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Abstract 

 

During the 1970s, Brazil experienced most of its population living in cities for the first time. Historically, urbanization has been 

intensely related to land use and cover changes, amplifying climatic and ecological stress in recently established metropolises. This 

study aims to analyze, through classified Remote Sensing images and the Cellular Automata and Artificial Neural Networks (CA-

ANN) machine learning model, land use and land cover trends in regions that have experienced accentuated demographic growth in 

the decades 2000 and 2010. The methodology consists of: i) identifying areas with a high density of buildings, ii) defining the variables 

that drive land use change, and iii) proposing a methodology for predicting changes in the urban area. The results indicate that the 

urban class prediction presented high precision (≥ 0.74) and recall (≥ 0.86) indices. Forest class also presented a high precision score 

(≥0.72), showing an elevated prediction hit rate. Furthermore, the proposed methodology improved the results obtained in previous 

works for the same cities, presenting higher Kappa values in all cases. 

 

1. Introduction 

Over the last century, the rapid intensification of urbanization has 

highlighted the growing scarcity of water, forests, and other 

natural resources, demonstrating that the expansion of urban 

areas is a critical factor in ecological imbalance (Zhang et al., 

2022). The global urban population was 43% in 1990, increasing 

to 50% in 2007 and 56% in 2020 (Gu, Andreev and Dupre, 2021). 

By 2050, cities are expected to hold 68% of the world's 

population, causing more significant environmental pressure than 

the supply of available natural resources (UN, 2018). The main 

problem associated with the demographic increase is the need to 

expand urban infrastructure, such as the enlargement of the road 

network, greater capillarity of water and sewage supply, the 

requirement to modernize spaces and, above all, the demand for 

new areas of land occupation (Isamel, 2021; Stone, Hess and 

Frumkin, 2010). 

 

In high-income countries, it is observed that urban expansion is 

well adapted to population growth, providing access to urban 

infrastructure such as housing, water and sewage treatment 

systems, and transportation (Wolch, Byrne and Newell, 2014). 

However, in developing countries, the growth of metropolises is 

not capable of meeting the demands of the progressive 

demographic increase, deepening spatial and socioeconomic 

inequalities and causing a heterogeneous scenario of soil changes 

at a global level (Sun et al., 2020 ). 

 

In the Brazilian context, studies point to some determining 

components for urban expansion in the country's main 

metropolises (Camargo, Carmo and Anazawa, 2020; Freitas and 

Araki, 2021). It is known that, in addition to population growth, 

socioeconomic factors such as investment in urban infrastructure, 

travel time between home and work and increased per capita 

income contributed positively to urban expansion in metropolitan 

regions of Brazil (Silva, Esteves and Silva, 2024 ). In case studies 

on urban expansion patterns in Brazil, it was found that one of 

the main driving forces behind urban growth was the Minha Casa 

Minha Vida popular housing program, which intensified the 

dynamics of change in land use and land cover (LULC) at the 

same time it restructured urban infrastructure and contributed to 

migration of residents, commerce and services within city, 

(Correia Filho et al., 2022; Batista et al., 2021; Marques et al., 

2021). 

 

As a direct consequence of urban expansion, data from the 

Brazilian National Water and Sewage System (ANA) show that 

only 61.9% of the country's population is served by sewage 

collection, and 22.5% of this volume is discharged without 

treatment into nature (Borges et al., 2022). Another study shows 

that the rapid growth of cities has increased travel times in traffic, 

mainly due to the prevalence of individual transport in Brazil 

(Pereira et al., 2021). 

 

In this context, it is verified that the dynamics of LULC involve 

a complex interrelationship of physical, geographic, economic 

and social variables. Several studies use earth observation data to 

assess the impacts of urban and population growth in the 

territory. For example, the Landsat satellite was used to assess 

global urban growth patterns between 1985 and 2015, and it was 

found that urban areas grew at a rate of  9,687 km2/year (Liu et 

al., 2020). In Ethiopia, the prediction of urban expansion 

scenarios between 1968 and 2015 was modelled using Landsat 

satellite images, data on distance from the road network, digital 

elevation models and historical LULC images (Temesgen et al., 

2021). Similarly, a study in Bangladesh uses Landsat images and 

surface temperature data to analyze the impact of urban growth 

on the generation of heat waves in city centres (Kafy et al., 2020). 

