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Abstract: 

 

Mangrove forests provide ecosystem services that can support the welfare of local communities. Therefore, promoting their 

conservation not only protects their environmental functions but also optimizes their economic potential. Remote sensing approaches, 

particularly active systems such as synthetic aperture radar (SAR), have emerged as a valuable tool for monitoring forest ecosystems. 

These systems can capture Earth's surface features regardless of atmospheric conditions. However, the backscatter approach becomes 

unreliable when the AGBD reaches a certain point. This leads to incomplete information being obtained as the reflected signal becomes 

too strong and overloads the receiver. Therefore, this study explores the potential of polarimetric decomposition as an option to 

traditional backscatter approaches. Decomposed polarimetric parameters from Sentinel-1 were used for biomass estimation in 

mangrove forests in West Kalimantan Province. Specifically, in Kubu Raya and North Kaong districts (Indonesia) for the year 2020. 

The decomposed polarimetric parameters of Entropy, Anisotropy, and Alpha Angle obtained from the H/A/α decomposition integrated 

with backscattering parameters were used as dependent variables, which were varied following the parameter usage scenarios (both 

individual and grouped). Meanwhile, GEDI data were used to train the prediction model instead of observational data. The predictive 

ability of the model using only SAR-derived explanatory variables resulted in an RMSE of about 45 Mg/ha and an R-squared of about 

0.2. 

 

 

1. Introduction 

Mangrove forests are one of the most important ecosystems for 

surrounding communities because they can provide interrelated 

tangible and intangible environmental services. These included 

not only cultural services in the form of ecotourism and cultural 

heritage (Bimrah et al., 2022) but also protective functions 

against waves and tides (Marois and Mitsch, 2015). Additionally, 

their restoration and conservation can generate revenue through 

carbon markets due to their ability to store blue carbon (Van 

Zanten et al., 2021). The conservation of blue carbon is appealing 

as it offers additional benefits such as fish habitat protection and 

water filtration (Dalimunthe et al., 2022). Recognizing these 

extensive benefits, Indonesia has been actively involved in 

mangrove forest restoration, with a national plan to rehabilitate 

3.49 million hectares by 2045 (Sasmito et al., 2023). 

Furthermore, the Peat and Mangrove Restoration Agency 

(BRGM) was established in 2020 with a more ambitious goal to 

rehabilitate 600,000 hectares by 2024 (Rahman et al., 2024). 

 

Understanding the state of mangrove forests is crucial for 

effective conservation strategies. This requires accurate and up-

to-date data on their location and health. Remote sensing 

provides a powerful tool for efficiently mapping these 

ecosystems (Kuenzer et al., 2011). And recent studies explored 

the use of active systems (such as SAR) with promising results 

due to their sensitivity to structural features (Pham et al., 2019). 

However, the reflected signal from SAR can sometimes be too 

powerful, leading to data loss, prompting the exploration of 

alternative approaches (Joshi et al., 2017).  

 

The strength of SAR backscatter depends on intrinsic 

characteristics like SAR wavelength and polarization, as well as 

surface properties including water content and material 

roughness. Additionally, topography significantly affects the 

incidence angle of the SAR signal and must be considered. For 

instance, Pirotti et al. (2023) demonstrated that canopies have a 

strong absorption of the backscatter signal, thus resulting in 

weaker backscatter, but when the canopies are completely wet, 

the backscatter is up to 2 dB stronger. This correlation is lost after 

fire events, likely due to thin biomass being burned away and 

thicker branches being left as reflectors. 

 

One promising approach is the polarimetric decomposition 

method. Several studies have been applied to quad-polarization 

and dual-polarization SAR data. Studies by Zeng et al. (2022) 

and Liu et al. (2022) evaluated the polarimetric decomposition 

for AGB estimation on quad- polarization data of Gaofen-3, 

RADARSAT-2, and ALOS-2/PALSAR-2. The evaluation 

resulted in improved AGB estimation accuracy compared to 

traditional backscattering coefficients. Particularly, the 

Yamaguchi decomposition has shown the highest correlation 

with the AGB compared to other decomposition methods (Liu et 

al., 2022). Nevertheless, parameters derived from other 

decomposition methods, such as Pauli decomposition and H/A/α, 

were also identified (Sinha, 2022). Particularly on 

ALOS/PALSAR data over tropical deciduous forests, which 

showed moderate correlation. 

