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Abstract

The Amazon forest, the largest tropical forest in the world and marked by its rapid change in forest cover, has suffered from intense
anthropogenic phenomena such as deforestation and forest degradation, this one caused mainly by fires and selective logging. This
study explores a U-NET model to accurately identify selective logging infrastructure (roads, skid trails, storage yards) using
Sentinel-2 imagery. Our goal is to improve the SIMEX (System for Monitoring Timber Harvesting) in the Brazilian Amazon,
reducing the human workload and increasing the system's accuracy. Data from 780 SIMEX registration polygons (2021-2022) were
used, with stratified sampling creating a training data set. The U-NET model, optimized with specific hyperparameters and data
augmentation, analyzed six spectral bands (two-year RGB). We achieved an F1 score of ~81% with high precision (73.7%) and recall
(90.31%) on the test set, indicating strong performance and generalization. Our model excels at accurately predicting logging
infrastructure and potential damage to forest canopies. It provides detailed detection of roads and stockyards, offering a
comprehensive view compared to models that generalize explored areas. This refined approach increases its usefulness for forest
conservation and management efforts.

1. Problem Statement

The Brazilian Amazon Rainforest, the largest tropical forest
in the world, is experiencing rapid changes due to
deforestation and forest degradation (Souza et al., 2023).
Deforestation is the total removal of forest cover, with areas
of native forest being converted into pastures or agricultural
fields (Lambin, 1999). Forest degradation is the partial
removal of trees without changing the land cover, caused by
predatory logging, fires, road construction, and forest
fragmentation. Drawing a clear distinction between
deforestation and forest degradation proves to be a complex
endeavor. Most land use and land cover change analyses in
tropical forests have focused on the causes and effects of
deforestation; however, other less well-studied anthropogenic
disturbances also threaten the future of tropical forests, such
as logging, which often results in transient effects, with its
distinct indicators disappearing within a relatively brief
period of one to two years. This ephemeral nature renders
degraded forests indistinguishable from undisturbed ones in
spectral terms. (Souza Jr. et al. 2024; Lapola et al., 2023).

Selective logging in the Amazon can be carried out in two
ways: through sustainable forest management or illegally and
predatorily. Sustainable management is aimed at the
controlled extraction of resources, guaranteeing ecosystem
regeneration and preserving the integrity of the forest canopy.
This practice involves the construction of planned
infrastructure, such as stockyards and skid trails, designed to
minimize damage to the soil and forest structure. In contrast,
illegal logging has been expanding at an alarming rate,
especially in protected areas, where improvised and
destructive infrastructure leads to habitat fragmentation and
significant degradation of biodiversity (Lapola et al., 2023;
Schulze et al., 2006; Asner et al., 2004). Recent studies show
that even selective logging, when poorly managed, can result

in long-term forest degradation, with persistent impacts on
the forest canopy and biomass, which compromises the
recovery of these areas and contributes to the encroachment
of indigenous lands and conservation units (Dos Santos et al.,
2019; Piponiot et al., 2019). Distinguishing between these
practices is fundamental for formulating public policies that
protect forests and combat illegality.

In this study, we focused specifically on identifying selective
logging infrastructure. These structures are characterized by
roads (primary and secondary), skid trails, and timber storage
yards. Various methods detect these areas remotely (Souza
Jr., 2013), but many still depend on human intervention. As
SIMEX does, based on Landsat images (30 meters), the scars
in the forest canopy and the roads are identified. Artificial
Intelligence (AI) has recently been successfully applied to
mapping roads, deforestation, and forest degradation
(Dalagnol et al., 2023; Botelho et al., 2022). Using U-Net
models, which are simpler architectures with less
computational and training effort, it has been applied with
remote sensing images to find spatial patterns in high spatial
resolution data. Here, we present the results of our U-NET
model to detect selective logging infrastructures in the
Amazon region with Sentinel-2 images. We aim to improve
the Logging Monitoring System (SIMEX) in the Brazilian
Amazon to reduce human interpretation efforts and increase
mapping accuracy.