In both studies, the use of spatial variables such as distance from 

the road network, distance from rivers and maps of topographic 

aspects contributed significantly to the accuracy of the prediction 

models, highlighting a possible causal relationship between such 

aspects and the urban expansion phenomena. 
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Furthermore, studies evaluate LULC changes in the already 

urbanized regions of large Brazilian centres and forest frontier 

regions. In the State of Rondônia, in the Amazon, the use of 

classified Landsat images and spatial variables such as distance 

from highways and distance from urban centres was able to 

model and predict a deforestation rate of 27.50% in 2030 

(Floreano and Moraes, 2021). Another work in southern Brazil 

analyzes which are the forces that direct the dynamics of LULC 

in the Chapecó Ecological Corridor, considering different 

scenarios of government action by using geographic, economic, 

technological and demographic variables to predict LULC 

change (Souza et al., 2023).  

 

In this context, the objective of this work is to analyze trends in 

land use and land cover through the application of Remote 

Sensing classified data and the Cellular Automata - Artificial 

Neural Networks (CA-ANN) machine learning model to identify 

areas that are most susceptible to experiencing urban expansion. 

This work can be used to support local governments in proposing 

public policies to improve urban planning, ensuring the 

sustainable growth of the city and improving human 

development. 

 

2. Materials and Methods 

2.1 Study Area 

According to IBGE data1, ten Brazilian cities with the highest 

population growth between 2003 and 2013 were considered for 

this study. The ten cities in the study are located in 7 Brazilian 

states (Figure 1): Rio das Ostras, Macaé and Maricá in the state 

of Rio de Janeiro; Parauapebas and Barcarena in the state of Pará; 

Parnamirim in the state of Rio Grande do Norte; Rio Verde in 

Goiás; Palmas in Tocantins and Lauro de Freitas in Bahia. 

 

Figure 1. Selected cities for analysis 

The cities of Rio das Ostras, Maricá and Macaé are located in the 

Atlantic Forest biome on the coast of Rio de Janeiro State. These 

cities have average altitudes between 0 and 7 meters, and 

according to the Koppen classification, they have a tropical 

savanna climate, with a rainy season during December and March 

(Beck et al., 2018). On the other hand, the cities of Barcarena and 

Parauapebas, in Pará, are located in the Amazon, have a monsoon 

climate characterized by high temperatures, high precipitation, 

 
1https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-

noticias/releases/13937-asi-censo-2010-populacao-do-brasil-e-de-190732694-

pessoas. Access in 26/06/2024 

and low thermal amplitude and are part of the two main 

metropolitan centres in the State of Pará. 

 

Moreover, the city of Parnamirim is located on the coast of the 

northeast region of Brazil, in the Atlantic Forest of Rio Grande 

do Norte State, with a tropical savanna climate and its relief 

characterized by the Brazilian Coastal Plain. Rio Verde, in Goiás, 

and Palmas, in Tocantins, are in the continent's interior. Both are 

inserted in the Brazilian Cerrado biome, which is characterized 

by extensive plateaus and presents a tropical savanna climate. In 

Maranhão, the city of São José de Ribamar is formed by 

mangrove vegetation, low altitude relief between 20 and 60 

meters, and a tropical savanna climate. 

 

2.2 Data Acquisition 

Vector data of censitary municipal limits were obtained from the 

Brazilian Institute of Geography and Statistics (IBGE) website. 

These data were used as limits of the LULC rasters obtained from 

the MapBiomas project (MapBiomas, 2024). In addition, to 

include the influence of highways on urban growth, road network 

polygons were obtained for each city and made available by 

IBGE. Digital Elevation Models (DEMs) from the Shuttle Radar 

Topography Mission (SRTM) were also obtained on the Google 

Earth Engine (GEE) platform (NASA, 2000; Velastegui-

Montoya et al., 2023). 

 

2.3 Methodology  

2.3.1 Pre-processing 

 

The censitary municipal polygons were inserted into GEE. Then, 

sectors considered to have a “High Density of Urban Building” 

were filtered to focus the processing on the main urban area of 

the municipality. Polygons with this characteristic consist of at 

least 250 residential buildings and 400 houses, forming adjacent 

sectors within a neighbourhood that exceed the maximum value 

(IBGE, 2024). After selecting the main urban area, a buffer of 

100 meters was applied around the edges of the polygon to 

encompass transition aspects between urban and rural areas. 

