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Abstract

In humid tropical regions, irregular illumination and cloud shadows can complicate near-surface optical remote sensing. This
could lead to costly and repetitive surveys to maintain geographical and spectral consistency. This could have a significant impact
on the regular monitoring of forest ecosystems. A novel correction method using deep learning is presented here to address the
issue in high-resolution canopy images. Our method involves training a deep learning model on one or a few
well-illuminated/homogeneous reference images augmented with artificially generated cloud shadows. This training enables the
model to predict illumination and cloud shadow patterns in any image and ultimately mitigate these effects. Using images
captured by multispectral and RGB cameras, we evaluated the method across multiple sensors and conditions. These included
nadir-view images from two sensors mounted on a drone and tower-mounted RGB Phenocams. The technique effectively
corrects uneven illumination in near-infrared and true-color RGB images, including non-forested areas. This improvement was
also evident in more consistent normalized difference vegetation index (NDVI) patterns in areas affected by uneven illumination.
By comparing corrected RGB images to the original in a binary classification task, we evaluated the method's accuracy and
Kappa values. Our goal was to detect non-photosynthetic vegetation (NPV) in a mosaic. The overall accuracy and Kappa were
both significantly improved in corrected images, with a 2.5% and 1.1% increase, respectively. Moreover, the method can be
generalized across sensors and conditions. Further work should focus on refining the technique and exploring its applicability to
satellite imagery and beyond.

1. Introduction

Partial cloud shadows and uneven illumination in drone-based
optical remote sensing, especially in the humid tropics, often
force expensive, repeated surveys, hindering stable ecosystem
monitoring (Luo et al., 2020). This issue compromises the
distinct advantage that near-surface sensors have over orbital
sensors (Richardson 2013), especially considering how cloud
cover significantly impacts the latter (Schroeder et al., 2008).
The problem is particularly challenging for near-surface
remote sensing, which often requires capturing overlapping
images of the same area to construct orthomosaics that are
created by stitching several individual images for posterior
analysis. This could often cause distortions in orthomosaics,
jeopardizing the geographic and spectral/color consistency of
the studied objects. Additionally, this problem can also cause
artifacts in several fields, including time series analysis and
land use change.

Generally, the techniques to detect and correct shadows fall
into three main categories: geometrical methods,
property-based methods, and more recently machine
learning-based methods (Kang et al., 2018). Here, we propose

a simple method to address this problem in the forest canopy 
context using a machine learning-based solution. Our method 
employs a single or few well-illuminated images to train a 
deep learning model (using the U-net architecture)
(Ronneberger et al., 2015) that detects uneven illumination 
within all other images that comprise an orthomosaic output. 
The goal is to detect and correct the partial opacity of cloud 
shadows and uneven illumination in complex forest canopies, 
possibly improving orthomosaics and reducing the need for 
data reacquisition.

To empirically test this concept, we pose the following 
questions: 1) Does this simple correction yield qualitatively 
better results than uncorrected images? 2) Will corrected 
images perform better in a simple classification task than 
uncorrected ones? 3) How general is the method—can a 
model trained on a single image from one sensor be used to 
correct images from a different sensor? We present a case 
study using drone-derived RGB images, a multispectral 
sensor, and digital Phenological cameras to evaluate the 
proposed method.
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The method begins with a single or few well-illuminated
reference images without apparent cloud shadows and with
even illumination, resampled to 128 x 128 pixels. These can
be RGB digital images or any grayscale band from a
multispectral sensor. Artificial multiplicative cloud shadows
are randomly created, featuring linear, circular, and diagonal
shadow patterns with 1500 combinations of shadow position,
size, and opacity (Fig. 1A) simulating different light
conditions. The intensity of the illumination varies randomly
within specified limits and is applied across the image to
create a gradient effect (Fig. 1A). This gradient is then
smoothed with a Gaussian blur to ensure and mimic a natural
transition of light. These masks are multiplied to the
resampled image, generating artificially shadowed or
unevenly illuminated images. It is assumed that this will
create invertible shadows or unevenly illuminated
configurations that approximate real-world shadow and
illumination patterns. We utilize these 1500 randomly created
artificial shadow masks and images to train a deep learning
model built upon the U-Net architecture, which is widely used
for semantic segmentation tasks (Ronneberger et al., 2015).
For the U-net we use 512 filters in both upsampling and
downsampling paths, using an ADAM optimizer.

