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Abstract 

 

Keypoint detectors and descriptors are essential for identifying points and their correspondences in overlapping images, being 

fundamental inputs for many subsequent processes, including Pose Estimation, Visual Odometry, vSLAM, Object Detection, Object 

Tracking, Augmented Reality, Image Mosaicking, and Panorama Stitching. Techniques like SIFT, SURF, KAZE, and ORB aim to 

identify repeatable, distinctive, efficient, and local features. Despite their robustness, some keypoints, especially those detected in 

fisheye cameras, do not contribute to the solution, and may introduce outliers or errors. Fisheye cameras capture a broader view, 

leading to more keypoints at infinity and potential errors. Filtering these keypoints is important to maintain consistent input 

observations. Various methods, including gradient-based sky region detection, adaptive algorithms, and K-means clustering, 

addressed this issue. Semantic segmentation could be an effective alternative, but it requires extensive computational resources. 

Machine learning provides a more flexible alternative, processing large data volumes with moderate computational power and 

enhancing solution robustness by filtering non-contributing keypoints already detected in these vision-based approaches. In this 

paper we present and assess a machine learning model to classify keypoints as sky or non-sky, achieving an accuracy of 82.1%. 

 

 

1. Introduction 

Detectors and descriptors of interest points enable the 

identification of keypoints and correspondences between 

overlapping images. This is used in many vision-based 

approaches, including Pose Estimation, Visual Odometry, 

Visual Simultaneous Localization and Mapping (vSLAM), 

Object Detection, Object Tracking, Augmented Reality, Image 

Mosaicking, and Panorama Stitching. There are many keypoints 

detectors and feature descriptors, such as SIFT (Scale-Invariant 

Feature Transform) (Lowe, 2004), SURF (Speeded-Up Robust 

Features) (Bay et al., 2008), KAZE (Alcantarilla et al., 2012), 

and ORB (Oriented FAST and Rotated BRIEF) (Rublee et al., 

2011), which identify features in images that have the following 

properties: repeatability, distinctiveness, efficiency, and locality 

(Gao and Zhang, 2021; Tareen and Saleem, 2018). Despite the 

robustness of those methods, some detected keypoints in the 

scene do not contribute to the solution and can even introduce 

outliers or gross errors into the processes. The challenge of 

obtaining consistent point observations increases when working 

with fisheye images, which can capture a broader view and 

consequently identify a larger number of keypoints compared to 

perspective cameras. In particular, the wide Field of View 

(FoV) can increase the mapping of sky areas and distant objects 

in outdoor scenarios (Zhao et al., 2022) and result in a higher 

number of keypoints being generated at infinity. These 

keypoints generate parallel projecting rays (e.g., points detected 

at cloud edges) that can lead to significant errors in subsequent 

processing steps, such as pose estimation. Therefore, it is 

desirable to previously filter out keypoints to maintain a 

consistent network of input observations.  

 

There are various methodologies in the literature aimed at 

identifying and filtering areas in images that can be discarded, 

such as detecting the sky and other elements in the image. For 

example, Shen and Wang (2013) proposed a sky region 

detection method based on gradient information and energy 

function optimization. Nice et al. (2020) developed a 

methodology to refine edge results in sky region detection using 

an adaptive algorithm and machine learning for fisheye images. 

Additionally, Kato et al. (2016) segmented the sky using K-

means clustering. Moreover, semantic segmentation can be 

incorporated into the process to detect, segment, and filter areas 

of the image that are not of interest or may introduce errors in 

the map (Shao et al., 2020; Yu et al., 2018). This approach is 

also recommended for identifying dynamic objects in the scene, 

such as cars, motorcycles, and pedestrians, which can 

negatively impact the solution estimation (Gao and Zhang, 

2021).  