 

Following that, the polygons of the main urban areas were used 

to cut out the SRTM DEMs and IBGE highway data. In the next 

step, the MapBiomas rasters were reclassified into six classes 

encompassing the environment's main geophysical aspects 

(Table 1). 

 

Then, a distance matrix was generated. It was necessary to 

convert the road network data into rasters to do this. After that, 

for each pixel of the Region of Interest (ROI) at position P(x, y), 

the smallest distance that P(x, y) expresses to any of the city's 

streets/roads is taken. This was possible by calculating the 

shortest Euclidean distance between each pixel of the urban area 

and a feature of the road network, obtaining a map of the 

proximity of the highways. 

 

2.3.2 Urban Expansion Analysis 

 

The first step in analysing LULC changes is observing and 

selecting the variables composing the prediction model. This step 

was developed with the QGIS Modules for Land Use Change 

Evaluation (MOLUSCE) plugin. MOLUSCE is a tool that offers 

Artificial Neural Networks (ANN), Linear Regression and other 

geostatistical methods for LULC analysis and prediction 
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(Aneesha Satya, Shashi and Deva, 2020). MOLUSCE has been 

used in other LULC prediction works, such as analysing LULC 

changes in Turkey (Değermenci, 2023) and modelling LULC and 

surface temperature in the city of Porto Alegre, Brazil (Fernandes 

et al., 2023). 

 

The first step in modelling urban expansion was the insertion of 

LULC rasters at the initial and final dates of the period of interest. 

Furthermore, the spatial variables obtained included distance 

from the road network, the Mapbiomas raster time series for the 

period of interest, and the digital elevation models. 

 

Reclass. 
Reclass. 

Value 

MapBiomas 

Classification 

MapBiomas 

Value 

Forest 1 

Forest Formation, 

Savanna Formation, 

Mangroove, Wooded 

Restinga 

1, 3, 4, 5, 49 

Non Forest 2 

Non-Forest Natural 

Formation, Wetlands, 

Grassland, Salt flat, 

Rocky Outcrop, Other 

Non-Natural Formations 

10, 11, 12, 13, 

29, 32 

Farming 3 

Farming, Pasture, 

Agriculture, Tem. Crop, 

Soybean, Sugar Cane, 

Rice, Other Temp. Cros. 

Perennial Crop, Coffe, 

Citrus, Other 

14, 15, 18, 19, 

39, 20, 40, 41, 

36, 46, 47, 48, 

9, 21 

Non 

Vegetated 
4 

Non-Vegetated Area, 

Beach, Dune, Sand Spot, 

Mining, Other Non-Veg. 

Areas 

22, 23, 30, 25 

Urban 5 Urban Area 24 

Water 6 
Water, River & Lake & 

Ocean, Agriculture 
26, 33, 31 

Table 1. Thematic Reclassification of Mapbioma’s Data 

 

Pearson's correlation coefficient was calculated to verify linearity 

in the relationship between classes. The normalised dot product 

between the variables under analysis gives the Pearson 

correlation coefficient, assuming values between -1 and 1 for 

high negative and positive correlations, respectively (Deisenroth, 

Faisal and Ong, 2020). 

 

After checking the linearity between the data, the next step 

involves generating a class transition matrix. The analysis of 

changes in LULC categories over time represents the portions of 

pixels susceptible to class switching. In this matrix, values close 

to 1 represent the stability of the class (the proportion between 

current use/previous use). In contrast, values close to zero 

represent variation in class use. 

 

After creating the transition and correlation matrices, a transition 

map is generated to evaluate the change between each 

combination of classes under analysis. This map is twice the size 

of the original classes, as changes must be evaluated for each 

element in the Cartesian product ImginitImgfinal. For example, 

in an analysis involving two classes – forest and city – changes 

between forest-forest, forest-city, city-forest, and city-city must 

be evaluated. 

 

After generating the maps, the machine learning model that will 

predict LULC changes was defined. The Cellular Automata and 

Artificial Neural Networks (CA-ANN) model is a tool used in 

various types of studies for the future simulation of LULC (Guan 

et al., 2011; Wang, Munkhnasan and Lee 2021). This approach 

has been used to predict spatial changes due to the ability to 

estimate the current condition of each pixel based on the initial 

conditions, adjacency and direction laws of LULC changes 

captured by the transition matrix. Furthermore, this method can 

accurately analyse non-linear spatial relations in the LULC 

change process, also considering stochastic processes for 

changing land use and occupation. 