We used the free resources of the Google Colab platform and
only 25 epochs
https://github.com/Nathanborg/Cloud_shadow_correction/).
In the deep learning training context, the artificially shadowed
(unevenly illuminated) versions of the reference images act as
training data, and the corresponding invertible masks serve as
the targets. Operationally, the task is framed as a regression
problem to predict the masks (both shadowed and
over-illuminated areas). Since the model is trained on one or a
few images with similar irradiance/illuminations conditions, it
also functions as a mean correction, approximating the
average values of the reference images. These features allow
the model to detect and correct illumination in any real-world
image by normalizing them to a reference image. It accurately
identifies and adjusts large shaded areas, such as true cloud
shadows, while ignoring individual crown shadows, thus
effectively reducing the impact of cloud shadow interference
and uneven illumination. Once the trained model predicts the
best multiplicative shadow mask for each real-world image
rescaled to 128 x 128 pixels, the shadow mask is resampled
up to the original image shadow size. The correction is then
applied by dividing the original image by the resized shadow
mask. This process is performed on the individual images
before creating an orthomosaic in the case of drone imagery.

To test this concept qualitatively and address our first
question, having an idea of the method's effectiveness, we
applied the method in two distinct contexts: first, to
near-infrared images (NIR, from red-edge Micasense sensor)
impacted by uneven illumination and cloud shadows,
assessing the subsequent effects on the individual images and
in orthomosaics derived from the corrected images (Fig. 1B);
and second, to RGB images collected with a FLIR Duo Pro R
camera (Fig. 1C). For the NIR image training, we visually
identified a single image free of cloud shadows with even
illumination from a flight conducted in December 2022 over
Manaus, Brazil. The flight conditions were partially cloudy, a

typical scenario in the Brazilian Amazon during the wet
season, where atmospheric conditions often rapidly change,
resulting in uneven illumination. To this single image we
applied the 1500 artificial shadow patterns and a U-Net model
was trained to predict the shadow masks. The training process
takes about 8 minutes for 25 epochs for 3-channel images and
about 6 minutes for single grayscale images in the T4 GPU on
google Colab. The trained model is then used to correct all
other images within the flight as explained above in the case
of the grayscale near-infrared image. A similar procedure was
also used to train the RGB bands of the FLIR Duo Pro R
camera; however, in this case, a tensor (input_size = (128,
128, 3)) incorporating all three channels was used for training.

We further compared geographically matched multispectral
orthomosaics, both uncorrected and corrected, in the context
of a common problem in remote sensing: spectral unmixing.
Spectral unmixing is a process used in remote sensing to
decompose the pixel reflectance values in an image into
fractions of constituent materials, referred to as endmembers
(Ponzoni, 2019). We collected five pure endmembers of each
shadow, wood and leaves in both corrected and uncorrected
radiance images (Images were transformed in radiance using
Micasense utils - https://micasense.github.io/). For this task,
we utilized the NIR, Red, and the normalized difference
vegetation index (NDVI) as inputs. Using the R package
RStoolbox (Leutner et al., 2024) and the Multiple Endmember
Spectral Mixture Analysis (MESMA) function we determined
the percentage of each component per pixel. The unmixed
pixels were then plotted in a false-color composite with red
representing non-photosynthetic vegetation (NPV), green
indicating vegetation, and blue denoting shadow.