 

On the other hand, the parameters of the H/A/α decomposition 

method on Sentinel-1 Imagery have been widely studied for 

various applications. The study by Kiyohara and Sano (2023) 

utilized Entropy and Alpha Angle for forest classification in the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
183

mailto:giusti.ghivarry@studenti.unipd.it


 

Amazon with support vector machine (SVM), resulting in good 

accuracy for distinguishing secondary forest. However, studies 

by Zhou et al. (2021) and Fatnassi et al. (2023) showed 

limitations in dense forests (multiple reflections in mangroves) 

and for specific class distinctions (forest vs. other). Another study 

by Ghazali and WIkantika (2021) utilized the H/A/α 

decomposition with other parameters for mangrove species 

classification, which resulted in fairly good accuracy (up to 

65%). 

 

This research focusses on the application of Sentinel-1 SAR data 

to predict mangrove forest biomass in West Kalimantan in 2020. 

Instead of relying solely on the signal amplitude, parameters 

derived from the manner of wave propagation (polarimetric 

decomposition) are incorporated into the model. This study aims 

to achieve three main objectives: 1) Build a model that 

incorporates backscattering and these scattering mechanism 

parameters, along with biomass data from GEDI, to estimate 

biomass density. 2) Assess how well these parameters capture 

biomass variations compared to backscattering alone. 3) To 

compare the accuracy of their new model with existing methods 

used to estimate mangrove biomass. 

 

2. Study Area 

Indonesia is one of the countries with extensive mangrove 

ecosystems on its large islands (Kusmana, 2014). According to 

the Global Mangrove Watch (GMW), it is calculated that 

Indonesia's mangrove forest area reached ~2.95 million ha in 

2020 (Bunting et al., 2022). Meanwhile, the Indonesian Ministry 

of Environment and Forestry (IMEF) estimated the mangrove 

forest area at ~3.36 million ha in 2021. It included existing 

protected, conservation, and production forests, with the 

potential for further restoration efforts in identified potential 

mangrove areas. This biodiversity-rich area has 240 species, with 

most found on Java Island, and 48 species of true mangroves such 

as Rhizophora spp., Avicennia spp., and Sonneratia spp. 

(Rahman et al., 2024). 

 

The development of the aboveground biomass estimation model 

was carried out in mangrove forest areas in the western part of 

West Kalimantan province, precisely in Kubu Raya Regency and 

Kubu Raya District. Based on calculations from GMW (Bunting 

et al., 2022), the mangrove forest used in this study has an area 

of ~90,000 ha. This mangrove forest covers the coastline of Kubu 

Raya and North Kayong districts. This includes the mangrove 

forest on Padangtikar Island in Kubu Raya Regency and the 

mangrove forest on Maya Island in North Kayong Regency. The 

intended study locations can be seen in Figure 1. 

 

 

Figure 1: A map of the study site, located in Kubu Raya District 

and Kubu Raya Regency, West Kalimantan Province, is marked 

with a red box. 

3. Materials and Methods 

3.1 Materials 

In this study, mangrove forest biomass in Kubu Raya and Kayong 

Utara regencies, West Kalimantan, was predicted with remote 

sensing data. The remote sensing data used are Sentinel-1 Level-

1 synthetic aperture radar (SAR) images with single look 

complex (SLC) and ground range detected (GRD) formats. The 

SLC format file was obtained from the tilt and azimuth range at 

the time of data acquisition (ESA, 2024a). While the GRD format 

was obtained by applying detection, multi-looking, and 

projection on the ground surface area using an earth model, 

resulting in an image with square-shaped pixels and relatively 

even resolution across the image due to multi-looking processing 

that only represents signal strength (ESA, 2024b). To enrich the 

data sources for estimation purposes, several images acquired 

during 2020 have been used. Sentinel-1 SAR images have 

advantages in terms of their ability to penetrate clouds and 

vegetation, so they can be used to obtain mangrove forest 

biomass information (Chen et al., 2017). 

 

Samples for model training and validation were obtained from 

the Global Ecosystem Dynamic Investigation (GEDI) Level 4A 

(L4A) Raster Aboveground Biomass Density (AGBD) Version 

2.1 (Google Earth Engine Developer, 2024). This laser-based 

data was able to show the three-dimensional structure of the 

vegetation (Kutchartt et al., 2022), which can be further 

processed to obtain biomass information. In addition, a mangrove 

forest boundary map from GMW proposed by Bunting et al. 

