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Abstract 

Using street-view imagery for interpreting diverse street-scale elements and their relationships within historical districts offers high 

efficiency and low cost for preservation and management. Scene graphs provide a structured representation of objects and their 

relationships within a scene. However, applying existing scene graph generation techniques directly to street-view imagery presents 

challenges due to the complexity of elements and narrow street spaces. This paper introduces HSSGG (Historical Street-view Scene 

Graph Generation), a predictive model that effectively identifies elements and their relationships. By incorporating an end-to-end 

Relation Transformer with the parameter-free attention and coordinate attention modules, HSSGG improves relationship prediction 

accuracy, even with limited samples, and enhances the precision of scene graph generation in complex environments. Test on 200 

panoramic images from historical districts in Beijing shows that HSSGG outperforms existing single-stage relation prediction models 

(such as RelTR and FCSGG) in accuracy and stability. These results provide valuable insights for the preservation and management 

of historical districts. 

1. Introduction

Comprehensive extraction and precise representation of 

landscape elements at a fine-grained district scale are essential 

for informed urban management (Ranzato, 2017)and resource 

optimization (Yi et al., 2022), thereby fostering the sustainable 

development of historical districts (Li et al., 2022). Comparing 

to modern urban environments, historical districts are 

characterized by unique landscape elements, including 

distinctive attributes (such as color, texture, and structure) (Yang 

et al., 2024), spatial patterns (Yang et al., 2023), and complex 

interrelationships. Predicting both the location and category of 

these elements, while also considering their semantic 

connections, presents significant challenges, particularly in the 

context of historical and cultural preservation. 

Street-view imagery offers significant advantages, such as rich 

facade information, ease of data acquisition, and strong 

timeliness, making it a valuable resource for urban scene 

analysis (Gong et al., 2018). Though previous studies on street 

view datasets have made incredible progress in feature 

extraction (Xiong et al., 2021; Yu and Ji, 2022), scene 

segmentation (Jiang et al., 2023), and target detection (Wu et al., 

2020; Xiong et al., 2021; Yu and Ji, 2022), they often fall short 

in providing deep semantic understanding of these images, 

particularly within historical context. Scene graph generation 

(SGG) is a key task in semantic scene understanding, closely 

linked to visual relationship detection. In SGG, each image is 

represented by a graph where nodes represent entities and edges 

denote the relationships between them. At present, SGG has 

been applied to urban quantification, space perception, and 

socioeconomic prediction, achieving progress in fine-grained 

classification of urban functional areas and multidimensional 

evaluation of the ‘physical + social’ urban environment. 

However, historical districts present unique challenges due to the 

multitude of landscape elements from various periods and styles, 

which are irregularly distributed, leading to highly complex 

relationships. Additionally, the narrow street spaces in these 

districts lead to significant occlusions and varying lighting 

conditions in street-view imagery. The dense street layout, with 

tightly packed structures, complicates detection and recognition 

as elements often overlap or blend into the background. Shadows 

from buildings and trees reduce visibility, while direct sunlight 

causes overexposure, obscuring key features of landscape 

elements. These challenges make historical districts difficult for 

scene analysis, emphasizing the need for robust models. 

Eeffective analyzing historical districts not only supports 

preservation efforts but also highlights the robustness and 

versatility of the developed approach to a broad range of urban 

environments. More importantly, existing annotated datasets, 

such as Visual Genome (VG) (Krishna et al., 2017)and 

COCO(Lin et al., 2014), are designed for modern streets and lack 

the necessary descriptions for landscape elements and their 

relationships in historical districts. As a result, directly applying 

existing SGG methods to historical districts is challenging, as it 

involves accurately identifying and modeling the intricate 

relationships between landscape elements in highly variable 

environments, and overcoming the inadequacy of current 

datasets to capture the unique characteristics of historical 

landscapes. 

In response to these unique challenges in scene relationship 

modeling within historical districts, this paper introduces a fully 

annotated historical street-view imagery dataset and the HSSGG 

(Historical Street-view Scene Graph Generation) model, which 

is designed to identify landscape elements and their relationships 

within historical districts with only visual appearance. 