 

Although semantic segmentation has shown promising results, 

the networks are built on deep learning architectures, requiring 

extensively trained models that demand substantial 

computational and storage resources, as well as complex 

sampling processes (Shao et al., 2020; Wang et al., 2021; Yu et 

al., 2018). Additionally, since many methodologies in Computer 

Vision and Photogrammetry rely on keypoints to find 

corresponding points between images, it would be suitable to 

define a fast and efficient technique capable of validating this 

type of data. This would ensure that filtering does not 

significantly impact the computational performance of the 

solution, thus improving the effectiveness of the developed 

approach, using the features already extracted in the process. In 

this work, we hypothesize that keypoint filtering using a 

machine learning algorithm trained to identify undesirable 

points, based on pre-extracted feature descriptors, can be a 

viable alternative to reduce the computational demands of 

outlier filtering in navigation applications, especially using 

fisheye images. 

 

Machine learning is also a field of artificial intelligence capable 

of processing large volumes of structured data to analyse 

patterns and make predictions. A significant advantage of 

machine learning is its ability to make low-complexity 

decisions, requiring only a moderate amount of computer 

processing power (Braga-Neto, 2020; Géron, 2019).  Machine 

learning is flexible and allows for the manipulation of 

keypoints, enhancing solution robustness by removing non-

contributing elements from the scene (Khan and Al-Habsi, 

2020). Another factor to consider is the need of efficiency, 
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when incorporating machine learning techniques into embedded 

platforms with limited and low-cost computational resources.  

 

To validate the hypothesis, here we trained the machine learning 

algorithm Random Forest (RF) and assessed the resulting model 

for binary classification (sky, non-sky keypoint) using ORB 

features to remove sky points in images from fisheye lens 

camera. This aims to eliminate gross errors in input 

observations of subsequent process that requires feature 

matching (e.g. pose estimation) by removing these points in the 

sky. Avoiding the processing of non-contributory data, this 

approach can optimize computational efficiency and enhance 

the overall performance of the solution. It will avoid outliers 

while enabling the use of lighter and faster prediction models 

suitable for implementation on compact mobile platforms. 

Experimental assessments were performed using ORB features 

automatically detected in fisheye image dataset acquired in an 

outdoor scenario. 

 

 

2. Materials and Methods 

 

2.1 ORB Features  

Features are generally detected in corners, blobs, edges, 

junctions, and lines. The detected features are described by 

unique patterns based on their neighbouring pixels. This 

process, known as feature description, assigns a unique identity 

to each feature. Some techniques employ both feature detectors 

and feature description algorithms, while others operate 

independently. However, these independent feature detectors 

can be paired with many appropriate feature descriptors. Using 

these descriptors, matching algorithms can be applied to 

identify keypoints with similar features, as illustrated in Figure 

1 (Forstner, 1986; Tareen and Saleem, 2018).  

 

 
Figure 1.  Keypoints and correspondences between two 

overlapping images. 

 

In the literature, several keypoint detectors and descriptors have 

been proposed. Tareen and Saleem (2018) conducted a 

comparative study of the prominent detectors and descriptors 

currently in use. They concluded that while SIFT is the most 

accurate and robust, it has high computational cost. They 

considered ORB to be the most efficient method, balancing 

robustness, and computational performance, and thus, it stands 

out as a high-performance alternative. This conclusion 

motivated the use of ORB in this work.  

 

ORB is a fusion of the FAST (Features from Accelerated 

Segment Test) detector and a fast binary descriptor based on 

BRIEF (Binary Robust Independent Elementary Feature). FAST 

identifies interest points in images by detecting local grayscale 

changes. Unlike other interest points detection algorithms, 

FAST only requires comparing the brightness levels of 

neighbouring pixels, making the approach faster. Originally, 

FAST did not include directional information, so ORB employs 

a scaled pyramid (downsampling images at some levels to 

achieve different resolutions) and the intensity centroid method 

to address scale and rotation information. BRIEF describes the 

features of the surrounding area around the points detected in 

the previous step. It is a binary descriptor, typically a 128–512-

bit string, encoding the size relationship between two random 

pixels near the keypoint. BRIEF efficiently compares these 

randomly selected points. However, the original BRIEF lacks 

rotation invariance, making it more susceptible to errors when 

the image is rotated. With the previously calculated directional 

information, ORB can use BRIEF to create features that 

perform well under translation, rotation, and scaling. 