2. Methods

2.1 Reference Dataset

We utilized SIMEX, a logging monitoring system developed
by Imazon in 2008, which integrates satellite data with
official logging documents to map logging activities in the
Amazon region (SIMEX, 2024). Using Spectral Mixture Mix
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techniques, SIMEX generates Normalized Difference
Fraction Index (NDFI) images to enhance logging detection
complemented with visual interpretation and validation of the
results (Souza et al., 2005). Our dataset for 2021-2022
covered the Legal Amazon region, comprising 4,416 logging
polygons totaling 718,000 hectares. We selected 20% of the
dataset using stratified sampling (figure 1), amounting to 780
polygons covering 140,000 hectares.

Figure 1 - Histogram of total and sampled logging dataset.

Most logging polygons (601 samples) of the partitioned
dataset are concentrated up to 190 ha while large logging
areas (> 1k ha) totals only 11 units. We also checked the
spatial distribution of the data. Below is the map showing
the density of logging along the Amazon biome.

Figure 2 - Amazon biome subset dataset.

2.2 Image CHIPs Generation

The logging polygons were converted into 512x512 image
chips for AI modeling. A Sentinel-2 image representing the
year of detection (t1) was selected for each logging polygon.
To capture the previous year's conditions (t0), images with
cloud cover ≤ 30% were filtered, and a median mosaic was
generated. The polygons were further refined through visual
inspection within the Google Earth Engine (GEE)
environment. Additionally, data augmentation techniques,
including rotation and horizontal flipping, were applied to the

training dataset. As a result, the final training dataset
comprises 1,404 samples.

2.3 Selective Logging Model

We employed the conventional U-NET architecture,
customizing its hyperparameters to align with the specific
requirements of our task. The architecture consists of encoder
and decoder blocks, where the encoder gradually reduces the
spatial dimensions while capturing features, and the decoder
progressively reconstructs the spatial dimensions to produce
the final output.

We integrated 25% dropout layers immediately following the
3 x 3 convolutional layers to mitigate overfitting. This
strategy helps ensure that the model generalizes well to
unseen data. Additionally, we chose to replace the standard
Rectified Linear Unit (ReLU) with the Leaky Rectified
Linear Unit (LeakyReLU) activation function. This decision
was driven by the enhanced ability of LeakyReLU to capture
subtle features, as demonstrated by Maas, Hannun, and Ng
(2013).

Our model processes inputs consisting of the RED, GREEN,
and BLUE spectral bands captured at two distinct time
points, t0 and t1, resulting in a total of 6 input data channels.
These channels are critical for capturing the temporal
changes in vegetation and other surface features, which are
essential for identifying selective logging. The architecture
culminates in a dense layer equipped with a sigmoid
activation function, which plays a pivotal role in generating
the probabilistic output required for this classification task.

Once the model generates the output image, it is
subsequently converted into a binary image by applying a
threshold of 0.5. Pixels with values below 0.5 are assigned a
value of 0, while those above the threshold are set to 1. This
binarization step is crucial for delineating the areas of
interest, enabling a clear distinction between logged and
unlogged regions.

2.4 Accuracy Assessment

To conduct the accuracy assessment, we partitioned the
refined dataset into three subsets: training (60%), calibration
(20%), and test (20%). Subsequently, we utilized the training
and validation subsets for model calibration, reserving the
test subset for evaluating the model's performance. Below we
present the metrics employed in this study.

Precision: precision indicates how many of the predicted
positive outcomes were actually correct, making it
particularly useful in scenarios where the cost of false
positives is high. It is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-121-2024 | © Author(s) 2024. CC BY 4.0 License.

 
122



this metric measures the accuracy of positive predictions. It is
the ratio of true positive (TP) predictions to the total number
of positive samples - true positives plus false positives (FP).

Recall: this metrics indicates if the model is effective at
capturing most of the relevant cases, which is particularly
important in scenarios where missing positive cases has
significant consequences. It is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

It is calculated as the ratio of TP to the sum of TP and false
negatives (FN) - actual positive cases that were incorrectly
classified as negative.

F1 Score: it is the harmonic mean of precision and recall,
providing a single score that balances the trade-off between
the two. Precision measures the proportion of true positive
predictions among all positive predictions, while recall
measures the proportion of true positives among all actual
positive cases. The F1-score ranges from 0 to 1, with 1 being
the best possible score, indicating perfect precision and
recall. It is defined as:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 .  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

Loss Function: finally, we chose to utilize the Dice loss
function for its ability to handle class imbalance and its
sensitivity to small object segmentation, enhancing the
model's performance across diverse scenarios. This loss
function facilitates robust training by effectively penalizing
false positives and false-negative detection, leading to more
accurate segmentation results (Sudre et al., 2017).