Specifically, the model employs an end-to-end relationship 

prediction framework, the Relation Transformer(Cong et al., 

2023), to extract deeper semantic and contextual information in 

historical districts. Additionally, Parameter-Free Attention 

module (SimAM) (Yang et al., 2021)and Coordinate Attention 

module (CoordAtt) (Hou et al., 2021)are integrated to enhance 

the applicability of scene modelling in historical street scenarios. 

The key contributions of this work include: 

1. The construction of a fully annotated historical street-view

imagery dataset (i.e., historical street dataset), presenting the

unique categories and relationships of landscape elements.
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2. The development of the HSSGG model, providing an efficient 

solution for scene interpretation and relationship modeling in 

historical districts by deeply mining semantic and contextual 

information, even with limited training data. 

 

3. The challenges presented by historical districts provide a 

rigorous testing for scene generation model, where overcoming 

obstacles related to landscape elements, lighting, and object 

occlusion would indicate the model’s capacity for broader and 

more reliable application across various urban landscapes. 

 

2. Study Area and Data 

2.1 Study Area and Historical Street Dataset 

Beijing, the capital of five imperial dynasties (Liao, Jin, Yuan, 

Ming, and Qing) and the current capital of China, is located north 

of the North China Plain, covering an area of 16,410.54 km2. Its 

traditional residential areas, recognized as a World Cultural 

Heritage site, hold immense historical and cultural value. The 

local government has invested substantial efforts in preserving 

and managing these areas. 

 

 
Figure 1. Study area 

 

 

Existing public datasets lack specialized research focusing on 

historical districts. To bridge this gap, we collected and 

constructed a historical street dataset for Beijing's historical 

district, aimed at supporting the automated analysis of landscape 

elements and their relationships within complex traditional 

urban environments. Hougulouyuan Hutong, Shajing Hutong, 

and Mao'er Hutong, located in the northwest of Dongcheng 

District, are among the best-preserved ancient alleys in Beijing, 

characterized by traditional hutong features in both element 

types and spatial patterns. We collected 200 high-resolution 

panoramic street-view imageries (5760×2880) from these study 

areas using the Insta360 One X2 panoramic camera. 

 

 
Figure 2. Label the categories of images using X-AnyLabeling 

and generate annotation files in COCO format. 

 

The annotations are in the COCO dataset format, including the 

image names, bounding boxes, and category IDs, as shown in 

Figure 2-3. The rel.json file is the annotation file for 

relationships. The rel_categories field represents the relationship 

categories. 

 

 

 

 
Figure 3. The `rel.json` file contains four fields: `train`, `val`, and `test`, which represent the relationship triplets for the training, 

validation, and test sets, respectively. The `rel_categories` field represents the relationship categories. 

 

Notably, we further expanded the existing VG and COCO 

category system to accommodate the unique landscape elements 

in historical districts, adding 11 categories of historically and 

culturally significant elements in Hutongs (Table 1) and 

categorizing relationships into 8 types (Table 2). Our dataset 

includes both natural elements and artificial elements, such as 

manhole cover, plaque, and miscellaneous items. By presenting 

the unique categories and spatial distributions of landscape 

elements, the developed historical street dataset provides 

essential data for understanding the living environment of the 

historical districts. This dataset is the only dataset with annotated 

relationships in a historical street context, and will be made open 

source soon. 
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Class Name Description 

plaque The plaque mounted on the building's façade 

potted plant The potted plant along the street 

promotional signage The promotional signage displayed outside 

traditional window The traditional window with intricate wooden carvings 

traditional door The traditional door leading into the historical building 

electric bicycle The electric bicycle parked near the sidewalk 

monitor The monitor mounted on a streetlight or wall 

debris Debris scattered or piled on the street 

manhole cover The manhole cover embedded in the street 

air conditioning The air conditioning unit mounted on the exterior wall 

traditional decoration Traditional items decorating the street 

Table 1. Unique object categories in the historical street dataset compared to the COCO dataset and VG dataset. 