(2018) was utilized, which aimed to determine mangrove and 

non-mangrove forest boundaries. This map had high accuracy, so 

it could be used to ensure that the training and validation samples 

were in mangrove forest areas. Additionally, other estimation 

models, such as the Climate Change Initiative (CCI) Biomass 

Map by ESA (Santoro and Cartus, 2023), were also used for 

comparison with the resulting estimation model. A brief 

description of the data used and the purpose of using the data can 

be seen in Table 1 below. 

 

Source Level 
Pixel 

Size (m) 
Description 

Sentinel-1 L1 

SAR 
SLC 15 

Polarimetric 

Decomposition 

parameter extraction 

Sentinel-1 L1 

SAR 
GRD 10 

Backscatter 

Parameter extraction 

GEDI 
L4A 

AGBD 
25 

Lidar base AGBD 

information  

GMW 

Mangrove 

Extent 

Yearly 

Mosaic 
10 

Mangrove forest 

extent 

CCI Biomass 

Map 

Yearly 

Mosaic 
100 

Global-scale AGB 

map for comparison 

Table 1: Recapitulation of the utilized geo-spatial data. 

 

3.2 Methods 

The workflow conducted in this study was divided into three 

interconnected stages, namely data pre-processing, model 

building, and model performance assessment and validation. The 
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pre-processing stage was carried out with the objective of tidying 

the data so that it can represent accurate and precise information. 

This stage also includes preprocessing satellite images to obtain 

SAR parameters, as well as processing and choosing GEDI data 

(Dubayah et al. 2020) to obtain training and validation samples.  

 

The H/A/α decomposition method that has been modified by 

Cloude (2007) and Ji and Wu (2015) to be applicable to dual 

polarization data has been employed to obtain the decomposed 

polarimetric parameters. H/A/α decomposition, also known as 

Cloude-Pottier Decomposition, is an eigenvalue/eigenvector-

based method that decomposes the cooccurrence or covariance 

matrix to obtain Entropy (H), Anisotropy (A), and Alpha Angle 

(α) (Cloude and Pottier, 1997). According to Pottier (2017), 

Entropy is a measure of randomness or disorder in a scattering 

system that describes the scattering process. Next to Entropy, 

Anisotropy is a parameter that provides details about the specific 

distribution in the scattering system. Finally, the Alpha Angle 

parameter acts as an indicator, indicating the type of scattering 

mechanism at play.  

 

The next step is to build a model to predict biomass in the 

mangrove ecosystem. In this process, the development of the 

prediction model uses the H2O AutoML supervised machine 

learning algorithm developed by H2O.ai (LeDell and Poirier, 

2020), where SAR parameters and biomass information are 

derived from GEDI and are used as dependent and independent 

variables. To determine the ability of decomposed polarimetric 

parameters in the estimation process, several scenarios were 

made based on the number of variables used in the modelling, 

which are shown in Table 2. Additionally, to accommodate the 

horizontal accuracy of GEDI data, a new dataset based on the 

resampling and aggregation process into pixels with coarser sizes 

was conducted (Shendryk, 2022), whose details are shown in 

Table 3. 

 

The last step was to carry out a validation process, computing 

accuracy metrics, where the developed prediction model was 

evaluated for its predictive ability with respect to its statistical 

metrics. The metrics used were the coefficient of determination 

(R2), root mean squared error (RMSE), mean absolute error 

(MAE), and mean squared error (MSE). Additionally, the 

biomass prediction value of the developed model was compared 

with the CCI ESA prediction model. 

 

Scenarios Parameters 

1 
VV Topography Uncorrected, VH Topography 

Uncorrected 

2 
VV Topography Corrected, VH Topography 

Corrected 

3 Entropy, Anisotropy, Alpha Angle 

4 
VV Topography Uncorrected, VH Topography 

Uncorrected, Entropy, Anisotropy, Alpha Angle 

5 
VV Topography Corrected, VH Topography 

Corrected, Entropy, Anisotropy, Alpha Angle 

Table 2: Scenarios to generate a mangrove forest biomass 

prediction model, including the parameters used for each 

scenario. 

No Configuration Description 

1 
Dataset resampled and aggregated pixel values with the 

median method and a 25-meter grid size. 

2 
Dataset resampled and aggregated pixel values with the 

median method and a 100-meter grid size. 

3 
Dataset resampled and aggregated pixel values with the 

mean method and a 25-meter grid size. 

4 
Dataset resampled and aggregated pixel values with the 

mean method and a 100-meter grid size. 

Table 3: Configuration of the dataset used to train the prediction 

model. 