Meanwhile, the combination of FAST and BRIEF is highly 

efficient, making ORB features popular in real-time scenarios 

(Gao and Zhang, 2021; Rublee et al., 2011; Tareen and Saleem, 

2018).  

 

 

2.2 Machine Learning: Random Forest algorithm 

Machine learning (ML) algorithms have been widely explored 

across countless applications, particularly those involving large 

volumes of data and complex datasets (structured objects and 

their attributes) (Braga-Neto, 2020; Khan and Al-Habsi, 2020). 

ML algorithms are employed to train models based on 

parameters that link input and output data through a learning 

process that is continuously refined using the dataset. This 

learning process can be supervised, unsupervised, semi-

supervised, or reinforcement-based (Shobha and Rangaswamy, 

2018). Supervised learning makes predictions from unknown 

data by mapping the relationship between inputs and known 

outputs. It uses classification algorithms when the label value is 

discrete and regression techniques when the label value is 

continuous to develop these predictive models (Géron, 2019; 

Shobha and Rangaswamy, 2018). A significant advantage of 

ML is its ability to make low-complexity decisions, requiring a 

moderate amount of computer processing power, and it can 

make predictions based on a dataset that is not excessively 

voluminous or complex.  

 

Given the large number of available ML algorithms, a 

preliminary analysis and assessment were conducted to select a 

suitable model based on the nature of our problem. Considering 

our dataset, which includes multiple features for the same 

keypoint and potential overlaps in sky regions (e.g., intensity 

changes between surfaces), decision tree supervised learning 

algorithm, such as RF, are often recommended. 

 

A decision tree is a kind of supervised learning algorithm used 

to solve classification and regression problems. It is based on a 

multistage or hierarchical decision-making method, breaking 

down the decision into several more straightforward and more 

interpretable decisions in a series of binary nodes. RF, an 

ensemble of different decision trees, can also be used to solve 

classification and regression problems. RF incorporates 

randomness in the selection of attributes (Breiman, 2001; 

Shobha and Rangaswamy, 2018). In RF approach, multiple 

trees are trained using different subsets of attributes and data, 

ensuring that each tree creates a different model. These models 

depend on values from a randomly sampled vector, 

independently and identically distributed for all trees. The final 

output is the average of the predictions from all trees. Due to the 

randomness in data samples and variables considered at each 

decision node, RF often reduces the problem of overfitting 

(Breiman, 2001). Moreover, combining multiple decision trees 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-177-2024 | © Author(s) 2024. CC BY 4.0 License.

 
178



 

results in more accurate and stable predictions (Géron, 2019; 

Khan and Al-Habsi, 2020). 

 

To validate this assumption and the effectiveness of a decision 

tree supervised learning algorithm within our specific context, 

we conducted preliminary tests using RF. These tests involved 

training RF with a dataset and analysing the metrics achieved on 

the validation sets. Our objective was to compare the 

performance of RF with Support Vector Machine (SVM), a 

widely used machine learning methodology for classification 

(Géron, 2019; Khan and Al-Habsi, 2020; Shobha and 

Rangaswamy, 2018). The results indicated that RF 

outperformed SVM in our context, demonstrating superior 

performance on the validation set. Therefore, we selected RF to 

train our sky keypoints detection model in fisheye images, 

leveraging its ability to make accurate discrete predictions, 

handle overlapping features, maintaining robustness against 

overfitting.  

 

 

2.3 Training Dataset 

For training purposes, we selected the WoodScape dataset, 

distinguished by including fisheye image data and a 

comprehensive range of annotation types. Moreover, designed 

specifically for research in autonomous driving and computer 

vision, the dataset features outdoor images that include a wide 

variety of scenes and environments commonly encountered in 

urban settings, within complex, real-world environments 

(Yogamani et al., 2019). WoodScape comprises four surround-

view cameras and involves nine image processing steps, 

including segmentation, depth estimation, and 3D bounding box 

detection, among others. Semantic annotation of 40 classes at 

the instance level is provided for over 10,000 images, also 

containing the sky, as indicated in Figure 2. 

