can be lifted. Based on this, our method simplifies the 

operational complexity of underwater imaging systems, which 

often struggle to obtain accurate depth information. 

4. Validation: We have successfully integrated and tested our 

model in real-world applications, including autonomous 

underwater visual observation systems and remotely operated 

vehicles (ROVs), demonstrating practical utility beyond in real 

environments. 

5. Synthetic data generation: The development of a neural 

network capable of generating realistic underwater images from 

corrected images provides a valuable tool for creating high 

fidelity synthetic datasets, crucial for training and simulation 

purposes in the absence of extensive real-world data. 

6. Public dataset provision: The release of our underwater 

imagery dataset will facilitate further research and development 

in the field, promoting innovation and improvement in 

underwater imaging technologies.  

2. Methodology 

2.1 SeaThru physics-based correction 

The SeaThru method (Akkaynak & Treibitz, 2019), represents a 

significant advancement in underwater image processing by 

addressing the unique challenges posed by the underwater 

environment. Traditional methods for underwater image 

enhancement often fail to correct color distortions and image 

degradation caused by light absorption and scattering in water. 

SeaThru, however, uses a physics-based approach to recover the 

true colors of underwater scenes. Underwater image formation is 

mostly influenced by: 

● Backscatter: Particles suspended in water scatter light 

back to the camera, creating a hazy appearance that reduces 

image clarity and contrast. 

● Attenuation: Light intensity diminishes as it travels 

through water due to absorption and scattering. This 

reduction in light affects different wavelengths to varying 

degrees, leading to color distortions. 

Considering some simplifying assumptions on the model 

introduced in (Akkaynak & Treibitz, 2018), the model considered 

in SeaThru is: 

𝐼𝑐 = 𝐽𝑐 𝑒−𝛽𝑐
𝐷𝑧 + 𝐵∞(1 − 𝑒−𝛽𝑐

𝐵𝑧), 

with 𝐼𝑐 the observed image for wide-band channel 𝑐, 𝐽𝑐 the 

corresponding image of the scene unaffected by the water, 𝐵∞ the 

asymptotic value of the backscatter as depth 𝑧 increases, and 𝛽𝑐
𝐵 

/𝛽𝑐
𝐷 the backscatter and attenuation coefficients, respectively. 

SeaThru aims to separate and correct the effects of Backscatter 

and Attenuation using the following key steps: 

● Depth Map Estimation: Accurate depth information is 

crucial for modeling light attenuation and backscatter.  

● Backscatter Removal: The method identifies and removes 

the backscatter component of the image as a function of 

depth 

● Attenuation Coefficient Estimation: The attenuation of 

light is modeled as a depth-dependent coefficient, which 

varies with wavelength.  

● Image Reconstruction: After removing backscatter and 

correcting for attenuation, the remaining direct signal is 

adjusted to restore the image's true colors. This step 

involves applying white balancing techniques to ensure 

color accuracy. 

By implementing these steps, the water's influence from 

underwater images is effectively removed, restoring their true 

colors and significantly enhancing their clarity. A detailed 

description of the steps involved is provided in the Appendix. 

2.2 Efficient underwater image correction 

The physics-based restoration model described above can correct 

the images from distortions caused by the water, however it poses 

several challenges as far as ease of use and efficiency are 

concerned. This is due to two main factors: i) the necessity of 

estimating the depth man of the scene for each image/frame and 
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ii) the long processing time of the steps which cannot be easily 

parallelized for exploiting modern GPU capabilities. 

We address these limitations by training an efficient state-of-the-

art image restoration deep learning model with the task of directly 

generating the corrected images given the underwater images. 

Specifically, we apply the SeaThru physics-based correction 

method across a wide variety of underwater images, and use the 

corrected images, coupled with the original ones, as reference 

data, for training end-to-end a MIMO-UNet (Cho et al., 2021) in 

a supervised manner. Moreover, we relax the requirement of 

providing the depth map of the scene and rely on the ability of 

the model to effectively exploit depth cues that are intrinsic in the 

underwater images for performing the correction. 