 

4. Results and Discussions 

4.1 Mangrove forest biomass estimation model performance 

4.1.1 Statistic metric-based assessment 

This study investigated the capability of decomposed 

polarimetric parameters when integrated to predict mangrove 

forest biomass. For this purpose, parameter usage scenarios 

(Table 3) were introduced into the training process of the 

mangrove forest biomass prediction model. In addition, the 

dataset used to train the model was also set up following the 

configuration described in Table 4 to see the effect of the 

configuration of the dataset on the modelling results. From such 

an arrangement, a trained model was obtained for each parameter 

usage scenario based on the variation of dataset configurations, 

whose summary statistical metrics are represented in Figure 2 as 

follows: 
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Figure 2: Graph representation of the statistical metrics of the 

trained model for each scenario grouped by dataset configuration 

for model training, where (A) MAE, (B) MSE, (C) RMSE, and 

(D) R2. 

 

The incorporation of all parameters during model training 

resulted in marginally better results, regardless of the dataset. 

This is consistent with prior research by Zeng et al. (2022) and 

Dave et al. (2023), who showed that using phase information 

from decomposed polarimetric parameters improves prediction 

despite employing different methods and materials. However, 

backscatter with uncorrected topography resulted in even better 

results, indicating that topography correction can be 

counterproductive for mangrove biomass prediction. While these 

decomposed parameters improved model performance, they 

exhibited a weak correlation with biomass itself, as observed in 

de Jesus et al. (2023). This highlights the limitations of using 

single-wavelength SAR data (C-band) for biomass prediction, as 

it restricts the range of detectable forest components (Santoro and 

Cartus, 2023). 

 

On the other hand, finer grid detail in the dataset resulted in lower 

prediction accuracy, suggesting that including generalized 

information from coarser grids is preferable when detailed 

physical data is absent (Figure 2). This aligns with the finding 

that the grouping method has minimal influence, though a mean 

grouping method results in slightly better results. 

 

4.1.2 Shift in predicted biomass value range after 

polarimetric decomposition parameter inclusion into the 

model 

 

The impact of decomposed polarimetric parameters on the range 

of predicted biomass values in mangrove biomass prediction 

models has also been investigated, and the distribution is depicted 

in Figure 3. 

 

The inclusion of decomposed polarimetric parameters in the 

prediction models resulted in mixed effects on the range of 

predicted biomass values. While the maximum predicted 

biomass generally increased with these parameters, the effect was 

not consistent across all dataset configurations, except 

configuration one. Interestingly, some models with configuration 

three even predicted negative biomass values when both 

corrected and uncorrected backscatter data were combined with 

decomposed parameters. 

 

 

Figure 3: Predicted biomass value range (Mg/ha) of each scenario 

is grouped by dataset configuration for model training. 

 

Introducing decomposed polarimetric parameters can 

significantly alter the minimum and maximum predicted biomass 

values. The heatmap in Figure 4 visualizes this effect, where 

green represents the highest predicted values and the opposite for 

the minimum. Scenarios one and two used backscatter 

parameters only (with and without topography correction), while 

scenarios four and five incorporated decomposed parameters 

with both corrected and uncorrected backscatter, respectively. 

The impact of decomposed parameters is evident by comparing 

the range of values between scenarios one and four and two and 

five. 

 

  Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 

Maximum Range (Mg/ha) 

Conf. 1 154.0 154.7 156.1 170.2 175.3 

Conf. 2 163.5 164.0 151.4 182.7 162.7 

Conf. 3 168.6 178.2 171.9 175.6 168.5 

Conf. 4 181.1 163.5 174.8 174.8 176.4  

Minimum Range (Mg/ha) 

Conf. 1 -120.5 -173.6 57.0 6.3 41.8 

Conf. 2 -34.6 10.0 58.7 50.4 41.8 

Conf. 3 37.6 -14.6 56.8 -45.2 -43.1 

Conf. 4 22.9 21.3 47.0 19.4 48.3 

Figure 4: The maximum and minimum range of predicted models 

(in Mg/ha). 

 

The addition of decomposed polarimetric parameters also did not 

consistently reduce the minimum range of predicted biomass 

values. Out of all the combinations of scenarios and dataset 

configurations, only scenario four that used the dataset with 

45

48

51

54
Sce. 1

Sce. 2

Sce. 3Sce. 4

Sce. 5

0

0.1

0.2

0.3
Sce. 1

Sce. 2

Sce. 3Sce. 4

Sce. 5

-200 -100 0 100 200

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

C
o

n
f.

 1
C

o
n
f.

 2
C

o
n
f.

 3
C

o
n
f.

