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Abstract 

 
The complexity of remote sensing systems makes it possible to collect huge amounts of data that public administrations often do not 

use at their full potential. The traditional forest inventories (samples and field campaigns) used to identify tree species and measure 
morphological and physiological parameters are financially burdensome and time-demanding. Thus, remote sensing can be an 
alternative used by public administration to reduce the efforts in the field and improve the quality of forest inventories and land cover 
mapping at a sustainable price. In this scenario, this work aims to bridge the gap between common inventory practices and enhanced 
forest inventories (EFI), that used lidar point clouds and GIS environments together. To support EFIs we developed and present here a 
QGIS plugin for accessing and processing 3D point clouds to enable decision-makers in the forestry sector to have easier and more 
intuitive data processing pipelines. Lidar data provides accurate and detailed information on the vertical structure of canopies and can 
provide estimated volume and biomass, as well as other parameters that are key in forest management. This plugin differs from other 

approaches in that it initiates a stream with an active R session and sends commands from QGIS with several solutions that re-use all 
intermediate steps avoiding recalculating them. This saves time and allows multiple processing threads to run in parallel, and thus test 
different combinations of input parameters to the workflow. Examples and results of the processing are given over a specific study 
area. 
 
 

1. Introduction 

Forests provide several benefits to society. They capture and 
store carbon, improve air and water quality, mitigate erosion, 
protect structures against landslides, house biodiversity, and are 
important for economic development (Trumbore et al., 2015). 
Thus, it is essential to perform forest inventories and provide 

information to forest managers, policy makers and practitioners 
about the current state of forests and the changes happening.  
 
In the last century, remote sensing (RS) systems and their 
applications have advanced. The complexity of RS systems 
makes it possible to collect huge amounts of data that public 
administrations often do not use at their full potential. The 
traditional methods (field campaigns and chemical analysis) used 
to identify tree species and measure morphological and 

physiological parameters are financially and time-demanding. 
Therefore, remote sensing can be an alternative used by the 
public administration to reduce the efforts in the field and 
improve the quality of forest inventory databases and land cover 
mapping at a sustainable price. Several public authorities in 
almost all European countries have regular acquisition of remote 
sensing data using both passive and active sensors (Nex et al., 
2015).  

 
Nowadays, it is happening an effort to integrate Lidar point 
clouds to improve forest inventories because it offers a new 
perspective on evaluating forest structures. Light Detection 
Ranging (LIDAR) is an active sensor used to describe the vertical 
structure of forests. LIDAR describes the distance to the targets 
based on the return reflection. This technology emits laser pulses 
that have small footprint and measures the 3D distribution of 

vegetation in forest canopies. It is well stablished in the literature 
the robustness and repeatability of Lidar point clouds to improve 
the estimation of forest parameters in forest inventories 

(Bauwens et al., 2016: Fassnacht et al., 2024; Kershaw et al., 
2016; White et al., 2016). 

 
In this context, the goal of this work is to bring the results of 
higher-level procedures for processing point clouds in the R 
CRAN to the more commonly used GIS environment in a user-
friendly context. To achieve this, we present a QGIS plugin for 
accessing and processing 3D point clouds to enable decision-
makers in the forestry sector to have easier and more intuitive 
access to these data. Although there are other plugins available to 
process Lidar, their functioning is often dependent on old R 

libraries and old versions of software’s like GRASS GIS that with 
time are being replaced. We try to fill the gap between 
researchers - who use coding and advanced analysis of point 
clouds - and practitioners/public administration in the forestry 
sector who are comfortable using GIS tools and raster/vector-
based data (and are not used to working with 3D point clouds).  
 
Public administration and practitioners would greatly benefit 

from using directly or indirectly 3D point clouds. Lidar 3D data 
notably provides accurate and detailed information on the vertical 
structure of canopies and can validly estimate volume and 
biomass, as well as other parameters that are key in forest 
management. Point cloud data are not usually processed by 
forester managers and forest practitioners.  
 
The R CRAN provides several packages that approach point 

cloud processing. The lidR package is, at the time of writing this 
note, one of the more commonly used R packages to process 
Lidar data. LidR is open source and implements several 
algorithms to advanced processing and visualization of airborne 
laser scanner data with emphasis on forestry applications. The 
users can calculate any metrics at individual, pixel, tree or 
stand/scale levels defined by them without conforming with 
predefined metrics like in other packages/software’s (Rousell et 

al., 2020; Pirotti et al., 2017).  
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2. Materials and Study area 

  

The QGIS framework allows plugin developers to extend the 
functionality of QGIS to several applications. The rationale is 
that many tools are available for forestry applications and Lidar 
data processing in the R CRAN environment. Thus, it would be 
useful to bridge the QGIS interface to the R CRAN tools. We use 
Python to develop a plugin that initializes an R session through 
the “subprocess” functionality and allows QGIS users to call 

specific R routines using the QGIS interface. 
 