 

The MIMO-UNet, or Multi-Input Multi-Output U-Net, has been 

introduced for the task of image deblurring and has been shown 

to handle complex image restoration tasks efficiently. The 

network is designed to be computationally efficient, making it 

suitable for near real-time applications and applications 

involving limited computational resources. By using a single U-

Net structure with multi-scale inputs and outputs, the network 

reduces the computational overhead typically associated with 

stacked sub-networks. The architecture's ability to handle multi-

scale features and its efficient feature fusion mechanism 

contribute to its superior performance in image restoration tasks. 

 

By utilizing the MIMO-UNet architecture, we were able to train 

a robust neural network capable of producing high-quality 

corrected underwater images. This network offers a practical 

solution for near real-time underwater image enhancement, 

without requiring costly explicit depth estimation of the scene. 

 

2.3 Underwater image generation 

In addition to training the MIMO-UNet for underwater image 

enhancement, we also developed a reverse model using the same 

architecture. This reverse model was trained in a similar manner, 

but with a key difference: this time, the corrected images were 

used as inputs and the corresponding original underwater images 

as outputs. This allowed us to build a model capable of generating 

synthetic underwater data from images taken in the air. 

The synthetic data generated by our model faithfully mimics the 

effects of depth-dependent attenuation and backscatter, resulting 

in more accurate and useful training data for underwater image 

processing tasks. 

By developing this reverse model, we created a tool for 

generating high-quality synthetic underwater data from in-air 

images. This synthetic data can be invaluable for training and 

validating underwater imaging algorithms, offering a more 

realistic and effective alternative to traditional methods of 

synthetic data generation. 

2.4 Embedded applications 

Autonomous monitoring applications in remote environments 

require the deployment of refined data processing algorithms on 

edge devices, utilizing highly efficient processing architectures. 

Edge computing involves performing data processing near the 

data source rather than relying on a centralized infrastructure, 

allowing to extract task-specific information from large volumes 

of collected data, reducing storage requirements and enabling 

real-time decision making. Additionally, several tasks rely on the 

processing of a continuous stream of incoming sensor data, close 

to the source, for decision-making or navigation. 

In this context, we examine the deployment of our developed 

model on low-power processing architectures designed for high-

performance edge computing. Specifically, we target the Nvidia 

Jetson Nano 4GB development board, hosting an embedded 

GPU. The deployment on the Jetson GPU clearly benefits from 

the high performance/power ratio of the device, allowing for near 

real-time processing of incoming images, while consuming less 

than 10W of power. 

Deploying the model on the Nvidia embedded GPU requires 

setting up the necessary environment, similar to a desktop GPU. 

However, to achieve maximum performance, it is essential to 

convert the model to TensorRT, a proprietary Nvidia framework 

Figure 1: In the first row, seven underwater images are show from the validation split of the dataset we collected as well as from 

the SeaThru dataset. In the second row, the refence images corrected using the SeaThru physics-based method are shown, while 

the third row shows the images corrected using the proposed method. 
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designed to fully exploit the Nvidia GPU architecture by using a 

combination of techniques such as layer fusion, precision 

calibration and dynamic tensor memory management. 

3. Datasets 

We utilized distinct datasets to ensure a comprehensive and 

robust evaluation of our underwater image enhancement 

techniques. The datasets include: 

● Datasets from Previous Studies: We incorporated 

datasets from (Akkaynak & Treibitz, 2019) and (Li et al., 

2019), which consist of various underwater images 

captured under different conditions. 

● Proprietary Dataset: We collected a custom underwater 

dataset using a GoPro camera. The collected dataset 

includes a wide range of underwater environments, depths, 

and lighting conditions, providing a diverse set of images. 

To enhance the accuracy of our quality assessment, we 

included a color chart in the images. This allowed for a 

more precise estimation of the color correction and image 

restoration quality. 