 

 
Figure 2.  Semantic segmentation from WoordScape (Yogamani 

et al., 2019) 

 

Outdoor images with a wider FoV, such as those collected by 

fisheye cameras, have an increased probability of detecting 

keypoints in areas that are not useful for vision-based 

approaches. Keypoints at the infinite, such as sky keypoints, or 

on moving objects, can negatively affect the estimation based 

on the mathematical model used. Considering that a large part 

of the outdoor image may contain these sky keypoints, we 

developed a model to determine whether to use a keypoint, by 

inferring if it belongs to the sky area (Braga-Neto, 2020; Khan 

and Al-Habsi, 2020). We used the fisheye images from the 

WoodScape dataset, along with semantic boundaries, to 

generate masks that separate the areas in the images that belong 

to the sky from those that do not. We considered two classes: 

(1) keypoints in the sky and (0) keypoints out of the sky area, as 

illustrated in Figure 3. 

 

 
                                      (a)     

 

 
(b) 

Figure 3. WoodScape dataset example: (a) RGB fisheye image; 

(b) Mask obtained through semantic segmentation of the sky 

class. 

 

 

2.4 Machine Learning Training Model 

The workflow for training the sky-point classification model 

using ORB features is depicted in Figure 4. First, we used the 

WoodScape dataset, which contains outdoor images from 

fisheye lens cameras and their corresponding semantic data, to 

generate a mask. This mask was applied to the images to label 

and extract the pixels that belong to the sky and those out of this 

area. Next, we detected the keypoints and extracted their 

features from the areas identified as sky and non-sky in the 

previous step. We then saved the keypoints and all related 

information to a structured file, including their position, the 

image in which they were detected, their descriptor, and their 

binary class: 0 (non-sky) or 1 (sky). 

 

 

 
 

Figure 4. Machine Learning Training Model workflow for 

binary classification of keypoints as sky and non-sky points. 
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For training the proposed RF model, we used the keypoints and 

their respective information saved in a file, applying a data 

processing step to structure the input data for training. During 

the ORB extraction stage, we obtained a set of 9,000,000 

samples, each one consisting of a keypoint and its 128-

dimensional descriptor. The majority of samples were from 

keypoints not belonging to the sky, so we opted to apply a data 

balancing step. Balancing is an important step to prevent bias 

towards a dominant class with more samples in training, 

ensuring a fair distribution among classes (Géron, 2019). In our 

context, we performed undersampling by randomly selecting 

1,000,000 samples of sky keypoints and 1,000,000 samples of 

non-sky keypoints. Random selection aims to capture the most 

representative samples from the dataset possible. This approach 

ensures a more equitable distribution of data for training our 

model. Among the selected samples, we allocated 80% for 

model training and 20% for validation. After completing the 

training, we obtained the trained RF model for prediction, 

specifically to classify the keypoints as either belonging to the 

sky or not, as illustrated in Figure 5. An arbitrary image is 

processed for keypoint detection and ORB feature extraction. 

These extracted features are then classified by the model. Based 

on this decision, we filter out the keypoints that belong to the 

sky, which can be discarded for the subsequent processing 

steps. 

 

 
Figure 5. Prediction flow of the sky classification. 

 

 

 

3. Experiments and Results 

 

3.1 Filter detection performance 

Initially, we applied the trained machine learning model to the 

validation dataset, which consists of 20% of the data extracted 

from the WoodScape dataset. The validation dataset was 

separated to ensure it accurately represents the diversity and 

complexity of the entire dataset, providing a robust set for 

evaluating the model's performance. Our model, designed for 

sky keypoint classification based on binary decision-making, 

demonstrated an accuracy rate of 82.1% on this validation 

dataset. We employed the accuracy metric, as depicted in 

Equation 1, to assess the 20% of samples designated for model 

validation (Géron, 2019). Here, TP stands for true positives, TN 

for true negatives, FP for false positives, and FN for false 

negatives.  