 

Relationship categories Examples 

on the side of traffic sign on the side of street 

on the top of plaque on the top of wall 

near debris near streetlight 

walk on people walk on street 

ride people ride electric bicycle 

stuck on promotional signage stuck on wall 

hanging from monitor hanging from streetlight 

on traditional window on wall 

Table 2. The eight relationship categories in the historical street dataset 

 

3. Methodology 

As shown in Figure 4, the HSSGG model is built on the base of 

Relation Transformer for Scene Graph Generation (RelTR) 

architecture. As the representative of state-of-the-art SGG 

method, RelTR employs coupled subject and object encoding to 

learn queries, effectively capturing dependencies between 

relationships and contextual features. These features are then 

decoded into 'subject-predicate-object' triplets using feed-

forward networks (FFNs) alongside attention heatmaps. To 

address the unique challenges of historical district analysis, the 

HSSGG model introduces SimAM and CoordAtt into the RelTR 

model. 

 

 

 

Figure 4. HSSGG Model Architecture Diagram. CSA, DVA and DEA stand for Coupled Self-Attention, Decoupled Visual Attention 

and Decoupled Entity Attention ⊕ indicates element-wise addition. 
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3.1  The SimAM module 

SimAM module calculates attention weights by treating the 

entire feature map as a whole, evaluating the importance of each 

neuron through its energy function, thereby enabling the model 

to identify key local features of landscape elements in historical 

street scenes. SimAM assesses neuron importance by defining 

an energy function and deriving its closed-form solution. The 

simplified expression for the energy function is as follows: 

 

𝑒𝑡
∗ =

4(�̂�2 + 𝜆)

(𝑡 − �̂�)2 + 2�̂�2 + 2𝜆
(1) 

 

Here, 𝑡 represents the activation value of the target neuron; �̂� 

is the mean activation value of all neurons in the current channel; 

�̂�2 represents the variance of the activation values of all neurons 

in the current channel; and 𝜆 is a regularization parameter used 

to control model complexity and prevent overfitting. 

 

The importance of each neuron can be calculated as 
1

𝑒𝑡
∗, and the 

attention weights are adjusted through the Sigmoid function, 

resulting in the optimized feature representation: 

 

�̃� = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (
1

𝐸
) ⊙ 𝑋 (2) 

 

Where 𝐸 represents the combined energy values across channel 

and spatial dimensions, and ⊙  denotes element-wise 

multiplication, 𝑋 the input feature. 

 

3.2 The CoordAtt module 

The CoordAtt module embeds spatial position information into 

channel attention to capture long-range dependencies after 

performing SimAM, thereby enhancing the model's sensitivity 

to spatial positioning within historical districts.  

 

This module firstly decomposes global pooling operation into 

two 1-D feature encoding processes, aggregating features along 

horizontal and vertical directions, respectively. Given the input 

𝑋, two spatial pooling kernels (𝐻, 1) and (1, 𝑊), are used to 

encode each channel along the horizontal and vertical 

coordinates, respectively. The output of the 𝑐 -th channel at 

height ℎ and width 𝑤 is formulated as: 

 

𝑧𝑐
ℎ(ℎ) =

1

𝑊
∑ 𝑥𝑐(ℎ, 𝑖)

0≤𝑖<𝑊

(3) 

 

𝑧𝑐
𝑤(𝑤) =

1

𝐻
∑ 𝑥𝑐(𝑗, 𝑤)

0≤𝑗<𝐻

(4) 

 

Where 𝑧𝑐
ℎ(ℎ) and 𝑧𝑐

𝑤(𝑤)  represents the output at height ℎ 

and width 𝑤 for the 𝑐-th channel, respectively. The aggregated 

feature maps from both directions are then concatenated and 

passed through a shared 1×1 convolutional transformation 

function 𝐹1  to generate direction-aware feature maps, 

expressed as: 

 

𝑓 = 𝛿 (𝐹1([𝑧ℎ , 𝑧𝑤])) (5) 

 

where[·,·]denotes the concatenation operation along the spatial 

dimensions, 𝛿 is a non-linear activation function and 𝑓 is the 

direction-aware feature map. 