● ROV Camera Dataset: We also considered a proprietary 

dataset comprising video frames captured from the camera 

of a small Remotely Operated Vehicle (ROV). This dataset 

offers a dynamic perspective, featuring underwater videos 

that are crucial for evaluating the performance of our real-

time processing algorithms. 

The combined dataset consists of 3010 images (2102 from 

proprietary dataset), showcasing a diverse array of underwater 

conditions and environments. Initially, we applied the SeaThru 

method to these datasets for generating a set of corrected images 

that served as reference data. Subsequently, we used the original 

datasets along with the SeaThru-corrected images to train the 

MIMO-UNet image restoration model. This training process 

enables the model to perform physics-informed near real-time 

underwater image correction with high accuracy, by mimicking 

the restoration performed by the SeaThru physics-based model. 

The diversity of the datasets helps our model to generalize well 

across various underwater conditions, making it robust and 

reliable for practical applications. The whole dataset was 

augmented to 6,000 images by randomly applying various 

transformations such as rotations and flips to the original images. 

The proprietary dataset comprising the images collected using the 

GoPro camera and the mini ROV, is publicly available at this 

link. 

4. Experimental Evaluation 

4.1  Implementation 

The MIMO-UNet forward and reversed models were trained on 

an NVIDIA GeForce GTX 980 Ti, 8GB V-RAM GPU. Training 

was carried out for 35 epochs, which took about 700 minutes on 

this hardware. Images are resized to 256×256 size before being 

fed to the model. Regarding the most important hyperparameters, 

batch size was set to 2 due to limited V-RAM size. The learning 

rate was set to 1∙10-4. Moreover, ADAM algorithm was used as 

the optimizer since it was experimentally found to outperform 

any other optimizer.  

4.2 Training Process 

The training of the underwater image restoration model was 

performed using a fully supervised learning approach, leveraging 

the corrected images produced by the SeaThru physics-based 

method as target data. This setup allows the MIMO-UNet to learn 

the complex mappings required to correct underwater images 

directly in an efficient way. Unlike the original SeaThru 

algorithm, we did not consider depth maps as inputs for our 

network, providing only the images. This simplifies the 

application of the network by eliminating the need for scene 

depth information. The full augmented dataset of 6,000 images is 

considered for training, considering a training-validation split of 

80%-20%, respectively. 

The training of the reverse model, used for conditional 

underwater image generation, is based on the same full 

augmented collection of 6,000 images. However, in this case, the 

training pairs consisted of the corrected images (produced by the 

SeaThru algorithm) as inputs and the original underwater images 

as outputs. 

This setup ensured that the network learned to map clear, in-air 

images to their underwater counterparts, capturing the complex 

distortions and color shifts that occur underwater. As with the 

enhancement model, the training was conducted using a fully 

supervised learning approach with the degraded underwater 

images as targets and the corrected water-free images as inputs. 

Figure 2: On the top row, video frames collected from the ROV camera with 10 frame intervals are presented. The second row 

shows the corresponding results produced in real-time by the proposed model. 
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4.3 Metrics 

Models that perform color correction (enhancement) on images, 

especially underwater images, are quite challenging to evaluate, 

particularly in qualitative terms. To address this, we use two 

standard quantitative image quality assessment metrics, namely 

Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index Measure (SSIM) (Z. Wang et al., 2004). 

PSNR is a metric used to measure the quality of a reconstructed 

image compared to its original noise-free version. It is expressed 

in decibels (dB), with higher values indicating better quality and 

less noise. SSIM, on the other hand, assesses the structural 

similarity between two images. It ranges from -1 to 1, where 

values closer to 1 indicate higher similarity and better 

preservation of image structure. 

4.4 Results 

To evaluate our models, we consider two aspects: how close the 

model outputs are to the ones produced by the physics-based 

approach, and how realistic they seem.  