 4

Maximum (Mg/ha) Minimum (Mg/ha)

C 

D 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
186



 

configuration four experienced a decrease in the minimum value 

range. Scenarios four and five that used the datasets with 

configurations one and three also technically decreased the 

minimum value, but the predicted biomass was at a negative 

value. The exception was seen in scenario four, which used the 

dataset with configuration one. In which the minimum range 

obtained was the lowest when compared to the other models, 

despite initially being recorded as a negative value. 

 

4.2 Comparative assessment against other product 

The range of the difference in biomass values provides an insight 

into the relative predicted biomass values between the developed 

prediction model and the CCI prediction model. This was done 

by subtracting the predicted values of the developed models from 

ESA's CCI prediction model. Figure 5 represents the range with 

different colours. Where the green colour represents the shortest 

range and the red colour represents the opposite. While Figure 6 

illustrates the minimum and maximum limits of this value 

difference. Negative minimum values indicate that the predicted 

biomass in the developed model is lower than in the model from 

CCI, and positive values indicate the opposite condition. 

 

  Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 

Conf. 1 328.8 329.5 309.3 341.7 325.2 

Conf. 2 336.7 320.5 293.4 342.2 327.6 

Conf. 3 320.3 322.4 310.7 328.6 329.5 

Conf. 4 357.5 330.1 304.4 337.8 336.3 

Figure 5: The range of the difference (in Mg/ha) between the 

developed prediction models and the biomass model from CCI 

by ESA. 

 

 

Figure 6: The range difference in predicted biomass between the 

developed model and ESA's CCI biomass model. 

 

It is worth noting that the scale at which this method can be 

applied is regional and can complement more local biomass 

estimations, such as those from aerial lidar both at single-tree 

level (Pirotti et al., 2017) or other methods that use higher-

resolution optical imagery to address forest-related matters such 

as forest health (Dalponte et al., 2023) or climate-change impacts 

(Kanan et al., 2023). 

 

Including decomposed polarimetric parameters in the prediction 

models resulted in an inconsistent pattern when comparing 

predicted biomass values to ESA's CCI model. While some 

scenarios, particularly those using the dataset with configuration 

four, showed a reduction in the difference between the models' 

predictions, others exhibited an increase, especially for the 

dataset with configuration one. This suggests that these 

parameters may not significantly improve the model's ability to 

align with the CCI model's predictions. 

 

Adding the decomposed polarimetric parameter to the mangrove 

biomass prediction also did not consistently reduce or increase 

the minimum range of the difference in predicted biomass 

between the two models. Out of the four configurations, only the 

models from the dataset with configuration one demonstrated a 

reduction in the minimum range after the decomposed 

polarimetric parameter was added. Indicating that with the 

addition of the decomposed polarimetric parameter to the 

prediction process, the minimum value of the predicted biomass 

became closer relative to the CCI biomass model. 

 

5. Conclusion 

This study investigated the influence of decomposed polarimetric 

parameters derived from Sentinel-1 SAR images on predicting 

mangrove forest biomass. GEDI biomass data served as the 

reference, while SAR data acted as explanatory variables. 

Different parameter usage scenarios were explored, 

incorporating backscatter and decomposed polarimetric 

parameters individually and together. To address the horizontal 

accuracy of GEDI data, a new dataset was generated by 

resampling and aggregating the input data onto a coarser grid. 

This dataset was then used for mangrove biomass modelling. 

 

Our results found that combining decomposed polarimetric 

parameters with backscattering improves model performance, 

which is in line with previous studies. The best models used 

backscattering with uncorrected topography and average 

clustering on coarser grids, while models that used only 

decomposed parameters performed poorly, indicating limited 

standalone effectiveness. Despite the improvements, model 

performance was limited by the dual-polarization Sentinel-1 

data, which provided less phase information than the four-

polarization data. In addition, the model also generally predicted 

lower biomass values than the ESA CCI model, especially at 

higher resolutions, due to the inherent limitations of GEDI data 

and the biophysical complexity of mangroves. 

 

References 

Bimrah, K., Dasgupta, R., Saizen, I., 2022. Cultural Ecosystem 

Services of Mangroves: A Review of Models and Methods, in: 

Assessing, Mapping and Modelling of Mangrove Ecosystem 

Services in the Asia-Pacific Region. Springer, Singapore, pp. 

