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Abstract 
 
There is still no reliable solution for obtaining Digital Terrain Models (DTM) under the canopy in areas with difficult access on foot. 
The difficulty lies in the configuration of the environment. This configuration does not allow access on foot to all areas of the terrain. 
In addition, the dense leaf litter complicates any photogrammetry technique. Currently, LiDAR is a technique that could help solve 
this problem. The best solution to this problem requires many samples over hostile environment and LiDAR flight simulation can be 
a good option to approximate the problem. For this reason, this research carries out a series of LiDAR flight simulations, using 
Helios++, in different types of scenes under the canopy with the aim of analysing the influence of the density of trees and the mean 
terrain slope over the number of points that bounce off the terrain. Additionally, this research enables the scientific community to 
approach the problem and guide future research based on the obtained results. 
 
 

1. Introduction 

Obtaining Digital Terrain Models (DTM) under the canopy in 
forested areas is a challenging issue. Indeed, the leaf density 
prevents the use of traditional techniques like aerial 
photogrammetry. The only two techniques that could provide 
some suitable results are long wavelength synthetic aperture 
radar (SAR) and airborne LiDAR. 
 
Synthetic aperture radar has been applied to digital elevation 
modelling using different methods, the most promising one 
being interferometry, implemented in well-known missions like 
SRTM. (Farr et al. 2007) However, most radar imaging systems 
use X- or C- band radar, i.e., short wavelength which cannot 
penetrate through the forest volume, so that the resulting 
elevation is at the canopy level and does not provide a DTM. 
Longer wavelengths have been tested. Indeed, L-band (15-30 
cm) and P-band (30-100 cm) wavelengths have a deeper 
penetration into the canopy and can reach the ground. Wide 
areas have been surveyed by airborne P-band radar in the 
Brazilian Amazon (Correia 2011), and the upcoming ESA 
Biomass mission will use a P-band radar onboard a satellite for 
the first time for the mapping of above-ground biomass and so-
called “secondary products”, including a quasi-global DTM 
even in forested áreas (Le Toan et al. 2011). 
 
Airborne LiDAR is recognized as an efficient way to obtain a 
DTM under canopy, due to the fact that part of the laser pulses 
reach the ground through openings in the foliage, which is 
sufficient to build a lower envelope by interpolating the lowest 
points and to create a DTM (Kraus y Pfeifer, 1998). Liu et al. 
(2015) studied the error of the DTM obtained from a theoretical 
and practical point of view. Sterenczak et al. (2013) studied the 
accuracy of DTM in pine forests with a pixel size of 0.5, 1, 2, 3, 
4, 5 and 10 meters, obtaining a minimum error of 0.02 cm for 

the DTM with a pixel size of 0.5 m and a maximum error of 
0.23 cm for the DTM with a cell size of 10 m. 
 
Following the previous studies, a common feeling is that Lidar 
technology seems to be able to help solve the problem, but its 
use needs to be further investigated. The main difficulties to 
bring about these types of studies are the cost of the systems, 
the difficulty in validating the data in situ and the need for 
segmentation (terrain or tree) of the points obtained in situ. 
Thus, through LiDAR flight simulations with the Helios++ 
development (Winiwarter et al., 2022) could reduce monetary 
and time costs, offering a greater capacity to segment the points 
on the terrain. 
 
Tree density and terrain slope are two variables to be taken into 
account when developing DTM from point clouds obtained by 
aerial LiDAR under the canopy; it is known the research by 
(Radhie et al., 2015) highlights the influence of tree density and 
terrain slope on the acquisition of Digital Terrain Models 
(DTM) in a forested area near an urban zone. Also, the study by 
Cățeanu and Ciubotaru (2021) concludes that one of the 
parameters in the reliability of DTMs is the density of points in 
the point cloud from which the DTM has been created; so that a 
DTM of the same area is more reliable if it is made up of more 
points that belong to the terrain than another that is made up of 
fewer (Ariza-López et al., 2018). 
 
So, the objective of our research is to analyse, through a series 
of LiDAR simulations using Helios++, the influence of tree 
density and terrain slope on the number of terrain points per 
hectare obtained. 
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2. Material and method 

The hardware employed in this research included an Intel i9-
12900KF processor, an NVIDIA RTK 3090 graphics card, and 
64 GB of RAM. For software, the tools used were QGIS, Cloud 
Compare, and Helios ++. QGIS was utilized for handling the 
DTMs, Cloud Compare was employed for processing and 
visualizing the point clouds, and Helios++ was used to simulate 
aerial LiDAR scans. 
 