 

The feature map 𝑓  is then split into two separate tensors, 

𝑓ℎ  and 𝑓𝑤 . Attention weights 𝑔ℎ  and 𝑔𝑤  are generated 

through 1×1 convolution operations (𝐹ℎ and 𝐹𝑤) with Sigmoid 

function 𝜎: 

 

𝑔ℎ = 𝜎 (𝐹ℎ(𝑓ℎ)) (6) 

 

𝑔𝑤 = 𝜎(𝐹𝑤(𝑓𝑤)) (7) 

The attention weights 𝑔ℎ  and 𝑔𝑤  are then applied to each 

channel of the input features, allowing the features at each spatial 

position to be adjusted according to global information. The final 

coordinate attention output is given by: 

 

𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) × 𝑔𝑐
ℎ(𝑖) × 𝑔𝑐

𝑤(𝑗) (8) 

 

In summary, the SimAM module focuses on capturing spatial 

details, enabling the model to identify key local features in 

complex scenes, while the CoordAtt module complements this 

by considering both local and global information during 

relationship prediction. Additionally, this complementary fusion 

of information improves prediction accuracy and consistency 

without adding computational costs, making the model 

particularly well-suited for analysing the complex spatial 

relationships in historical districts. 

 

4. Results 

4.1 Implementation Details 

Based on the developed historical street dataset, we trained the 

HSSGG model for 500 epochs on a single RTX 2080 Ti GPU. 

The batch size for the model was set to 2, with a weight decay of 

10−5, and clipping the gradient norm>0.05. The initial learning 

rates for both the Transformer and ResNet50 backbone networks 

were set to 10−4, and the learning rates are dropped by 0.1 after 

50 epochs. To mitigate overfitting on the small-sized training 

samples, the number of encoder and decoder layers in the 

Transformer was set to 3, with the triplet (decoder) and entity 

(decoder) layers configured to match. 

 

To enhance the performance of the triplet decoder, the auxiliary 

loss was incorporated into the model. The multi-head attention 

module, consisting of 8 heads, was trained with a dropout rate of 

0.1, and the model dimension d was set to 256. For all 

experiments, the number of entity queries 𝑁𝑒  and coupled 

queries 𝑁𝑡 was set to 50 and 100, respectively, while the IoU 

threshold in the triplet assignment was 0.7. 

 

For fair comparison, the parameter settings of the RelTR model 

were kept consistent with those of the HSSGG model, while the 

FCSGG model was configured according to its recommended 

settings, optimized for the Visual Genome (VG) dataset. This 

experiment employed evaluation metrics commonly used in 

natural image scene graph generation, including Recall@K 

(R@K) and mean Recall@K (mR@K). To better estimate the 

model performance on the historical street dataset, we divided 

the historical district dataset into 145 images for training, 40 

images for test, and 15 images for the validation. 

 

4.2 Quantitative Results and Comparison 

As shown in Table 3, the RelTR (first row) outperforms the 

FCSGG (second row) in the historical district scenario, with 

metrics R@20, R@50, and R@100 in scene graph detection 

exceeding those of FCSGG by approximately 0.61. The mR@20, 

mR@50, and mR@100 metrics also demonstrate an 
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improvement of about 0.14 to 0.15, suggesting RelTR has 

stronger generalization capability in the relationship prediction 

task. However, the proposed HSSGG (third row), an improved 

version of RelTR that incorporates SimAM and CoordAtt to 

better handle complex district scenes with limited training 

samples, outperforms both RelTR and FCSGG across all metrics. 

Specifically, HSSGG outperforms RelTR by 2.48 and 3.38 in 

R@50 and R@100, respectively, and shows improvements of 

0.19 to 0.18 in mR@20, mR@50, and mR@100, achieving the 

best performance. These results highlight the superior ability of 

HSSGG to model scene relationships within historical districts 

while maintaining the lightweight advantages of RelTR..