239–250. https://doi.org/10.1007/978-981-19-2738-6_13 

Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R.M., Thomas, 

N., Tadono, T., Worthington, T.A., Spalding, M., Murray, N.J., 

Rebelo, L.-M., 2022. Global Mangrove Extent Change 1996–

-250 -150 -50 50 150

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

Sce. 1
Sce. 2
Sce. 3
Sce. 4
Sce. 5

C
o

n
f.

 1
C

o
n
f.

 2
C

o
n
f.

 3
C

o
n
f.

 4

Maximum (Mg/ha) Minimum (Mg/ha)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
187



 

2020: Global Mangrove Watch Version 3.0. Remote Sensing, 

14(15), Article 15. https://doi.org/10.3390/rs14153657 

Bunting, P., Rosenqvist, A., Lucas, R.M., Rebelo, L.-M., 

Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., 

Finlayson, C.M., 2018. The Global Mangrove Watch—A New 

2010 Global Baseline of Mangrove Extent. Remote Sens. 10, 

1669. https://doi.org/10.3390/rs10101669 

Chen, B., Xiao, X., Li, X., Pan, L., Doughty, R., Ma, J., Dong, J., 

Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., 

Giri, C., 2017. A mangrove forest map of China in 2015: 

Analysis of time series Landsat 7/8 and Sentinel-1A imagery in 

Google Earth Engine cloud computing platform. ISPRS J. 

Photogramm. Remote Sens. 131, 104–120. 

https://doi.org/10.1016/j.isprsjprs.2017.07.011 

Cloude, S., 2007. The Dual Polarization Entropy/Alpha 

Decomposition: A PALSAR Case Study 644, 2. 

Cloude, S.R., Pottier, E., 1997. An entropy based classification 

scheme for land applications of polarimetric SAR. IEEE Trans. 

Geosci. Remote Sens. 35, 68–78. 

https://doi.org/10.1109/36.551935 

Dalimunthe, S.A., Putri, I.A.P., Prasojo, A.P.S., 2022. Depicting 

Mangrove’s Potential as Blue Carbon Champion in Indonesia, in: 

Dasgupta, R., Hashimoto, S., Saito, O. (Eds.), Assessing, 

Mapping and Modelling of Mangrove Ecosystem Services in the 

Asia-Pacific Region. Springer Nature, Singapore, pp. 167–181. 

https://doi.org/10.1007/978-981-19-2738-6_9 

Dalponte, M., Cetto, R., Marinelli, D., Andreatta, D., Salvadori, 

C., Pirotti, F., Frizzera, L., Gianelle, D., 2023. Spectral 

separability of bark beetle infestation stages: A single-tree time-

series analysis using Planet imagery. Ecol. Indic. 153. 

https://doi.org/10.1016/j.ecolind.2023.110349 

ESA, 2024a. Single Look Complex - Sentinel-1 SAR Technical 

Guide - Sentinel Online [WWW Document]. Sentin. Online. 

URL https://copernicus.eu/technical-guides/sentinel-1-

sar/products-algorithms/level-1-algorithms/single-look-complex 

(accessed 3.17.24). 

ESA, 2024b. Ground Range Detected - Sentinel-1 SAR 

Technical Guide - Sentinel Online [WWW Document]. Sentin. 

Online. URL https://copernicus.eu/technical-guides/sentinel-1-

sar/products-algorithms/level-1-algorithms/ground-range-

detected (accessed 3.17.24). 

Fatnassi, S., Yahia, M., Ali, T., Mortula, M., 2023. Polarimetric 

SAR Characterization of Mangrove Forest Environment in the 

United Arab Emirates (UAE). Int. J. Adv. Comput. Sci. Appl. 

IJACSA 14. https://doi.org/10.14569/IJACSA.2023.0140380 

Ghazali, M.F., WIkantika, K., 2021. Pre-assessment of the 

Potential of Dual Polarization of Sentinel 1 Data for Mapping the 

Mangrove Tree Species Distribution in South Bali, Indonesia, in: 

2021 7th Asia-Pacific Conference on Synthetic Aperture Radar 

(APSAR). Presented at the 2021 7th Asia-Pacific Conference on 

Synthetic Aperture Radar (APSAR), pp. 1–6. 

https://doi.org/10.1109/APSAR52370.2021.9688441 

Google Earth Engine Developer, 2024. GEDI L4A Raster 

Aboveground Biomass Density, Version 2.1 | Earth Engine Data 

Catalog [WWW Document]. Google Dev. URL 

https://developers.google.com/earth-

engine/datasets/catalog/LARSE_GEDI_GEDI04_A_002_MON

THLY (accessed 3.5.24). 