The workflow of this research (Figure 1) has four steps: i) 
experiment design, ii) data preparation for the generation of 
synthetic forest scenes, iii) generation of the synthetic forest 
scenes as input to Helios++, iv) run the simulations, v) analysis 
of results. 
 

 
Figure 1. Research workflow 

 
In the experiment design i), two explanatory variables and one 
response variable were used. The two explanatory variables are 
the tree density and the average slope of the terrain. The 
response variable was the number of points that reflect off the 
terrain per hectare. 
 
The explanatory variable called tree density has three density 
levels. For this, a high density (Hd) of 700 trees/ha has been 
assumed using the equation introduced by Gadow and Kotze 
(2014). Then, a medium density (Md) of 500 trees/ha and a low 
density (Ld) of 300 trees/ha have been established. 
 
Concerning the explanatory variable called average terrain 
slope, three DTMs have been taken, matching each level 
according (Reinoso-Gordo, 2010). Thus, the terrain that has 
been classified as high slope (Hs) has an average slope of 29.5°, 
the terrain with a medium slope (Ms) has an average slope of 
16.6° and the terrain with a low slope (Ls) has an average slope 
of 3.5°. To calculate the average terrain slope, a slope raster was 
initially generated using the Horn algorithm (1981) integrated 
within QGIS. Subsequently, the mean slope was determined by 
averaging the values of all pixels within the raster. 
 
All possible combinations have been made with the two 
explanatory variables and each combination has been repeated 
three times to ensure redundancy in the experiment (Table 1). 
Thus, 3 average terrain slopes x 3 tree densities x 3 samples for 
each combination = 27 simulations have been carried out. 
 

  

 
Table 1. Experiment design 

 
The data preparation step ii) aims at generating a synthetic 
forest scene. The scene is the virtual landscape and it is 
composed of several trees and one terrain.  
 
The tree database made available to the scientific community by 
Weiser et al., in (2022) has been used. The database contains 
point clouds of 1491 trees of 22 different tree species from 
aerial and terrestrial LiDAR scans. The point cloud database is 
referenced in ETRS89 / UTM 32 N coordinates; EPSG:25832, 
ellipsoidal height, GRS80. Among all the tree species contained 
in the database, Pinus sylvestris has been chosen due to its 
presence in numerous forests in the northern hemisphere. The 
database contains 158 scanned Pinus sylvestris. Each Pinus 
sylvestris is composed of several point clouds from aerial and 
terrestrial scans. So, it has been necessary to merge the aerial 
and terrestrial scans of each Pinus sylvestris into a single point 
cloud, thus obtaining 158 point clouds; one for each Pinus 
sylvestris. Then, the reference system of the point cloud of each 
tree has been converted into a local reference system in which Z 
= 0 m is the Z of the lowest point and X = 0 m and Y = 0 m is 
the geometric centre of the points whose Z ranges between 1 
and 10 meters, which is an approximation of the trunk axis, 
since most of these points belong to the trunk (Figure 2). Once a 
point cloud has been obtained for each of the 158 Pinus 
sylvestris in a previously defined local reference system, it has 
been necessary to down sample each point cloud so that the 
RAM does not saturate during the simulation process. 
 

 
Figure 2. Example of a point cloud of a Pinus sylvestris 

 in its local reference system 
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Regarding the terrain, the database of Instituto Geográfico 
Nacional of Spain has been used. From this database, several 
sheets of the Granada area have been taken with a resolution of 
2 m x 2 m. Then, these sheets have been cut in such a way that 3 
DTMs have been obtained with a spatial dimension of 200 m x 
200 m each and with the average slope equal to that shown in  
the first step, i) experiment design, of this workflow. 
 
The next step iii) is the generation of synthetic forest scenes as 
input for Helios++. The script scene-writer.py from the pyhelios 
package, made available by the Helios++ developers on their 
GitHub, has been used to generate a file in .xml format. This 
file defines the scene that Helios++ uses as input to carry out 
the simulation. The previous script has been integrated into 
another script called random-forest.py, developed by the authors 
of this research, for the creation of synthetic forest scenes for 
Helios++ (Figure 3). Specifically, random-forest.py receives as 
input a DTM in .tif format, and a forest density value 
(trees/hectare) and generates a scene file in .xml format ready to 
simulate. The .xml file generated contains a synthetic forest 
created by randomly selecting n coordinates from the TIFF file 
(based on the input density) and placing a different Pinus 
sylvestris at each coordinate, randomly chosen from one of the 
158 Pinus sylvestris prepared in step ii). Taking into account the 
experiment design, it was necessary to generate 27 different 
scenes. 
 