Method Scene Graph Detection (SGDET) 

R@20 R@50 R@100 mR@20 mR@50 mR@100  

 RelTR  1.92 1.92 1.92 0.81 0.87 0.96  

FCSGG 1.31 1.31 1.31 0.67 0.73 0.81  

 HSSGG  1.92 4.40 5.30 1.00 1.06 1.14  

Table 3. Performance comparison of the HSSGG with RelTR and FCSGG in terms of R@𝐾 and mR@𝐾 

 

Layer Number Scene Graph Detection (SGDET) 

Encoder Triplet Decoder R@20 R@50 R@100 

3 3 1.92 4.40 5.30 

4 4 2.54 3.49 3.49 

5 5 1.92 1.92 1.92 

6 6 2.54 3.21 4.12 

3 6 1.58 2.21 2.21 

9 9 2.81 2.81 2.81 

Table 4. Impact of the number of encoder and decoder layers on the performance 

 

Ablation Setting SGDET Params

（M） 
RelTR Simam Coordatt R@20 R@50 R@100 

√ √ × 2.12 3.86 3.86 36.35 

√ × √ 2.54 4.68 4.68 36.74 

√ × × 1.92 1.92 1.92 36.35 

√ √ √ 1.92 4.40 5.30 36.75 

Table 5. The impact of the modules on model performance, where √ indicates the module is activated, and × indicates it is 

deactivated. 

 

Query ID 181 199 50 31 117 33 28 

Captioning Streetlight on the 

side of street 

Streetlight 

on the side 

of street 

Debris on 

the side of 

street 

Debris on the 

side of street 

Monitor 

hanging 

from 

streetlight 

Debris on 

the side of 

street 

Monitor 

hanging 

from 

streetlight 

Table 6. The relevant descriptive text corresponding to the Query ID, with correct text descriptions highlighted in red. 

 

4.3 Ablation Studies 

In the ablation studies, we examined the impact of various factors 

on the model's final performance. All the ablation studies were 

performed with proposed historical district dataset. 

 

4.3.1 Number of Layers: The number of feature encoder 

layers and triplet decoder layers significantly influences the 

model's performance. As shown in Table 4, when the number of 

triplet decoder layers is set to 3, the model achieves better results, 

with R@20, R@50, and R@100 scores of 1.92, 4.40, and 5.30, 

respectively. However, increasing the number of decoder layers 

to 9 leads to a decline in performance, with R@20, R@50, and 

R@100 scores dropping to 2.81, which might be attributed to 

overfitting. 

 

4.3.2 Module Effectiveness: To evaluate the contribution of 

each module, we conducted ablation studies by deactivating 

different modules, with the results summarized in Table 5. 

Initially, we assessed the baseline RelTR model on the historical 

street dataset. Despite its competitive performance in VG 

datasets, RelTR struggles in the historical district scenario, 

achieving suboptimal R@20, R@50, and R@100 scores of only 

1.92, when trained on a small dataset. 

 

We then explore the impact of the SimAM and CoordAtt modules 

individually. When the SimAM module was added to the RelTR, 

it did not increase the number of network parameters. Moreover, 
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this module enhances the model’s ability to capture spatial details 

by computing attention weights across the entire feature map, 

focusing on key local features. As shown in Table 5 (the first row), 

activating only the SimAM module significantly improves 

performance, with an R@20 score of 2.12 and a substantial 

increase in R@50 and R@100 scores to 3.86, approximately 

doubling the performance of the baseline RelTR. 

 

Next, we assessed the CoordAtt’s effect. As shown in Table 5 

(the second row), CoordAtt significantly enhances direction-

aware and position-sensitive information, leading to improved 

scene graph quality. The CoordAtt alone improves R@20 by 

approximately 0.4 and R@50 and R@100 by around 0.8 

compared to the SimAM-only model. Notably, this enhancement 

is achieved with only a minimal increase in parameters. 