 

The neural network in the CA-ANN model requires five 

initialisation hyperparameters. The first hyperparameter to be 

calibrated is Neighborhood, which determines the number of 

pixels evaluated around a given point under analysis. For 

example, for the value 1, 9 (3x3) pixels will be evaluated, 1 pixel 

in each grid direction. For the value of 2 pixels, 25 (5x5) pixels 

will be evaluated, and so on. 

  

Another hyperparameter is the Learning Rate, an adjustment 

coefficient to scale the update of the network's weights during the 

execution of the Back Propagation algorithm. Updating the 

weight vector of a neural network involves the products of the 

adjustment coefficient, error and current weights. Hence, the 

Learning Rate scales the update rate of the Network parameters, 

impacting the speed and quality of the network's learning. 

 

Furthermore, optimising the hyperparameters encompassed the 

values of Momentum and Maximum Iterations, representing a 

heuristic for the Stochastic Gradient Descent algorithm and a 

stopping condition, respectively. The values were defined 

following the previous study: Neighbourhood: 5 px, Learning 

rate: 0.100, Maximum Iterations: 1000, Momentum: 0.050 and 

Hidden Layers: 10 (Pujatti, de Arruda and Silvestre, 2022). 

   

After defining the hyperparameters, the training of the network 

for each city under analysis was conducted. At the end of each 

training, a LULC map was generated for the analysed period. 

Finally, LULC images from MapBiomas were used to validate 

the results, obtain the Kappa index metrics, and measure the 

model's reliability. 

   

Then, using Python, the validation LULC and the predicted 

LULC were used to construct the confusion matrix. In this way, 

the sensitivity, accuracy, recall and F1-score metrics were 

obtained to evaluate the model's performance.  

 

3. Results 

To evaluate the result of the predictions, Figure 2 presents the 

LULC images of the 10 Brazilian cities in 2020 and the 

corresponding prediction obtained by MOLUSCE for the same 

year. Table 2 presents the accuracy obtained by the model for 

each city under analysis. Similarly, Table 3 presents the recall 

results.  

 

The lowest accuracy was identified in the city of Parnamirim 

(0.89). In the centre of the city's study region, the non-vegetated 

class (class 4) presented the most significant error. This occurs 

because this extensive region is located at the Natal Air Base, 

which has pixels of urban infrastructure and bare soil. The 

variability of the spectral response of the pixels over the years 
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contributed to an irregular LULC classification, so the model 

could not identify a pattern of LULC change. In the forestry class, 

which also showed a deviation in relation to actual occupation, a 

sparseness of pixels was observed along the southern part of the 

city, where there is an intense presence of high-end housing 

developments.  

 

The conversion of a pixel in the region led the model to infer that 

the surrounding areas would also be modified, while the 

conservation of the forest region was actually observed. 

 

 

 

 
a) Maricá 

 

 
b) Palmas  

 
c) Parnamirim 

 

 
d) Parauapebas 

 
e) Rio Verde 

 
f) Macaé 

 

 
g) São José de Ribamar 

 
h) Lauro de Freitas 

 

 
i) Rio das Ostras 

 
j) Barcarena

Figure 2: Comparison between Predicted LULC and 2020 MapBiomas LULC

The São José de Ribamar and Parauapebas cities presented a 

higher rate of satisfactory predictions (0.92). When predicting the 

areas of São José de Ribamar, the model overestimated the urban 

occupation in the southwest portion of the city, where there is a 

less significant occupation of urbanized settlements, and 

underestimated the area transition from pasture to city, to the 

northeast of the main urban area. The precision of the non-

forested class was the most sensitive to error, presenting 
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Precision = 0.29. However, in Parauapebas, the main limitation 

was observed in predicting non-vegetated areas, especially in the 

Jardim Tropical neighbourhood in the extreme north of the city. 

Conversely, the prediction of forest areas proved consistent, 

showing slight variation along the Parauapebas River, where 

there is a Permanent Preservation Area (BRASIL, 2012) and an 

Accuracy of 0.81. Some areas of vegetation within the main 

urban area were suppressed or decreased in the prediction.. 

 

In the cities of the State of Rio de Janeiro, high accuracy rates 

were obtained in Marica (0.97) and Macaé (0.98). The main 

feature observed for the city of Maricá was the urban occupation 

southeast of the region of interest, which the model 

underestimated. For Macaé, the class of agricultural features was 

the most sensitive to errors, presenting the lowest F1-Score in the 

prediction (0.67). For this class, pixels from agricultural areas 

were well classified (Recall = 0.86), although, of all pixels 

labelled as this class, a portion of 0.54 was agricultural pixels 

(Precision = 0.54). 