To quantitatively test the method and address our second
question in a real-world scenario, we analyzed a total of 9
images with cloud shadows and uneven illumination captured
by the FLIR Duo Pro R RGB camera (Fig. 3). These images
were examined before and after correction in a binary
classification problem involving Non-Photosynthetic
Vegetation (NPV) versus Green Vegetation and Shadow
detection. This is a common problem in ecological and
agricultural applications of near surface remote sensing. We
analyzed the uneven illuminated images, applied our
correction and created a mosaic with the corrected images,
mirroring it with a mosaic of the uncorrected images to ensure
that every pixel in both mosaics was matched. We mosaicked
the 9 images using the same 1% linear stretching (Fig. 3 A,
B). We then manually collected 500 pixels visually identified
as NPV (Non-Photosynthetic Vegetation) and 500 pixels
identified as green vegetation or shadows. This visual
identification was done using the uncorrected mosaic to avoid
any sort of bias with the person identifying the pixels. After
that, the same mirrored pixels were retrieved from the
corrected mosaic. We calculated two indices: the Green
Chromatic Coordinate (GCC) (Eq. 1) as per Woebbecke et al.
(1995), and the Wood index (WDX) (Eq. 2), to increase the
band space utilized alongside the R, G, and B channels for
training and testing the classifier model. For this purpose, we
selected the Random Forest algorithm, a widely-used machine
learning algorithm for classification tasks, particularly in
tabular data (Liaw & Wiener 2002).

2. Methods
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Figure 1. A) Schematic example of the training process, specifically, the creation of a large number of candidate artificial shadow shapes to match
natural shadows that can then be removed by inversion of the best-matched predicted illumination/shadow, B) Near-infrared orthomosaic

reflectance image before and after correction of its input images. C) Examples of individual images before and after correction.

(1)𝐺𝐶𝐶 =  𝐺/(𝑅 + 𝐺 + 𝐵)

(2)𝑊𝐷𝑋 =  (𝐵 + 2 * (𝑅)) − 𝐺  

Where G = Green,
B= Blue
R = Red channels

We then conducted an iterative process for the validation
process, consisting of 200 iterations of the 1000 collected
pixels for each mosaic. During each iteration, 70% of the data
is used to train a random forest model, while the remaining
30% was used for testing, for both the corrected and
uncorrected image mosaics. The iterative approach was
applied to evaluate the generalizability of the classification
model across 200 iterations. Each iteration involved a random
stratified partitioning of the dataset into training (70%) and
testing (30%) subsets using the createDataPartition function

from the caret package in R (Khun 2008). For this study, the
hyper parameters of the random forest were not specifically
tuned and were left at their default settings. Predictive
accuracy and the Kappa statistic were calculated for each
iteration by applying the trained model to the corresponding
testing subset and assessing the predictions against the actual
target labels using a confusion matrix. This iterative testing
framework aimed to robustly assess the model's performance
across varying subsets of the data. We then compare the
Kappa and accuracy values between the corrected vs
uncorrected pixels to determine the impact of image
correction on classification performance. We performed t tests
to test differences in the averages accuracies and kappa.
Additionally, we compared histograms between the corrected
and uncorrected mosaics to visually assess the distribution of
pixel values and the effect of the correction process.
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To address our third question—whether a model trained with
one sensor can be used to correct images from other sensors
and different contexts, such as varying viewing angles—we
utilized a model trained with near-nadir images from the Flir
Duo Pro R RGB, collected by a drone, to correct Phenocam
imagery captured by a Wingscape Pro model time lapse
camera installed at the top of a 66-meter tower in Manaus,
Brazil. This imagery had uneven illumination and a
completely oblique view. We also qualitatively tested whether
training with the Phenocam's own images resulted in a
visually better correction.

3. Results

Our approach of training a U-Net model on a few or single
images using artificial shadowing showed qualitatively
excellent results in detecting and correcting uneven
illumination caused by cloud shadows on unseen untrained
images for both the NIR grayscale images and the RGB
images. That is evident when comparing a NIR orthomosaic
before and after correction (Fig. 1B), for those original
images affected by uneven illumination. In addition, the
model trained on a three-band RGB image could even be
applied successfully to an area without forest (Fig. 1C). For
the grayscale images from multispectral Micasense cameras,
we also corrected both the NIR and Red bands separately to
calculate the NDVI. We then compared how the widely used
NDVI varies with and without correction in the orthomosaic
context. Although NDVI is known to be less affected by
Bidirectional Reflectance Distribution Function (BRDF)
effects or shadow effects compared to other indices,
differences in illumination can still cause several artifacts.
However, the corrected images show homogeneous NDVI
patterns(Fig.2).