As regards the simulations iv), 27 have been carried out; one for 
each scene. All simulations have been run with the Livox Mid-
70, at a constant height of 100 m above the average altitude of 
the terrain, at a constant speed of 5 m/s and using two straight 
and parallel flight paths with a separation of 50 m from the edge 
of the ground and a separation of 100 m between them.  
 
The v) results were analysed using both quantitative and 
qualitative techniques. The quantitative analysis was carried out 
using an ANOVA and the qualitative analysis was carried out 
on the basis of a graph showing the position of the trees and the 
scanned points belonging to the terrain. 
 
 
 
 

 

 
Figure 3. random-forest.py workflow 

 
 

3. Results and discussion 

The number of points resulting from the 27 simulations can be 
seen in Table 2, where each column indicates the total number 
of points (pcTotal), the number of points reaching the terrain 
(pcTerrain) and the number of points per hectare reaching the 
terrain (pcTerrain/ha) and where each row represents a 
combination of slope levels (high (sH), medium (sH) and low 
(sH)), density levels (high (dH), medium (dM) and low (dL)) 
and sample number (sam1, sam2, sam3).  
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The identification the points that have bounced off the terrain 
(pcTerrain) is immediate due to Helios++ assigns to each point 
the object in the scene that the laser bounced off to obtain it 
during the simulation process. In this way, it has been possible 
to segment the points belonging to the terrain from those 
belonging to the trees (Figure 4). This fact shows the 
segmentation potential of the tool used for the simulation: 
Helios++. 
 

 
Figure 4. Segmentation process 

 
Samples pcTotal pcTerrain pcTerrain/ha 
sH_dH_sam1 6732685 9183 2295.8 
sH_dH_sam2 6726751 8220 2055 
sH_dH_sam3 6747084 7325 1831.3 
sH_dM_sam1 6645903 58776 14694 
sH_dM_sam2 6638915 80031 20008 
sH_dM_sam3 6613647 71785 17946 
sH_dL_sam1 6423147 443215 110804 
sH_dL_sam2 6466156 418259 104565 
sH_dL_sam3 6469154 444203 111051 
sM_dH_sam1 6896444 6239 1559.8 
sM_dH_sam2 6885874 10523 2630,8 
sM_dH_sam3 6917612 4500 1125 
sM_dM_sam1 6786705 44014 11004 
sM_dM_sam2 6750855 72239 18060 
sM_dM_sam3 6785567 65874 16469 
sM_dL_sam1 6529069 390888 97722 
sM_dL_sam2 6538566 439251 109813 
sM_dL_sam3 6556312 432498 108125 
sL_dH_sam1 7060675 5012 1253 
sL_dH_sam2 7062987 5019 1254.8 
sL_dH_sam3 7087790 3223 805.75 
sL_dM_sam1 6904974 65283 16321 
sL_dM_sam2 6923814 44731 11183 
sL_dM_sam3 6943194 55298 13825 
sL_dL_sam1 6620911 337124 84281 
sL_dL_sam2 6629302 382304 95576 
sL_dL_sam3 6630984 375568 93892 

 
Table 2. Simulation results number of points reaching the field 

in different slope-density scenes 
 
An ANOVA analysis was performed to determine if there were 
differences between the means of the number of points that 
reached the terrain. To do this, the pcTerrain column was used, 
which resulted in a Two-way ANOVA balanced analysis with 3 
replicates for a significance level of α = 5%. Table 3 shows the 
result of the ANOVA analysis, where each column follows the 
Neter et al., (1996) notation, i.e.: 
- Sum sq. column: the sum of squares due to each source). 

- df: degree of freedom. 
- Mean Sq.: (Sum sq.)/df. 
- F: F-statistic, which is the ratio of the mean squares. 
- Prob>F: the p-value, is is the probability that the F- statistic 
can take a value larger than the computed test-statistic value. 
 

Source Sum Sq. df Mean Sq F p-value 
Prob>F 

slope (s) 4.22e9 2 2.11e9 9.77 0.0013 
dens (d) 8.47e11 2 4.23e11 1958.2 0 
s-d 
(interac.) 4.40e9 4 1.10e9 5.09 0.0064 

Error 3.89e9 18 2.16e8   
Total 8.59e11 26    

Table 3. Two-way ANOVA test: slope and density factors with 
three-levels partitioning 

 
In Table 3, it can be deduced from the p-values that the different 
levels of both the slope and the density produce significantly 
different amounts of points on the terrain for a significance level 
of 5%. The difference that occurs due to the density factor was 
somewhat predictable, since the greater the number of trees, the 
greater the number of points that will collide with the trees and 
will not be able to reach the terrain. However, the slope of the 
terrain was, a priori, an unknown and needed a simulation study 
to estimate its behavior. Also, there is an interaction between 
the 9 combinations resulting from the different levels of the 
factors, which gives rise to a difference in the number of points 
that reach the terrain according to these 9 combinations. 
 