 

In the Cerrado Biome, Palmas (Accuracy = 0.95) and Rio Verde 

(Accuracy = 0.95) showed a similar behaviour. In the same way 

that Palmas successfully identified the principal axes of forest 

preservation (Precision = 0.72), Rio Verde also successfully 

defined them (Precision = 0.86), presenting lower precision for 

the non-vegetated class (0.29). Of all urban areas in Rio Verde 

and Palmas, the model correctly detected a fraction of Recall = 

0.86 and Recall = 0.84, respectively. 

 

The analysis of the city of Barcarena demonstrates an accuracy 

rate of 0.97 for the urban class, whose main limitation was 

observed in the region of the Itupanema Neighborhood, close to 

the Amazon Logistics Terminal, inaugurated in 2023 (Cintra, 

2023). Furthermore, considering all pixels predicted as urban, the 

verified correctness rate (Recall) was 0.85, indicating a high hit 

rate for the model. The Precision and Recall values for the Non-

Vegetable class were zero since no pixels of this class were 

observed in the city. The forest class presented 0.92 Recall, 

indicating that the model successfully identified the areas that 

were actually forested. 

 

For the city of Lauro de Freitas, the accuracy rate for the urban 

class was 1.00. This result is explained by the fact that the model 

did not present any false-positive pixels; that is, all pixels 

predicted for the urban class were, in fact, from the urban class. 

On the other hand, the model generalized urban occupation 

beyond truth-ground observed data: a rate of 0.96 of the pixels 

considered urban were, in fact, urban. When looking at the city's 

2020 LULC map, it is clear that the urban class occupation 

density contributed to the high Precision and Recall rate. 

Furthermore, the analysis of the non-forest class showed a 

Precision value of 0.03, and of all predictions in this class, 0.10 

were correct (Recall). For forestry, agriculture and water bodies 

classes, F1-score rates of 0.74, 0.54 and 0.64, respectively, were 

obtained. 

 

The present work presented notable results in relation to works 

that developed similar methodologies. For Barcarena, Lauro de 

Freitas and Parauapebas, the proposed methodology obtained 

Kappa indices of 0.87604, 0.93183 and 0.86810, respectively. 

The present methodology provides complementary evidence to 

the  Kappa index analysis 0.83193, 0.78486 and 0.81884 for the 

respective cities (Pujatti et al., 2022). 

 

 

 Forest 
Non 

Forest 
Farm. 

Non 

Veg 

Urban 

Area 

Wate

r 

Barcarena 0.73 0.44 0.57 0.00 0.97 0.97 

Lauro de 

Freitas 
0.72 0.03 0.47 0.60 1.00 0.49 

Macaé 0.74 0.82 0.54 0.70 0.97 0.89 

Maricá 0.72 0.91 0.81 0.89 1.00 0.98 

Palmas 0.72 0.43 0.52 0.61 1.00 0.84 

Parnamirim 0.82 0.38 0.48 0.12 0.99 0.39 

Rio Verde 0.81 0.77 0.69 0.29 1.00 0.86 

São José de 

Ribamar 
0.81 0.29 0.62 0.81 0.99 0.92 

Parauapebas 0.81 0.82 0.98 0.42 0.74 0.88 

Rio das 

Ostras 
0.73 0.85 0.98 0.43 0.96 0.88 

Table 2. Precision 

 

 

 Forest 
Non 

Forest 
Farm. 

Non 

Veg 

Urban 

Area 

Wate

r 

Barcarena 0.92 0.74 0.5 0.00 0.85 0.97 

Lauro de 

Freitas 
0.77 0.10 0.64 0.90 0.96 0.92 

Macaé 0.66 0.79 0.86 0.75 0.89 0.89 

Maricá 0.90 0.89 0.89 0.93 0.93 0.95 

Palmas 0.81 0.55 0.57 0.56 0.95 0.90 

Parnamirim 0.74 0.31 0.53 0.66 0.91 0.99 

Rio Verde 0.88 0.77 0.93 0.21 0.86 0.78 

São José de 

Ribamar 
0.99 0.86 0.56 0.80 0.90 0.80 

Parauapebas 0.89 0.64 0.65 0.96 1.00 0.96 

Rio das 

Ostras 
0.93 0.84 0.76 0.46 0.96 0.69 

Table 3: Recall 

 