𝑆𝑜𝑓𝑡 𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 −  2∑𝑖  𝑝𝑖𝑔𝑖 
∑𝑖 𝑝𝑖 + ∑𝑖 𝑔𝑖

(4)

where is the predicted selective logging region for pixel , 𝑝𝑖 𝑖
and is the ground truth region for pixel .𝑔𝑖 𝑖

2.5 Experiment

After training the U-NET model, we conducted a
comprehensive experiment to classify logging areas in Pará,
Brazil. Leveraging the automation capabilities of the
classification process, we analyzed all satellite scenes with
less than 80% cloud cover during the SIMEX detection
period (August 2022 to July 2023). For each scene, we
computed a binary map of selective logging, saved the time
information, and stacked the scenes to sum the values,
creating a logging frequency image. This approach provided
a detailed temporal analysis of logging activity, resulting in a
high-resolution map that aligns with the SIMEX data.

3. Results

We trained the U-NET models over 50 epochs, selecting the
epoch with the lowest dice loss, which happened to be epoch
43. Figure 3 shows the accuracy metrics results.

Figure 3. Accuracy of the U-NET model for the training,
validation, and test datasets.

The model achieved satisfactory results in its accuracy
metrics during training and validation. The model
demonstrated solid performance with an average accuracy of
around 80% for the F1-Score and consistent precision and
recall of around 80% and 82%, respectively. In the test set,
the results were promising, with an F1-Score of
approximately 81%, a precision of 73.7%, and a great recall
of 90.31%. These results indicate that the model can
generalize well and maintain consistent performance across
different logging intensities (Figure 6).

The analysis of the dice loss metrics (Figure 4) for the
selective logging target dataset reveals a promising trend of
model improvement over the training epochs. Initially, the
loss value for the training dataset exhibits a significant
decrease, dropping from 0.93 to 0.14, which suggests that the
model effectively learns to predict selective logging patterns
in the early stages. This decline in loss is particularly notable
given the complexity and variation within the dataset, which
includes 1,404 samples with diverse logging road segments.
The stabilization of loss values in later epochs further
indicates that the model is converging and can generalize
well across the varied sample set.

In parallel, the validation loss follows a similar declining
trend, demonstrating the model's capacity to maintain its
predictive accuracy on unseen data. However, the existing
dataset, while yielding encouraging results, might need to be
revised to capture the variability inherent in selective logging
scenarios fully. The performance could benefit from
including more samples, which would provide a broader
representation of logging conditions and enhance the model's
robustness. Expanding the dataset would likely improve the
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model’s generalization capabilities, making it more reliable
for practical applications in monitoring and managing
selective logging activities.

Figure 4. Dice loss values over epochs.

3.1 Frequency of Logging Detection

In total 1,811 scenes were processed. The data indicates a
correlation between the number of Sentinel-2 images
processed per month and the detected area of selective
logging in the state of Pará. It is observed that in months with
a higher number of processed images, such as July 2023
(1,151 images), the largest areas of selective logging were
also identified (75,873 hectares). Conversely, in months with
fewer processed images, such as March 2023 (527 images),
the detected area of selective logging was significantly
smaller (8,187 hectares).

Figure 5. A) Number of Sentinel-2 scenes processed, B)
logging detection by month.

The results, illustrated in Figure 7, highlight areas of high
logging activity (marked in red), corresponding to regions
with significant forest loss. In contrast, areas shaded in white
and yellow indicate regions with minimal impact. Notably,
there are regions that SIMEX did not detect, which may be
attributed to the limited number of images analyzed by visual
interpretation.

4. Conclusion

In conclusion, our analysis underscores the efficacy of the
prediction model in accurately identifying logging
infrastructure and assessing the potential damage to forest
canopies. Its meticulous detection of roads and stockyards
offers a comprehensive perspective, distinguishing it from
other models that often generalize logging areas in forests.
The model's refined and specific approach enhances its utility
for forest conservation and management efforts.

The automation allows for the processing of large volumes of
data, providing temporally detailed information about the
logging dynamic. It may also be used as an alert system for
regulating and controlling illegal logging by government
agencies.

Figure 6. Predictions of different patterns of logging. A-b)
unplanned logging, c) planned extraction, and d) low-impact

logging.
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Figure 7. Logging frequency detected by AI model and
SIMEX data.
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