We therefore present initial results of pipelines that are useful for 
forestry practitioners. Specifically, we show how to use the 
plugin for setting up a project environment, for extracting 
information from the Lidar data, and then for semi-automatically 
extracting tree positions and heights. This is the precursory 
required information for estimating the volume at the parcel 
level, which is the key information required by practitioners and 

public administrators to optimize the management of forests. 
  

The study area is in the Autonomous Province of Trento (Figure 
1). A mountainous region in the northern part of Italy. Only 13% 
of the territory is located below 600 m. Trento forests cover 63% 
of its territory and the species composition in terms of surface 
area are spruce (32%), beech (14%), larch (13%), and silver fir 
(11%) (Department of Civil Protection, forest, and fauna of 

Trento). 
 
 

 
 
Figure 1. Study area in the Province of Trento (Paterno, 2020). 

 
 

3. Methods 

 
There are plenty of routines in the lidR R package (Roussel et al., 
2020) that provide state of the art processing for aerial lidar data 
in forest environments, the novelty of the present study is to 
bridge the QGIS python environment with the R environment 
with a smoother approach than existing methods. The pipeline for 
processing lidar data is usually to take the point cloud files, 
usually in LAS or LAZ format, and to store them in a single 

folder, that we will call from now on the working directory (WD). 
We assume that the files have been pre-processed to remove 
outliers and are classified for ground points vs non-ground points. 
These two pre-processing steps can also be integrated in the 
proposed pipeline, but this will not be done as the main scope of 
this work is to assess forestry applications. Another reason is that 
it is reasonable to expect that public administrations or 
practitioners will make use of professional lidar aerial surveying 
services, which will provide a high-quality product to the buyers. 

 
3.1 Sub-process heuristics 

  

The following steps bridging R LidR package with QGIS are 
addressed in this work:  
 
1. create a file catalogue with all LAS/LAZ files in a user-

specified folder 

2. extract the digital terrain model (DTM)  
3. normalize the LAS files using a tin model of ground points 

from the DTM 
4. extract the canopy height model (CHM) 
5. extract tree positions and heights with a user-defined function 

to determine the variable window size. 
6. calculate tree canopy area and tree volumes with allometric 

models inserted by the user in the interface (Figure 2) 

7. extract forestry statistics in parcels - total volume, tree 
height/diameter/volume distribution statistics (mean, 
median, standard deviation, quantiles), plots. 

 
To avoid re-doing any procedure that was already carried out, 
intermediate steps are either saved in an R data file with the 
typical “rda” extension, which is read at the beginning of the 
procedure, or in spatial files (geopackage for vector data and 

GeoTIFF for raster data).  All procedures output objects have one 
of two states: either they have been processed/created, or they 
have to be. To account for different parameters (e.g. the 
resolution of the output DTM and CHM raster), for each 
parameter combination a folder will be created with all 
intermediate products. The folder name will encode the 
parameters (e.g. outputResRaster1_0MaxHeigh50_0). This 
allows the user to access the output data intuitively directly in the 
folder. A log file is also created in the folder in html format. 

Logging will include the creation of a pdf with plots and maps 
that derive from the processing and that practitioners can use in 
reports or other deliverables.  
 
3.2 File Catalogues and parallelization 

 
LAS or LAZ files in the working directory can be stored as 
catalogues in R using the lidR pipeline. This allows to easily 

parallelize the workflow, as chunks can be processed in different 
threads, thus decreasing the processing time. LidR takes care of 
the necessary buffering between tiles to avoid border effects and 
duplicated trees at the border. 
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3.3 Digital height models 

 
The CHM is basically a normalized DSM with ground points 
equal to zero and the rest of the vegetation with height above the 
ground. If the point cloud is classified according to the LAS 
specifications (The American Society for Photogrammetry & 
Remote Sensing, 2019), then only vegetation classes are used 
(class 3 to 5, respectively low to high vegetation). This is an 
important advantage as it remove buildings and human artifacts 

that might then be incorrectly mixed with trees. After 
normalization of the LAS files, the “pitfree” algorithm from 
Khosravipour et al. (2016) is used. This method considers all the 
returns from Lidar to generate a high-resolution DSM without 
great irregularities (spikes) that can compromise accuracy by 
increasing the number of undetected trees or wrongly detection 
of trees. The DSM generated with the contribution of all returns 
gives a better representation of the canopy structure. The 
advantage of using this approach is an improved treetop detection 

including small trees.   
 