Figure 2. Corrected and uncorrected orthomosaics were composed of

Red, NIR, and NDVI images from the Micasense RedEdge sensor
collected in December 2022. The images are presented in radiance with

a consistent 1% linear stretch applied. In this example, a single
well-illuminated image was used to train the model for both Red and
NIR corrections. Separate models were used to correct the Red and

NIR images for each band individually.

The unmixing process (Fig. 3) demonstrates how uneven
illumination can interfere with a simple numerical analysis
where the objective is to retrieve the proportion of materials
in pixels.

Figure 3. Corrected and uncorrected false color RGB (Red - NPV,
Green - vegetation, Blue - shadow) unmixed pixels with the same 1%
linear stretching. This figure illustrates how the corrected images could

be a problem for uneven illumination in multispectral sensors in
common unmixing problems.

Correcting these inconsistencies could also enhance the
accuracy of orthomosaics, as shown in Figure 4, where
duplicate objects are evident in images with uneven
illumination.

Figure 4. Corrected and uncorrected Red radiance images are shown in
this figure, illustrating how distortion can be problematic under uneven
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illumination in multispectral sensors, especially when stitching is
necessary to create the orthomosaic. The red circle highlights how the

leafless tree appears doubled in the uncorrected orthomosaic.

Furthermore, we demonstrate that a simple model, trained on a
single Nadir RGB image from a FLIR Duo Pro R sensor, can
effectively correct images even when those images have an
oblique view such as in Phenocam images analyzed here (Fig.
5B), reducing or eliminating saturated pixels. However, a
model trained on a single well-illuminated Phenocam image
appeared to provide even better visual correction (Fig. 5C).

Figure 5. A) Uncorrected Phenocam RGB image. The associated
histogram on the right side represents the distribution of RGB values in
the uncorrected image. B) Phenocam (Wingscapes TimelapseCam Pro)
RGB image corrected using a model trained with a single drone FLIR
Pro Duo pro RGB camera. The histogram reflects the RGB value
distribution post-correction, indicating improved color balance

compared to the uncorrected image. C) RGB image corrected using a
model trained with a single well-illuminated Phenocam image. The
histogram exemplifies the RGB values distribution after this specific

correction method.

For the quantitative analysis, corrected pixels yielded better
results than the uncorrected pixels presenting significantly
higher Kappa and accuracy values for this specific binary
classification task of NPV detection in the canopy (p < 0.01,
Fig. 6). On average kappa values were 2.5% higher and
accuracy only a modest increase of 1.1% (Fig. 7).

Several tests using up to 9 images were also conducted to train
the models for both RGB and multispectral contexts. These
tests yielded slightly better results compared to analyses
conducted using a single image. To simplify data presentation,
we opted not to include these results.

Figure 6. Comparison of uncorrected (A) vs corrected mosaic (B) and
their corresponding histograms. In this example one RGB well

illuminated image is used to train a single model. It is important to
note that every image is corrected prior to mosaicing. All images have

the same linear 1% stretching.

4. Discussion and Conclusion

We have addressed the three posed questions regarding our
image correction method. Firstly, we have confirmed that our
correction markedly improves the qualitative aspects of
images compared to their uncorrected versions for both RGB
digital cameras and multispectral cameras. Secondly, these
enhanced images exhibit better performance in a basic binary
classification task. Lastly, we have shown the possible broad
applicability of the method; a model trained on a single image
can attenuate uneven illumination in images from different
sensors. These findings highlight the method's advantages,
including increased classification accuracy, reduced
distortions in orthomosaics, and the possibility of using a
broadly applicable model across different imaging contexts.

Figure 7. A) Boxplots of Kappa and B) accuracy values for the
iteration of the random forest binary classification task for the RGB

images mosaic (see Fig. 6).
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In some cases, however, over- and under-correction has
occurred (Fig. 2, NIR corrected orthomosaic), indicating areas
for refinement. These less optimal results could be for several
reasons: our processing constraints, we have not experimented
with more complex architectures, limiting the models to a
maximum of 512 filters for the encoder and decoder in the
U-Net architecture, and using lower resolution training
images, as we resampled the images to 128x128 pixels. Also,
the simplicity of only using one image or a few images could
make it difficult for the model to generalize and identify new
patterns in untrained data. For instance, we have noticed that
in the grayscale images context, trees with a very bright
radiance are sometimes recognized as high illumination areas,
thus causing an artifact or an over-correction (Not shown).