The first aspect is summarized in the quantitative results 

presented in Table 1. One can note that both model 

implementations (forward and reverse) achieved quite satisfying 

results for these complex tasks. SSIM values in both cases were 

close to 1 (perfect similarity), and the PSNR exceeded 30, 

indicating differences that are difficult to notice without carefully 

observing details on specific parts of the image. An interesting 

observation is that the reverse model achieved better results 

which is mostly due to the nature of the task. The forward model 

performs an enhancement process which must respect the lower 

frequencies of the image while enhancing the high ones, which is 

a notably harder task. On the other hand, the reverse model could 

be considered as a degradation process which is mostly correlated 

with the reconstruction of the lower frequencies of the images, 

which constitutes an easier task overall.  

Regarding qualitative assessment, a color chart was used in the 

captured images. This allows us to perform a more detailed 

analysis as known color components are present in the images. 

 Forward Model Reverse Model 

Average PSNR 30.287 32.790 

Average SSIM 0.964 0.971 

Table 1 Model metrics averaged over the test split of the 

collected dataset for the forward and reverse models. 

As we can observe in Figure 1, most of the images produced by 

the efficient underwater image restoration model are quite 

realistic overall. With respect to the color chart, although some 

minor color inconsistencies are observed which mainly consist of 

bluish and pink hues, it is reconstructed quite faithfully. An 

interesting fact is that, even though the initial images had 

significant illumination differences due to varying depth and time 

of acquisition (morning to evening), the model outputs tend to be 

homogenous. Another interesting fact is that although our results 

are very similar to the physical model, we can observe that they 

have less color artifacts, which can be attributed to the 

generalization capabilities of the neural network employed.  

The efficient underwater enhancement model achieves an 

effective processing rate of 5-10 frames per second (FPS) on the 

hardware mentioned in Section 4.1. Figure 2 presents frames 

taken from a video stream corrected in real-time using the 

proposed model, illustrating its capabilities to efficiently correct 

images while producing homogenous outputs suitable for video 

enchantment purposes.  

Regarding the qualitative evaluation of the reverse model, Figure 

3 shows the corresponding results. It is evident that the model 

performs as intended with only minor hardly noticeable 

differences between the reference images and the model outputs. 

Based on this, we performed further trials feeding our reverse 

model with real-world images, as shown in Figure 4. From these 

examples we can observe that the reverse model tends to produce 

images with similar degradation to the one observed in 

underwater images. This suggests that the reverse model could 

be used as an effective underwater image generation approach.  

Figure 3: In the first row, the images are corrected using the SeaThru implementation. In the second row there are the initial 

underwater images. In the third row the images are passed through our reverse model (water additive). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-1-2024 | © Author(s) 2024. CC BY 4.0 License.

 
5



 

Figure 4: The first row shows images collected from the web, 

while the second row shows the respective images after the 

usage of the reverse (water additive) model. 

4.4 Edge computing results 

For the deployment of a PyTorch model on an Nvidia Jetson 

device, the architecture does not necessarily require modification 

or specific adaptation to the embedded GPU. However, 

converting the model to TensorRT is mandatory to achieve 

maximum processing performance, as described in Section 2.4. 

In our case, the inherent complexity of MIMO-UNet, due to its 

multi-scale architecture, limits its performance on very small 

devices, especially those with low memory. A performance of 3-

4 FPS can be achieved for the MIMO-UNet model on a 4GB 

Jetson Nano without resorting to aggressive optimization 

techniques such as model pruning and quantization which, if 

required, could help achieve even higher frame rates. 

A version of the proposed StreamUR method, suitably adapted 

for the Jetson Nano embedded AI single-board computer has 

been tested in the autonomous video capturing system presented 

in (Spanos et al., 2024) for enhancing the images before 

performing bubble detection. 

5. Conclusions & Future work 

In this work, we presented a comprehensive approach for 

enhancing underwater images by leveraging both traditional 

physics-based methods and advanced deep learning techniques. 