3.4 Tree position and heights 

 
To detect the trees and extract the heights with the R package 
lidR we first used the functions locate_trees and the local 
maximum filter (lmf). The locate_trees function processes each 
square region of the acquisition with a buffer that ensures a 

correct identification of the trees including the ones in the edges 
of the files. The local maximum filter is point cloud based and 
locates the tree tops without using the raster. For a chosen point 
the algorithm will analyse the other points near to determine if 
the point being processed is the highest. We used the lmf with a 
variable window size because it adapts to forests that are not 
homogeneous in terms of tree size. The window size is a function 
of height. The higher trees have larger crowns thus to detect their 

treetops it is necessary to use bigger windows. The next step was 
to perform tree crown delineation using the function 
segment_trees. When applying this function, it is possible to 
choose which algorithm, raster-based or CHM based, is more 
suitable for the dataset being processed. This step is necessary if 
the user wants to calculate single trees related metrics using the 
function crown_metrics.  
 

3.5 Parcel Tree Volumes and Statistics 

 
At the end of the process, we will have trees with heights, volume 
and diameter. The latter two from allometric models that are 
input from the user. At this stage only volume is deployed, but 
future developments will see the user adding a lookup table 
(LUT) where for each tree height volumes and diameters are 
provided for different scenarios. Scenarios are related to ground 
fertility that affects the expected tree volume at a certain tree 

height. As a rule of thumb, taken a specific diameter, fertile soils 
will have taller slender trees than less fertile soils. This results in 
a tree, with a specific measured height from the lidar data, having 
very different volume depending on the scenario.  
 

4. Results 

 
4.1 User interface 

 
One of the objectives is to have the user input all the necessary 
information in a single panel. At time of writing the panel is 
defined as seen in Figure 2. 
 
4.1.1 User inputs. As the objective is to have a simple tool for 
practitioners, the inputs must be limited to only the necessary 
information. First input is the folder path with all the LAS files. 

This path will be the root path of the working directory (WD) 

where a new folder will be created with all intermediate products 
which are necessary for the processing.  
 
The second input is the resolution of the CHM that will be created 
(see methods section). This depends on the point cloud density 
and influences the detection of tree locations. 
 
The third input is a polygon vector layer that was loaded in the 

QGIS project (or a file) that represents the parcels for which to 
extract the data. This input is trivially quite important as it will 
aggregate results such as the total tree volume in the parcel and 
the volume per hectare and other forest parameters.  
 
The fourth and last input is the necessary equation to estimate the 
volume having the tree height. Lidar data will be processed to 
extract the location of each tree and the height of the tree; thus, 
we must have the allometric models to estimate the volume for 

each tree first, and then for each parcel. 
 

 
 

Figure 2. Panel interface for inserting parameters. 
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4.2 Outputs  

 
Intermediate and final outputs are saved in a subfolder of the 
working directory. Intermediate files of interest for the 
practitioner are the following: (i) the tiles covered in each LAS 
lidar tile - figure 3, (ii) digital height models, both the DTM and 
CHM - figure 4 (iii) tree positions with tree heights - figure 5 and 
(iv) final per-parcel statistics - figure 6. 
 

4.2.1 Tiles. The catalogue file is used in LidR to organize 
multiple LAS files in a way as to process them separately. This 
helps with memory allocation and can potentially lead to parallel 
processing in a single or multiple machines. The proposed 
procedure opens the catalogue produced in R from the LidR 
processing in QGIS (Figure 3). 
 

 
 

Figure 3. Visual representation of the LAS cataloque from LidR 
in QGIS. 

 
4.2.2 Canopy and terrain height models. Canopy and terrain 
height models are intermediate products used to determine tree 
positions and tree heights, as well as other vertical metrics, as 
well as canopy size, which is known to be a valid covariate for 
predicting volume and biomass. Figure 4 shows the automated 

product at 1 m ground sampling distance. 
 

 
 

Figure 4. Canopy height model created automatically for all 

tiles. 
 
4.3 Tree position and heights 

 
Tree-based forest volume estimation is based on the detection of 
trees and their heights. This is done from Lidar data by local 
maxima calculation. Allometric models are then used to estimate 
volume from the tree heights.  Results are then aggregated at 

parcel level to get statistics that can be used to support decision 

making and forest management. Figure 5 shows a detail of tree 

height frequency distribution on a specific area, and the overall 
tree height map. This can be used also for cross-validating results 
using field campaigns to check if the extracted tree height 
corresponds to the values measured from the lidar point cloud. 
 

 

 
 

Figure 5. Top - tree height distribution of frequencies; bottom - 
total tree height map. 

 
4.4 Parcel volumes 

Automated processing allows also to apply allometric models 
(Figure 2) to tree heights and calculate total volume inside parcels 
applying a simple geometric predictor of intersection.  