 

                                      (1) 

 

The RF model accuracy achieved on the validation dataset, 

validates its effectiveness and robustness in distinguishing sky 

features from other elements within the images. To achieve this 

level of accuracy, we utilized a preprocessing step in the model 

training, known as randomized hyperparameter tuning (Géron, 

2019). This method randomly combines different 

hyperparameters within a specified range and selects the model 

that achieves the best results based on the tested 

hyperparameters, aiming to optimize and enhance its predictive 

capabilities. The WoodScape dataset itself is known for its 

challenging and diverse set of fisheye images, which include 

varying weather conditions, lighting scenarios, and outdoor 

contexts. Successfully achieving an 82.1% accuracy on such a 

dataset reinforces the robustness of our model, even with a 

reduced number of samples. One of our key considerations was 

to develop a lightweight and simple model to ensure its 

feasibility for use in complex outdoor scenarios that require 

portable platforms, such as forest and narrow corridors, which 

typically involve low-cost sensors and embedded platforms with 

limited resources. In some situations, requiring real-time 

response, the efficiency of the processes is essential. 

 

3.2 Test on an independent dataset 

We applied the model to our dataset consisting of fisheye 

images captured with the Ricoh Theta S dual-fisheye 

hyperhemispherical camera. Examples of Ricoh Theta S images 

are shown in Figures 6(a) and 6(b). Figure 6(b) depicts the 

predictions on an image from this dataset, with keypoints 

classified as sky shown in blue, while non-sky keypoints are 

represented in red. We followed the procedure previously 

described and illustrated in Figure 5. From the fisheye image, 

we extracted the ORB features and then submitted the keypoints 

and their features to prediction using our RF model. 

It was possible to verify that false positives or false negatives 

still occur, but the model generally labelled most of the sky 

keypoints in the image from a dataset different from the one 

used to train the model. It is important to note that the trained 

model is of reduced size, making it easy to store, and it also 

demonstrates good computational performance in response time 

during the prediction stage. The proposed filtering approach can 

contribute to many vision-based applications, as a preprocessing 

step. Regarding vSLAM solution, the inclusion of a point 

filtering step can contribute to a more robust and stable solution. 

Further improvements of the model are possible by adding new 

samples, both from the Woodscape dataset and from other 

cameras, including the Ricoh Theta S itself. 

 

 

4. Conclusion 

Based on our feasibility study results, we concluded that ML 

offers the flexibility to develop simple, practical approaches that 

can be used to label keypoints based on their already extracted 

features and which can be applied to remove outliers for 

different fisheye image applications. To validate our 

hyphothesis, in this work, we focused on developing a ML 

model to support vision-based applications that rely on keypoint 

detection and feature extraction. Our results showed that 

keypoints (particularly keypoints in the sky in outdoor 

scenarios) that could significantly degrade further solutions, 

such as pose estimation, can be efficiently removed by 

including the proposed filtering step based on ML models. The 

proposed RF model for classifying sky keypoints achieved an 
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accuracy of 82.1%, demonstrating its effectiveness in detecting 

the majority of sky points in an independent set of images 

captured by the Ricoh Theta S fisheye camera. Despite 

occasional false positives and false negatives, the model 

generally succeeds in removing most sky keypoints from the 

images. We chose to train the model with a smaller number of 

samples aiming to develop a lightweight model that consumes 

minimal computational resources and does not impact the 

workflow of any solution it is integrated into. A key advantage 

of our approach to be mentioned is utilising features already 

extracted in various vision-based approaches, providing an 

improvement with low computational complexity. By focusing 

on the efficient removal of sky keypoints, we can enhance the 

overall performance of vision-based applications, ensuring they 

remain reliable and effective even in challenging outdoor 

environments. 

 

 
                                      (a)     

 

 
(b) 

Figure 6. Classification of keypoints: (a) Ricoh Theta S image 

RGB; (b) Keypoints belonging to the sky (blue) and non-sky 

(red). 
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