Our work builds on the SeaThru algorithm, a SOTA approach for 

underwater image correction, and extends its capabilities 

utilizing the established deep neural network architecture, 

MIMO-UNet. By mimicking the physics-based correction 

approach of SeaThru, a physics-informed neural network is 

introduced for efficiently correcting the main distortions present 

in underwater images, namely the backscatter and the per-

channel attenuation. In this way, we achieve comparable image 

clarity and enhanced color reconstruction, while achieving near 

real-time processing, which is not feasible with physics-based 

approaches. Moreover, the usage of the MIMO-UNet network 

eliminates the need of hard-to-obtain depth information that is 

used in the physics-based approach. By utilizing a reverse 

training paradigm, we produced a generator model that provides 

the ability to create novel datasets depicting underwater scenes 

synthetically, without having the necessity to perform in situ data 

acquisition. Our custom-made dataset, consisting of GoPro 

camera frames and ROV video frames, in combination with 

publicly available datasets offered higher generalization 

capabilities and robustness of our approach. 

The use of our models in autonomous underwater systems, such 

as observation platforms and ROVs, demonstrates their practical 

utility in various underwater applications. The ability to perform 

real-time image correction significantly enhances the visibility 

and data quality in underwater exploration and monitoring tasks. 

Our work highlights the potential of combining traditional 

physics-based approaches with modern deep learning techniques 

to address complex challenges in underwater imaging. The 

SeaThru algorithm provided a robust foundation for image 

correction, while the MIMO-UNet and reverse model expanded 

the capabilities to real-time processing and synthetic data 

generation. The release of the custom BlueRealm dataset and the 

transparency of the StreamUR method aims to foster further 

research and development in underwater computer vision. By 

providing high-quality training data and validated algorithms, we 

hope to support the community in advancing the state of the art 

in this field. 

Despite the significant progress made, there are areas for future 

improvement and exploration. Firstly, the accuracy of depth 

estimation methods can be improved, further enhancing the 

effectiveness of image correction algorithms. Additionally, for 

ensuring broader applicability, the proposed method can be 

further evaluated in more diverse underwater environments, 

including turbid and low-light conditions considering also 

additional quantitative evaluation criteria, as for example 

numerical deviations of the reconstructed hue values of the color 

chart. 
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Appendix 

 

We describe in detail here the main steps of our implementation 

of the SeaThru underwater image correction method, closely 

following the steps introduced in (Akkaynak & Treibitz, 2019). 

 
Depth Map Estimation 

A crucial component of the SeaThru method is the accurate 

estimation of depth for each pixel in the image, known as the 

range (or depth) map. This range map is essential for modeling 

the attenuation and backscatter of light in water, which are 

dependent on the distance between the camera and the objects in 

the scene. To generate these range maps, we utilized a neural 

network for monocular depth estimation as described in (Ke et 

al., 2023). The neural network offers a method to estimate depth 

from a single image, which is particularly advantageous because 

obtaining depth information about a scene typically requires 

specialized equipment or algorithms such as Structure-from-

Motion (SfM), both of which are generally difficult to acquire 

and implement. This neural network is designed to predict 

relative depth values within an image, rather than absolute depth 

measurements in meters. The steps involved in generating the 

range map include: 

● Image Preprocessing: Each underwater image is 

preprocessed to enhance features that are critical for depth 

estimation. This includes techniques such as adaptive 

histogram equalization to improve contrast. 

● Depth Estimation: The preprocessed images are fed into 

the neural network, which outputs a relative depth map. 

This map indicates the relative distances of objects in the 

scene but lacks absolute scale. 

● Scaling Depth Values: To obtain an absolute depth map, 

we manually specify the minimum and maximum distances 

in the scene. These values are used to scale the relative 

depth map, providing an estimation of depth in meters. 

● Range Map Refinement: The initial depth estimates are 

refined using additional techniques such as bilateral 

filtering to smooth out noise while preserving edges. This 

ensures that the range map is accurate and suitable for 

further processing in the SeaThru method. 