These artifacts prompted us to test the method for both RGB
and multispectral contexts using up to 9 well-illuminated
training images. These tests showed apparently better results
compared to analyses performed with a single image avoiding
the artifacts mentioned above. However, for the sake of
simplicity in data presentation, we decided not to include
those multiple-image results here. We also found that training
RGB images using the three channels together produced more
consistent colors than training with individual channels.
However, we have not tested how the method deals with
inputs of several bands in a multispectral context and should
be further investigated.

Our findings also indicate that a model trained on one type of
sensor, such as nadir drone imagery, can apparently correct
oblique Phenocam images with uneven illumination,
confirming the model’s versatility across different sensors and
conditions. This illustrates the model's capacity to learn and
adapt to various shadow patterns, "learning" the general
underlying illumination patterns in complex canopies. Further
exploration is needed to assess the method's impact on the
spectral/color integrity of images in the context of more
complex problems such as multiple-classes classification and
tree segmentation.

We also believe this approach has the potential to extend to
detecting and correcting cloud shadows or uneven
illumination in satellite imagery. Another interesting
application of the technique in satellite remote sensing. For
example, could be empirical BRDF corrections. In this
context, training images taken at certain irradiance levels and
sun-sensor angles could be used to correct untrained images
in other sun-sensor configurations and normalize them for
further analysis. Despite the promising results from our
qualitative and quantitative tests, further testing in various
contexts is necessary. For example, it is important to
determine whether incorporating a larger set of images or
enhancing artificial shadow variability could improve the
model's robustness.

6. References:

Kang, X., Huang, Y., Li, S., Lin, H., Benediktsson, J.A., 2018.
Extended Random Walker for Shadow Detection in Very High
Resolution Remote Sensing Images. IEEE Transactions on
Geoscience and Remote Sensing, 56(2).
doi.org/10.1109/TGRS.2017.2755773

Kuhn, M., 2008. Building Predictive Models in R Using the
caret Package. Journal of Statistical Software, 28(5), 1–26.
doi.org/10.18637/jss.v028.i05

Leutner, B., Horning, N., Schwalb-Willmann, J., Mueller, K.,
2024. RStoolbox: Remote Sensing Data Analysis. R package
version 1.0.0, CRAN.R-project.org/package=RStoolbox

Liaw, A., Wiener, M., 2002. Classification and regression by
randomForest. R news, 2(3), 18-22.

Luo, S., Li, H., Shen, H., 2020. Deeply supervised
convolutional neural network for shadow detection based on a
novel aerial shadow imagery dataset. ISPRS Journal of
Photogrammetry and Remote Sensing, 167,
443-457.doi.org/10.1016/j.isprsjprs.2020.07.016

Ponzoni, F.J., 2019. Spectral Mixture for Remote Sensing.

Richardson, A.D., Klosterman, S., Toomey, M., 2013.
Near-surface sensor-derived phenology. In Phenology: An
integrative environmental science (pp. 413-430). Dordrecht:
Springer Netherlands.

Schroeder, W., Csiszar, I., Morisette, J., 2008. Quantifying the
impact of cloud obscuration on remote sensing of active fires
in the Brazilian Amazon. Remote Sensing of Environment,
112(2), 456-470.doi.org/10.1016/j.rse.2007.05.004

Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen,
D.A., 1995. Color indices for weed identification under
various soil, residue, and lighting conditions. Transactions of
ASAE, 38(1), 259–269. doi.org/10.13031/2013.27838

Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and
expansion of the Fmask algorithm: Cloud, cloud shadow, and
snow detection for Landsats 4–7, 8, and Sentinel 2 images.
Remote Sensing of Environment, 159,
269-277.doi.org/10.1016/j.rse.2014.12.014

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-191-2024 | © Author(s) 2024. CC BY 4.0 License.

 
196