 

Finally, when both SimAM and CoordAtt are activated, the 

model’s complexity slightly increases. However, due to the 

lightweight design of both modules, the parameter increase 

remains minimal. The combined HSSGG model outperforms all 

comparison models in relationship prediction accuracy, 

particularly in the R@50 and R@100 metrics, achieving the 

highest recorded values to date, with scores of 4.40 and 5.30, 

respectively (see the fourth row of Table 5). These results 

underscore the practical value of the synergistic effect between 

the SimAM and CoordAtt modules. 

 

4.4 Qualitative Results 

Figure 5 visualized a selected scene from the historical street 

datasets. The model parameter settings are detailed in Section 4.1, 

where both the feature encoder and triplet decoder layers were 

set to 3. Due to space constraints, only high confidence samples 

are presented in Figure 6. Blue boxes are the subject boxes while 

orange boxes are the object boxes. We can generate a correct 

scene graph from the above seven triplets, as shown in Figure 7. 

 

 

Figure 5. Ground truth annotations of a selected scene from the historical street datasets. 

 

 

Figure 6. Prediction results of the relationships between landscape elements in Figure 5. Each column presents a specific query ID, 

with the top two rows displaying the heatmaps generated by HSSGG. These heatmaps illustrate the attention distribution during the 

queries, where brighter areas (highlighted in green) indicate regions most relevant to the query. 

 

Each output image consists three components: the query ID, a 

heatmap, and the corresponding scene description. In Figure 6, 

each column presents a specific query ID, with the top two rows 

displaying the heatmaps generated by HSSGG. These heatmaps 

illustrate the attention distribution during the queries, where 

brighter areas (highlighted in green) indicate regions most 

relevant to the query. For example, in the case of query ID 181, 

the model correctly identified and focused on the "streetlight" as 

delineated by the bright spot in the heatmap. 

 

In the scene description associated with the panoramic image, 

seven triplets were generated, four of which were correctly 
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Figure 7. The scene graph constructed from the correct triplets 

in Figure 6 

 

identified (highlighted in red in Table 6). These triplets include 

the subjects 'debris,' 'streetlight,' 'street,' and 'monitor'. As shown 

in Table 6, the HSSGG performs well under challenging 

historical scenes (e.g., poor lighting, panoramic image distortion, 

a wide variety of objects, and severe occlusion). The proposed 

model successfully generates sentences that recognize the 

location and category of multiple landscape elements in the scene, 

while describing relationships between them in the context of 

historical and cultural preservation. Besides commonly used 

triplets< streetlight on the side of street >, It should be noted that 

the prediction of the triplets, such as <monitor hanging from 

streetlight> indicates that the HSSGG model is capable of 

correctly understanding complex landscapes in the historical 

districts, despite 'hanging from' and 'monitor' being infrequent 

terms in the dataset. This indicates that our method not only 

effectively identifies common features but also demonstrates 

superior performance in recognizing certain unique features. 

From the visualization results, it is evident that the HSSGG 

model maintains a high level of recognition accuracy even with 

just over a hundred training samples. As the training samples in 

the proposed dataset expand, the HSSGG is expected to reach 

even higher accuracy levels in the future. 

 

5. Conclusions and Future Work 

This paper introduces a novel scene graph generation method 

specifically designed for historical districts. By integrating the 

SimAM and CoordAtt modules into the base RelTR mode, the 

proposed HSSGG effectively capturing the attributes and spatial 

distribution relationships of landscape elements at the street-level. 

Based on the historical street dataset, experimental results 

demonstrate that HSSGG can accurately predict objects and their 

interrelationships within scenes, even under limited samples. The 

model effectively describes conventional street-level element 

relationships while also capturing the unique relational 

characteristics in historical districts. Comparative experiments 

with state-of-the-art models reveal the effectiveness of the 

HSSGG in predicting element relationships within historical 

districts. 

 

Future work will focus on expanding and refining the historical 

district dataset, as well as incorporating additional attention 

modules and prior knowledge to enhance the model's 

performance under limited training conditions. 
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