4. Conclusions 

Earth Observation studies have been a well-established source of 

information for public policies aimed at social progress and 

defence. Similarly, while using Artificial Intelligence has raised 

questions about its impacts on human relationships, its 

application in scientific methods has notably provided high-

quality results. This study uses the CA-ANN model to filter 

Remote Sensing images of densely populated urban building 

areas, aiming to model the expansion trends of major urban 

centres in the fastest-growing cities of Brazil. 
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In this sense, the results allowed a consistent analysis of land use 

and cover patterns in the cities under study. The prediction of 

urban classes and water bodies presented high precision and 

recall rates, allowing a significant prediction of LULC trends in 

urban planning. Furthermore, the water body class prediction 

also showed high precision and recall rates, explained by the 

spatio-temporal immutability in most scenes. Despite this, the 

prediction of classes that present photosynthetic activity can 

guarantee valuable information for managing critical areas 

around water bodies, as is the case in Parauapebas. Moreover, the 

results revealed considerable variations in the accuracy of 

predictions, influenced by the particularities of each city. An 

example is the city of Parnamirim, which contains the Natal Air 

Base in the study region, shifting the results of non-urban classes 

to lower results..  

 

Finally, future work can deepen the quality of the results obtained 

by comparing the prediction of urban areas when there is a focus 

on the main urban area using other LULC prediction models. 

Furthermore, including economic, social, population, cultural 

variables, and others can contribute to a more accurate model for 

predicting the spread of the urban area.. 

 

References 

Aneesha Satya, B., Shashi, M., Deva, P.,  2020. Future land use 

land cover scenario simulation using open source GIS for the city 

of Warangal, Telangana, India. Applied Geomatics, 12(3). 

https://doi.org/10.1007/s12518-020-00298-4 

 

Batista, B. A., Correia Filho, W. L. F., Oliveira-Júnior, J. F. de, 

Santiago, D. de B.,, Santos, C. T. dos., 2021. Avaliação da 

expansão urbana na Cidade de Maceió, Alagoas – Nordeste do 

Brasil. Research, Society and Development, 10(11). 

https://doi.org/10.33448/rsd-v10i11.19537 

 

Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, 

N., Berg, A., Wood, E. F., 2018. Present and future köppen-

geiger climate classification maps at 1-km resolution. Scientific 

Data, 5. https://doi.org/10.1038/sdata.2018.214 

 

Borges, M. C. P., Abreu, S. B., Lima, C. H. R., Cardoso, T., 

Yonamine, S. M., Araujo, W. D. V., Silva, P. R. S., Machado, V. 

B., Moraes, V., Silva, T. J. B., Reis, V. A., Santos, J. V. R., Reis, 

M. L., Canamary, É. A., Vieira, G. C., Meireles, S., 2022. The 

Brazilian National System for Water and Sanitation Data (SNIS): 

Providing information on a municipal level on water and 

sanitation services. Journal of Urban Management, 11(4). 

https://doi.org/10.1016/j.jum.2022.08.002 

 

BRASIL. Lei nº 12.651, de 25 de maio de 2012. Institui o novo 

código florestal brasileiro. 

 

Camargo, K. C. de M., Carmo, R. L. do, Anazawa, T. M., 2020. 

Breves considerações sobre expansão urbana nas megacidades da 

América Latina: o caso de São Paulo. Revista Espinhaço, 9(2). 

https://doi.org/10.5281/zenodo.443445 

 

Cintra, A. L., 2023, nov. 28th. Grupo empresarial inaugura 

terminal logístico estratégico no Pará. Belém Negócios. 

https://www.belemnegocios.com/post/grupo-empresarial-

inaugura-terminal-logistico-estrategico-no-para   

 

Correia Filho, W. L. F., Oliveira-Júnior, J. F. de, Santos, C. T. B. 

dos, Batista, B. A., Santiago, D. de B., Silva Junior, C. A. da, 

Teodoro, P. E., Costa, C. E. S. da, Silva, E. B. da, Freire, F. M., 

2022. The influence of urban expansion in the socio-economic, 

demographic, and environmental indicators in the City of 

Arapiraca-Alagoas, Brazil. Remote Sensing Applications: Society 

and Environment, 25. 

https://doi.org/10.1016/j.rsase.2021.100662 

 

Değermenci, A. S., 2023. Spatio-temporal change analysis and 

prediction of land use and land cover changes using CA-ANN 

model. Environmental Monitoring and Assessment, 195(10). 

https://doi.org/10.1007/s10661-023-11848-9 

 

Deisenroth, M. P., Faisal, A. A, Ong, C. S., 2020. Mathematics 

for Machine Learning. Cambridge University Press.  