 

 
 

Figure 6. Final volume values (m3/ha) for each parcel. 
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This aggregation is useful to practitioners that aim at knowing the 

volume or biomass in a specific area, for management purposes. 
Allometric models are species-specific and also location-
specific. In this study area we applied the models for conifers 
reported in the figure 7 below.  
 

 
 

Figure 7. Example of allometric models for three different 
tariffs for conifers in the region. 

 
5. Discussion 

 
Users knowledgeable in this topic might ask why the R provider 
QGIS plugin was not used instead of this approach. The answer 

is that the R processing provider plugin is great for scripts, but 
calls a new R process every time it is used, loading a set of R 
libraries every time. Another drawback is that, at the time of 
writing, scripts in the R processing provider have some 
limitations such as not being able to save the users’ input, and not 
to load an output layer with a specific style. The idea behind this 
work is to bridge the gap between “super-users”, that can easily 
script their own processing pipeline, and “end-users” that are 

comfortable using a GIS interface only.  
 
The proposed plugins launch an R subprocess and communicates 
directly with it through stdin and stdout pipes. This makes the 
procedure smoother and allows to calculate several runs with 
different parameters to compare which are more likely to be 
correct in a specific scenario. Lidar data are nowadays becoming 
a key source of information in forestry, and rigorous methods for 

extracting parameters of interest for forestry.  
 
The CHM resolution is an input from the user which must be also 
discussed. It is a parameter which depends on the point cloud 
density available in the original LAS files. Future 
implementations will provide a preferred value of CHM 
resolution by checking LAS point density. It is trivial to say that 
if the LAS data have 1 point per square meter, a 2 m CHM is not 

ideal. If we take into consideration the Nyquist–Shannon 
sampling theorem, the CHM resolution could be at least half the 
point density (in the case of 1 point per square meter the CHM 
could sample up to 0.5  m resolution). It should be noted that this 
“oversampling” should use at least bilinear interpolation, not 
nearest neighbour, otherwise gaps in the canopy would result in 
“pits” in the CHM. This aspect can be partly ignored because the 
“pitfree” algorithm from Khosravipour et al. (2016).  
 

The estimation of forest parameters using only Lidar data without 
field samples for validation is well described in the literature 
(Ferraz et al. 2016; Puliti et al., 2020). However, there are still 
some challenges. Regarding volume estimation with Lidar, 
traditionally, it is done combining the measurements of tree 
height and DBH in allometric equations. In this study, only the 
tree heights were available. Airborne Laser Scanners (ALS) are 
capable of measuring accurate heights but do not perform well 

measuring DBH in high density forests. An alternative to 

overcome these limitations is combining ALS with terrestrial 
laser scanners (TLS) (Ali et al., 2020; Cabo et al., 2018, 
Holopainen et al., 2013).  
 
Another challenge is the sensitivity of the model at high values 
of tree heights. As can be seen in figure 7, tall trees can have very 
different volumes. Due to the nature of the equation, this results 
in a large error if tree height is overestimated. Taking figure 7 as 

an example, it is trivial to see that a tree that is 50 m tall will have 
a volume that is grossly overestimated. If this overestimation is 
done for many trees, this will propagate to the final aggregated 
statistics per parcel, thus giving wrong values and leading to 
wrong decisions. For this reason, integration with surveys that 
measure diameter can be of high importance. 
 
The use of a dataset acquired with a handheld laser scanner like 
the X120Go SLAM from Stonex that uses the Simultaneous 

Localization and Mapping (SLAM) algorithm can be an option 
to acquire precise DBH measurements and consequently improve 
the volume estimations using the QGIS plugin proposed in this 
study. The SLAM algorithm estimates the laser scanner position 
while building a high precision 2D or 3D point cloud map of the 
surroundings without a GPS (Taheri and Xia, 2021). The three 
integrated cameras are capable of acquire texture information, 
producing point clouds with colours and panoramic images. 

 
6. Conclusion 

 
In this work we reported on a new tool for QGIS to process 
remotely sensed data from aerial lidar sensors. The rationale is 
that aerial lidar in forestry is becoming a very common data 
source and is now available often to practitioners and public 
administrations. These stakeholders are becoming increasingly 

familiar with QGIS software, due to its open nature and free 
access. Less familiarity is usually the case regarding Lidar data.  
Thus, a practical and easy-to-use plugin for processing forestry-
related lidar data is likely an important added value. In particular, 
a user-friendly interface that provides the full pipeline from LAS 
files to parcels with estimated tree volume, tree locations and 
various forest metrics and statistics is the final aim of the work. 
Future developments will see an improved integration with the 

QGIS interface and a better and more intuitive way to provide 
allometric models to the workflow.   
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