● Further Refinement: We noticed that the generated range 

maps are more accurate if we use the image with the 

backscatter removed, so we generated a range map for each 

image, we utilized this range map to calculate the 

backscatter and remove it and then, we fed the monocular 

depth estimation network with the backscatter removed 

image, produced a range map again and used this new range 

map to recalculate the backscatter and to the rest of our 

algorithm. 

Backscatter Removal 

Backscatter removal is a critical step in the SeaThru method, 

aiming to eliminate the light scattered by particles in the water 

column that degrades the quality of underwater images. This 

scattered light, or backscatter, significantly reduces the contrast 

and color fidelity of underwater photographs. 

The backscatter component 𝐵𝑐  can be modeled as: 

𝐼𝑐  =  𝐷𝑐  +  𝐵𝑐 , 

where 𝐼𝑐 is the observed image for the color channel 𝑐 (R, G, or 

B), 𝐷𝑐 represents the direct signal from the scene that has 

undergone attenuation and 𝐵𝑐  is the backscatter component. 

The SeaThru method estimates the backscatter component by 

leveraging the darkest pixels in the image, which are assumed to 

be areas with minimal direct signal. These pixels are used to infer 

the backscatter as follows: 

Dark Pixel Identification: The algorithm searches for the 

darkest pixels in the image, which are likely to be areas with little 

to no direct signal (e.g., shadows or very dark regions). This is 

inspired by the Dark Channel Prior (DCP) used for haze removal 
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in atmospheric images (He et al., 201) but adapted to utilize 

known depth information from the range map. 

Depth Interval Partitioning: The range map is divided into 5 

evenly spaced depth intervals. Within each interval, the darkest 

1% of the RGB triplets are identified. The values of these dark 

pixels are considered to provide an estimate of the backscatter for 

that specific depth range. 

Backscatter Model: The relationship between backscatter and 

depth is modeled using the equation: 

𝐵𝑐  =  𝐵∞(1 − 𝑒−𝛽𝑐
𝐵𝑧) + 𝐽′𝑐 𝑒−𝛽𝑐

𝐷𝑧. 

Non-linear Least Squares Fitting: The algorithm employs non-

linear least squares fitting to estimate the parameters. This fitting 

process minimizes the difference between the observed 

backscatter and the model's prediction. The parameters are 

subject to specific bounds to ensure physical plausibility: 𝐵∞ , 𝐽′ 
 are in the range [0, 1] and 𝛽𝑐

𝐵, 𝛽𝑐
𝐷 are in the range [0, 5] 

Backscatter Removal: Once the backscatter component 𝐵𝑐  is 

estimated, it is subtracted from the observed image 𝐼𝑐 to obtain 

the direct signal 𝐷𝑐: 

𝐷𝑐  = 𝐼𝑐 − 𝐵𝑐 . 

Attenuation Coefficient Estimation 

Estimating attenuation coefficients is a key step in the SeaThru 

method for accurately correcting underwater images. This 

involves modeling how light is absorbed and scattered as it 

travels through water, which varies with depth and wavelength. 

The direct signal 𝐷𝑐 for a given color channel c (R, G, or B) can 

be described by the equation: 

 𝐷𝑐 = 𝐽𝑐 𝑒−𝛽𝑐
𝐷(𝑧)𝑧 , 

where 𝐽𝑐 is the true scene radiance without attenuation, 𝛽𝑐
𝐷(z) is 

the depth-dependent attenuation coefficient and z is the depth. 

Empirical results suggest modeling 𝛽𝑐
𝐷(z) as a two-term 

exponential function, namely: 

𝛽𝑐
𝐷(𝑧) = 𝑎𝑒𝑏𝑧 + 𝑐𝑒𝑑𝑧 , 

where a, b, c, d are parameters to be estimated. 

Estimating an Illumination Map 

The true image 𝐽𝑐 is related to the direct signal 𝐷𝑐 through the 

equation: 

𝐽𝑐  =  𝐷𝑐 𝑒𝛽𝑐
𝐷(𝑧)𝑧 . 