 

Fernandes, R. P., 2023. Zonas climáticas e ilhas de calor urbanas 

da superfície em Porto Alegre (RS - Brasil) entre 2002 e 2023 

(Mestrado em Sensoriamento Remoto e Geoprocessamento). 

Universidade Federal do Rio Grande do Sul. 

http://hdl.handle.net/10183/271901 

 

Floreano, I. X., de Moraes, L. A. F, 2021. Land use/land cover 

(LULC) analysis (2009–2019) with Google Earth Engine and 

2030 prediction using Markov-CA in the Rondônia State, Brazil. 

Environmental Monitoring and Assessment, 193(4). 

https://doi.org/10.1007/s10661-021-09016-y 

 

Freitas, E. V., Araki, H., 2021. Simulation of urban growth: A 

case study for Curitiba city, Brazil. Boletim de Ciencias 

Geodesicas, 27(Special issue). https://doi.org/10.1590/s1982-

21702021000s00019 

 

Guan, D. J., Li, H. F., Inohae, T., Su, W., Nagaie, T., Hokao, K., 

2011. Modelling urban land use change by the integration of 

cellular automata and Markov model. Ecological Modelling, 

222(20–22). https://doi.org/10.1016/j.ecolmodel.2011.09.009 

 

IBGE, 2024. Instituto Brasileiro de Geografia e Estatística 

(IBGE). Malha de Setores Censitários preliminares. Retrieved 

from: 

https://biblioteca.ibge.gov.br/visualizacao/livros/liv102072.pdf   

 

Ismael, H. M., 2021. Urban form study: the sprawling city—

review of methods of studying urban sprawl. GeoJournal, 86(4). 

https://doi.org/10.1007/s10708-020-10157-9 

 

Kafy, A. al, Rahman, M. S., Faisal, A. al, Hasan, M. M., Islam, 

M, 2020. Modelling future land use land cover changes and their 

impacts on land surface temperatures in Rajshahi, Bangladesh. 

Remote Sensing Applications: Society and Environment, 18. 

https://doi.org/10.1016/j.rsase.2020.100314 

 

Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, 

K., Ziegler, A. D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, 

Y., Wang, S., Wu, Q., Huang, K., Estes, L., Zeng, Z., 2020. High-

spatiotemporal-resolution mapping of global urban change from 

1985 to 2015. Nature Sustainability, 3(7). 

https://doi.org/10.1038/s41893-020-0521-x 

 

MapBiomas. Coleção 8 da Série Anual de Mapas de Cobertura e 

Uso da Terra do Brasil. https://brasil.mapbiomas.org/ 

 

Marques, M. L., Müller-Pessôa, V., Camargo, D., Cecagno, C., 

2021: Simulação de cenários urbanos por autômato celular para 

modelagem do crescimento de Campinas - sp, Brasil. Eure, 

47(142). https://doi.org/10.7764/eure.47.142.10 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-155-2024 | © Author(s) 2024. CC BY 4.0 License.

 
160

https://doi.org/10.1007/s12518-020-00298-4
https://doi.org/10.33448/rsd-v10i11.19537
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1016/j.jum.2022.08.002
https://doi.org/10.5281/zenodo.443445
https://www.belemnegocios.com/post/grupo-empresarial-inaugura-terminal-logistico-estrategico-no-para
https://www.belemnegocios.com/post/grupo-empresarial-inaugura-terminal-logistico-estrategico-no-para
https://doi.org/10.1016/j.rsase.2021.100662
https://doi.org/10.1007/s10661-023-11848-9
http://hdl.handle.net/10183/271901
https://doi.org/10.1007/s10661-021-09016-y
https://doi.org/10.1590/s1982-21702021000s00019
https://doi.org/10.1590/s1982-21702021000s00019
https://doi.org/10.1016/j.ecolmodel.2011.09.009
https://biblioteca.ibge.gov.br/visualizacao/livros/liv102072.pdf
https://doi.org/10.1007/s10708-020-10157-9
https://doi.org/10.1016/j.rsase.2020.100314
https://doi.org/10.1038/s41893-020-0521-x
https://brasil.mapbiomas.org/
https://doi.org/10.7764/eure.47.142.10


 

NASA, 2000. National Aeronautics and Space Administration 

(NASA). Shuttle Radar Topography Mission (SRTM). Retrieved 

from: https://www.earthdata.nasa.gov/sensors/srtm 

 

Pujatti, M. A. S., de Arruda Pereira, M., Silvestre, L. J., 2022. A 

tool to predict the growth of urban regions based on 

QGIS/MOLUSCE using MapBiomas image time series. 