Jesus, J.B. de, Kuplich, T.M., Barreto, Í.D. de C., Gama, D.C., 

2023. Dual polarimetric decomposition in Sentinel-1 images to 

estimate aboveground biomass of arboreal caatinga. Remote 

Sens. Appl. Soc. Environ. 29, 100897. 

https://doi.org/10.1016/j.rsase.2022.100897 

Ji, K., Wu, Y., 2015. Scattering Mechanism Extraction by a 

Modified Cloude-Pottier Decomposition for Dual Polarization 

SAR. Remote Sens. 7, 7447–7470. 

https://doi.org/10.3390/rs70607447 

Joshi, N., Mitchard, E.T.A., Brolly, M., Schumacher, J., 

Fernández-Landa, A., Johannsen, V.K., Marchamalo, M., 

Fensholt, R., 2017. Understanding ‘saturation’ of radar signals 

over forests. Sci. Rep. 7, 3505. https://doi.org/10.1038/s41598-

017-03469-3 

Kanan, A.H., Pirotti, F., Masiero, M., Rahman, M.M., 2023. 

Mapping inundation from sea level rise and its interaction with 

land cover in the Sundarbans mangrove forest. Clim. Change 

176, 104. https://doi.org/10.1007/s10584-023-03574-5 

Kiyohara, B.H., Sano, E.E., 2023. Evaluation of polarimetric data 

and texture attributes in SAR images to discriminate secondary 

forest in an area of amazon rainforest. Ciênc. Florest. 33, e71235. 

https://doi.org/10.5902/1980509871235 

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T.V., Dech, S., 

2011. Remote Sensing of Mangrove Ecosystems: A Review. 

Remote Sens. 3, 878–928. https://doi.org/10.3390/rs3050878 

Kusmana, C., 2014. Distribution and Current Status of Mangrove 

Forests in Indonesia, in: Mangrove Ecosystems of Asia. Springer, 

New York, NY, pp. 37–60. https://doi.org/10.1007/978-1-4614-

8582-7_3 

Kutchartt, E., Pedron, M., Pirotti, F., 2022. Assessment of canopy 

and ground height accuracy from GEDI LIDAR over steep 

mountain areas. ISPRS Ann. Photogramm. Remote Sens. Spat. 

Inf. Sci. V-3–2022, 431–438. https://doi.org/10.5194/isprs-

annals-V-3-2022-431-2022 

LeDell, E., Poirier, S., 2020. H2O AutoML: Scalable Automatic 

Machine Learning. 

Liu, Z., Michel, O.O., Wu, G., Mao, Y., Hu, Y., Fan, W., 2022. 

The Potential of Fully Polarized ALOS-2 Data for Estimating 

Forest Above-Ground Biomass. Remote Sens. 14, 669. 

https://doi.org/10.3390/rs14030669 

Marois, D.E., Mitsch, W.J., 2015. Coastal protection from 

tsunamis and cyclones provided by mangrove wetlands – a 

review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 11, 71–83. 

https://doi.org/10.1080/21513732.2014.997292 

Pham, T.D., Yokoya, N., Bui, D.T., Yoshino, K., Friess, D.A., 

2019. Remote Sensing Approaches for Monitoring Mangrove 

Species, Structure, and Biomass: Opportunities and Challenges. 

Remote Sens. 11, 230. https://doi.org/10.3390/rs11030230 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
188



 

Pirotti, F., Adedipe, O., Leblon, B., 2023. Sentinel-1 Response to 

Canopy Moisture in Mediterranean Forests before and after Fire 

Events. Remote Sens. 15, 823. 

https://doi.org/10.3390/rs15030823 

Pirotti, F., Kobal, M., Roussel, J.R., 2017. A Comparison of Tree 

Segmentation Methods Using Very High Density Airborne Laser 

Scanner Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. 

Sci. XLII-2/W7, 285–290. https://doi.org/10.5194/isprs-archives-

XLII-2-W7-285-2017 

Pottier, J.-S.L., Eric, 2017. Polarimetric Radar Imaging: From 

Basics to Applications. CRC Press, Boca Raton. 

https://doi.org/10.1201/9781420054989 

Rahman, Lokollo, F.F., Manuputty, G.D., Hukubun, R.D., 

Krisye, Maryono, Wawo, M., Wardiatno, Y., 2024. A review on 

the biodiversity and conservation of mangrove ecosystems in 

Indonesia. Biodivers. Conserv. 33, 875–903. 