Table 4 represents the influence of the slope level on pcTerrain 
and allows us to visually appreciate that the Low level has a 
mean pcTerrain value significantly different from the High and 
Medium levels. The circle indicates the mean value of the factor 
and the endpoints of each line show the limits of the 
corresponding confidence interval. 
 

 
Figure 5. Significative differences in the number of points in 

pcTerrain taking account the slope levels 
 
The representation of Figure 5 in terms of p-value can be seen 
in Table 4 which corroborates the graphical representation. 
 

Slope Level A Slope Level A p-value 
High Medium 0.4676 

High Low 0.0012 

Medium Low 0.0168 

Table 4. Slope p-value for High, medium and low levels 
 
The interaction between the 9 combinations of the density and 
slope factor levels can be analyzed from the observation of 
Figure 6. 
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Figure 6. Significative differences in the number of points in 

pcTerrain taking account the levels combination from slope and 
density 

 
Figure 6 shows what was already anticipated about the 
difference in mean value of pcTerrain depending on the density 
levels, while in slope, only at the Low level it seems to produce 
a significantly different value in pcTerrain. These results seem 
to indicate that a more in-depth study should be made on the 
influence of the slope on pcTerrain, particularly to find the 
limits of the confidence interval in which the difference is 
significant. 
 

 
a) Plan view of the pcTerrain and trees position for the 
Medium slope and High density simulation, sample 1 

 

 
b) Plan view of the pcTerrain and trees position for the 

Medium slope and Medium density simulation, sample 1 

 

 
c) Plan view of the pcTerrain and trees position for the 
Medium slope and Low density simulation, sample 1 

 
Figure 7. pcTerrain (point belonging to the terrain, in red) 

from simulation case and trees position (in white) 
 
Another result that is considered relevant to discuss is the 
geographical distribution of the points that bounce off the 
terrain and their relationship with the position of the trees in the 
forest. To this end, Figure 7 shows in red the point cloud 
resulting from the points that bounce off the terrain and in white 
the positions of the trees that make up the forest. In addition, the 
result of a sample of High density (Figure 7.a.), Medium density 
(Figure 7.b) and Low density (Figure 7.c.) is shown. 
 
It can be observed that the points belonging to the terrain are 
grouped in some positions, forming kinds of spots. In addition, 
it can be observed that these groupings occupy the positions 
where there are no trees, or at least, in the case of a continuous 
canopy, in the areas furthest from the trunks, which are less 
dense and therefore are crossed by more laser pulses. Based on 
the above, it seems reasonable that an optimal flight path could 
be drawn such that it passes through the maximum possible 
distance from all trees, in order to get holes in the canopy that 
allows to reach the terrain ground; in addition, said path could 
have numerous vertices and the use of a multirotor would be 
necessary since it is a UAV that allows for quick changes of 
direction and sense instead of a fixed wing airplane. 
Undoubtedly this is a clear change in flight strategy compared 
to the usual, which is a sweep along parallel tracks. This change 
requires some prior knowledge of the configuration of the tree 
mass on which the lidar capture is going to be carried out. 
 
 

4. Conclusions 

As expected at the beginning of this study, tree density 
significantly influences the number of points obtained on the 
ground after a LiDAR flight. 
 
Regarding the mean slope of the terrain, the greater the mean 
terrain slope, the more the laser bounces off the terrain. In 
addition, the ANOVA analysis has shown that there are 
significant differences between the Low slope with respect to 
the other two slopes and has also shown that there are no 
significant differences between the High and Medium slopes of 
the terrain. This indicates that further analysis is needed. 
 
Points belonging to the terrain as a result of the simulation are 
arranged in spots and are in the areas furthest from the trees. 
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This fact may lead to the idea that there may be an optimal 
flight path with numerous vertices and/or changes of direction 
that could be achieved with a multirotor UAV. This is proposed 
for future research. 
 
The LiDAR simulation tool called Helios++ is useful for 
performing this type of analysis due to its versatility when 
interpreting scenes composed by objects from different nature 
and because it allows segmentation work based on the bounce 
of the laser with each object defined in the scene. 
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