Proceedings of the Brazilian Symposium on GeoInformatics. 

 

Silva, R. R., Esteves, R. J. Z., Silva, K. A. F., 2024: A expansão 

Urbana Das Principais metrópoles Brasileiras De 2000 a 2020. 

Cuadernos De Educación Y Desarrollo 16 (4): e4074. 

https://doi.org/10.55905/cuadv16n4-159 

 

Souza, J. M. de, Morgado, P., Costa, E. M. da, Vianna, L. F. de 

N., 2023. Predictive Scenarios of LULC Changes Supporting 

Public Policies: The Case of Chapecó River Ecological Corridor, 

Santa Catarina/Brazil. Land, 12(1). 

https://doi.org/10.3390/land12010181 

 

Stone, B., Hess, J. J., Frumkin, H., 2010. Urban form and extreme 

heat events: Are sprawling cities more vulnerable to climate 

change than compact cities? Environmental Health Perspectives, 

118(10). https://doi.org/10.1289/ehp.0901879 

 

Sun, L., Chen, J., Li, Q., Huang, D., 2020. Dramatic uneven 

urbanization of large cities throughout the world in recent 

decades. Nature Communications, 11(1). 

https://doi.org/10.1038/s41467-020-19158-1 

 

Temesgen, H., Wu, W., Legesse, A., Yirsaw, E., 2021. Modelling 

and prediction of effects of land use change in an agroforestry 

dominated southeastern Rift-Valley escarpment of Ethiopia. 

Remote Sensing Applications: Society and Environment, 21. 

https://doi.org/10.1016/j.rsase.2021.100469 

 

UN, 2019. Department of Economic and Social Affairs, 

Population Division (2019). World Population Prospects 2018: 

Highlights (ST/ESA/SER.A/421). In Department of Economic 

and Social Affairs, Population Division (2019). World 

Population Prospects 2018: Highlights (ST/ESA/SER.A/421). 

 

Wang, S. W., Munkhnasan, L., & Lee, W. K., 2021: Land use 

and land cover change detection and prediction in Bhutan’s high 

altitude city of Thimphu, using cellular automata and Markov 

chain. Environmental Challenges, 2. 

https://doi.org/10.1016/j.envc.2020.100017 

 

Velastegui-Montoya, A., Montalván-Burbano, N., Carrión-

Mero, P., Rivera-Torres, H., Sadeck, L. Adami, M., 2023. Google 

Earth Engine: A Global Analysis and Future Trends. Remote 

Sensing, 15(14). https://doi.org/10.3390/rs15143675 

 

Wolch, J. R., Byrne, J., Newell, J. P., 2014. Urban green space, 

public health, and environmental justice: The challenge of 

making cities “just green enough.”. Landscape and Urban 

Planning, 125. 

https://doi.org/10.1016/j.landurbplan.2014.01.017 

 

Zhang, M., Du, H., Zhou, G., Mao, F., Li, X., Zhou, L., Zhu, D., 

Xu, Y., Huang, Z., 2022. Spatiotemporal Patterns and Driving 

Force of Urbanization and Its Impact on Urban Ecology. Remote 

Sensing, 14(5). https://doi.org/10.3390/rs14051160 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-155-2024 | © Author(s) 2024. CC BY 4.0 License.

 
161

https://www.earthdata.nasa.gov/sensors/srtm
https://doi.org/10.55905/cuadv16n4-159
https://doi.org/10.3390/land12010181
https://doi.org/10.1289/ehp.0901879
https://doi.org/10.1038/s41467-020-19158-1
https://doi.org/10.1016/j.rsase.2021.100469
https://doi.org/10.1016/j.envc.2020.100017
https://doi.org/10.3390/rs15143675
https://doi.org/10.1016/j.landurbplan.2014.01.017
https://doi.org/10.3390/rs14051160