https://doi.org/10.1007/s10531-023-02767-9 

Rucha B. Dave, Koushik Saha, Amit Kushwaha, Manisha 

Vithalpura, Nidhin P., Abishek Murugesan, 2023. Analysing the 

potential of polarimetric decomposition parameters of Sentinel–

1 dual-pol SAR data for estimation of rice crop biophysical 

parameters. J. Agrometeorol. 25. 

https://doi.org/10.54386/jam.v25i1.2039 

Santoro, M., Cartus, O., 2023. ESA Biomass Climate Change 

Initiative (Biomass_cci): Global datasets of forest above-ground 

biomass for the years 2010, 2017, 2018, 2019 and 2020, v4. 

https://doi.org/10.5285/AF60720C1E404A9E9D2C145D2B2E

AD4E 

Sasmito, S.D., Basyuni, M., Kridalaksana, A., Saragi-Sasmito, 

M.F., Lovelock, C.E., Murdiyarso, D., 2023. Challenges and 

opportunities for achieving Sustainable Development Goals 

through restoration of Indonesia’s mangroves. Nat. Ecol. Evol. 7, 

62–70. https://doi.org/10.1038/s41559-022-01926-5 

Shendryk, Y., 2022. Fusing GEDI with earth observation data for 

large area aboveground biomass mapping. Int. J. Appl. Earth 

Obs. Geoinformation 115, 103108. 

https://doi.org/10.1016/j.jag.2022.103108 

Sinha, S., 2022. H/A/α Polarimetric Decomposition Of Dual 

Polarized Alos Palsar For Efficient Land Feature Detection And 

Biomass Estimation Over Tropical Deciduous Forest. Geogr. 

Environ. Sustain. 15, 37–46. https://doi.org/10.24057/2071-

9388-2021-095 

Van Zanten, B.T., Brander, L.M., Gutierrez Torres, D., 

Uyttendaele, G.Y.P., Herrera Garcia, L.D., Patrama, D., Kaczan, 

D.J., 2021. The Economics of Large-scale Mangrove 

Conservation and Restoration in Indonesia: Internal Document. 

World Bank. https://doi.org/10.1596/37605 

Zeng, P., Zhang, W., Li, Y., Shi, J., Wang, Z., 2022. Forest Total 

and Component Above-Ground Biomass (AGB) Estimation 

through C- and L-band Polarimetric SAR Data. Forests 13, 442. 

https://doi.org/10.3390/f13030442 

Zhou, G., Wang, Z., Miao, H., Jiang, C., Jing, G., 2021. Wetland 

Classification in Poyang Lake Using Dual-polarization Synthetic 

Aperture Radar Data with Feature Combination. Sens. Mater. 33, 

4607. https://doi.org/10.18494/SAM.2021.3590 

 

Appendix 

 

Configuration 1 (Dataset with grouping method in 

median and 25-meter grid size) 

Scenario MAE MSE RMSE R2 

1 38.76 2435.54 49.35 0.15 

2 38.98 2429.21 49.28 0.15 

3 43.39 2751.40 52.45 0.04 

4 38.56 2398.01 48.97 0.16 

5 38.38 2415.25 49.14 0.16 

Configuration 2 (Dataset with grouping method in 

median and 100-meter grid size) 

Scenario MAE MSE RMSE R2 

1 35.84 2091.00 45.72 0.20 

2 36.35 2126.86 46.11 0.19 

3 40.49 2459.27 49.59 0.06 

4 35.77 2070.99 45.50 0.21 

5 35.56 2089.12 45.70 0.20 

Configuration 3 (Dataset with grouping method in 

mean and 25-meter grid size) 

Scenario MAE MSE RMSE R2 

1 38.92 2399.73 48.98 0.16 

2 38.85 2396.90 48.95 0.16 

3 43.42 2749.31 52.43 0.04 

4 38.49 2385.07 48.83 0.17 

5 38.14 2405.57 49.04 0.16 

Configuration 4 (Dataset with grouping method in 

mean and 100-meter grid size) 

Scenario MAE MSE RMSE R2 

1 35.61 2062.80 45.41 0.21 

2 35.61 2092.38 45.74 0.20 

3 40.21 2433.96 49.33 0.07 

4 35.07 2048.70 45.26 0.22 

5 35.47 2060.27 45.39 0.21 

Figure A1: The Summarized statistical metrics of the trained 

models grouped by dataset configuration and parameter usage 

scenarios. 
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Figure A2: Mangrove forest prediction maps (in Mg/ha) for each parameter usage scenarios and dataset configuration for model 

training. 
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