Therefore, the depth-dependent attenuation coefficient can be 

estimated as:    
𝑙𝑜𝑔(𝐽𝑐 )−𝑙𝑜𝑔(𝐷𝑐)

𝑧
= 𝛽𝑐

𝐷(𝑧). 

Using the estimated local illumination 𝐸𝑐 =
𝐽𝑐 

𝐷𝑐 
, the attenuation 

coefficient can be approximated as: 𝛽𝑐
𝐷(𝑧) =  −

𝑙𝑜𝑔(𝐸𝑐)

𝑧
. 

The SeaThru method uses Local Space Average Color (LSAC) 

to estimate the illumination map as described in (Ebner &Hansen, 

2013):  

𝑎′𝑐(𝑥, 𝑦) =
1

∣𝑁𝑒(𝑥,𝑦)∣
∑ 𝑎𝑐(𝑥′, 𝑦′)(𝑥′,𝑦′)∈𝑁𝑒(𝑥,𝑦) , with 

𝑎𝑐(𝑥, 𝑦) = 𝐷𝑐(𝑥, 𝑦)𝑝 + 𝑎′𝑐(𝑥, 𝑦)(1 − 𝑝), 

where p controls the locality of the neighborhood. 𝑁𝑒(𝑥′, 𝑦′) is 

the neighbourhood of (x,y) of 4-connected pixels neighbouring 

the pixel such that | ∣ 𝑧(𝑥, 𝑦) − 𝑧(𝑥′, 𝑦′) ∣ |  ≤  𝜖 and 𝐸̂𝑐 = 𝑓𝑎𝑐 

where 𝑓 is a constant controlling global illumination. 

To refine the estimate, the algorithm minimizes the 

reconstruction error of depths: 𝑧̂ = −
𝑙𝑜𝑔(𝐸̂𝑐)

𝛽𝑐
𝐷(𝑧)

 by finding the 

values of a,b,c,d that minimize:  

𝑚𝑖𝑛𝛽𝑐
𝐷(𝑧) ∥ 𝑧 − 𝑧̂ ∥. 

The algorithm employs non-linear least squares fitting with 

parameter constraints to ensure decaying exponentials: a, c  are 

in the range [0, ∞] and b, d  are in the range [−∞, 0]. 

To counteract overestimation from the illumination map, a 

multiplier 𝑙  is used.  

Image Reconstruction 

The final step in the SeaThru method is image reconstruction, 

which aims to restore the true colors and clarity of the underwater 

images. This involves several processes, including color 

correction, white balancing, and ensuring the uniformity of the 

results. The final reconstructed image 𝐽𝑐 is obtained by 

combining the corrected direct signal and the estimated 

attenuation model:  

𝐽𝑐 = (𝐼𝑐 − 𝐵𝑐)𝑒𝛽𝑐
𝐷(𝑧)𝑧, 

where 𝐼𝑐 is the observed image, 𝐵𝑐  is the backscatter component, 

and 𝛽𝑐
𝐷(𝑧) is the depth-dependent attenuation coefficient. 

White Balancing – Image Finishing: 

White balancing is crucial for ensuring that the colors in the 

reconstructed image are accurate and consistent with what would 

be seen in air. The SeaThru method originally used the Gray 

World Hypothesis for white balancing, which assumes that the 

average color in the scene is grey. However, to ensure the 

uniformity and consistency of the reconstructed images, we 

experimented with different white balancing methods and 

selected the final images based on their visual quality and 

uniformity. This involved comparing the results from different 

methods and choosing the one that provided the best balance 

between color accuracy and visual appeal, as well as the 

consistency between images of the same dataset. 

The final reconstructed images are validated qualitatively by 

comparing them with reference images that contain a McBeth 

color chart and adjusting the parameters as needed to improve 

accuracy. This iterative process ensures that the final images are 

of high quality and suitable for further analysis and processing. 
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