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Abstract 

  

This study investigates the spectral patterns of global and local endmembers to assess urban structure estimation within Porto Alegre 

city, Brazil. Two distinct sets of endmembers were examined: one derived from global patterns acquired from 100 Landsat image 

subsets and the other from local patterns gathered across 27 analyzed images. Results reveal that the utilization of global endmember 

patterns tends to overestimate the presence of urban shadow in all analyzed images compared to estimates derived from local patterns. 

Consequently, this overestimation impacts the relative proportions of other endmembers. Despite the disparities in magnitude between 

fractions estimated with each set of endmembers, temporal variations exhibit similar interannual trends. The findings of this study 

suggest that, beyond the choice between standardized or localized models, the features that must be represented in the resulting maps 

should also be considered in the selection between global and local endmembers. 

 

 

1. Introduction 

Porto Alegre city (30°1'S, 51°13'W) has 495 km2 with around 1.3 

million inhabitants, resulting in a population density of around 

2600 inhab/km2 according to the last Brazilian census, carried out 

in 2023 (IBGE, 2024). Porto Alegre is the capital city of Rio 

Grande do Sul, Brazil's southernmost state (Figure 1). Like many 

other big cities  worldwide, Porto Alegre faces environmental and 

social challenges, such as heat island effect, air pollution and 

social inequality. This social inequality exacerbates the low 

incoming families' vulnerability to climate change impacts 

(Gonçalves et al., 2020). Porto Alegre's climate is Cfa, according 

to the Köppen classification, without a dry season and with hot 

summers. The  city is often hit by heat waves during summer 

(Stefanello et al., 2022), with temperatures close to 40oC and 

higher thermal sensation. Hence, monitoring urban afforestation 

is crucial for enhancing urban resilience to climate change by 

leveraging the benefits of vegetation presence and reducing 

vulnerability to climate stress. It also can play a role in advancing 

environmental justice by supporting a better distribution of green 

spaces within urban areas. 

 

The afforestation in the Porto Alegre city streets’ began in the 

first half of the 20th century. According to the Brazilian census 

carried out in 2010, there are trees in front of 82.7% of urban 

houses in this city (IBGE, 2024). Nevertheless, according to 

environmental activists, ten trees have been cut down every day 

in this city in recent years. One of the reasons for these cuts is 

that older trees have a large structure of stems and branches 

(Boeni and Silveira, 2019), which increases the risk of those trees 

falling on      buildings and vehicles during the intense storms that 

occur in this region every year. On the other hand, urban trees 

play an essential role in controlling temperature within urban 

areas, also affecting ambient temperature and the human 

response to heat stress (Salbitano et al., 2016). Pervious areas 

covered with vegetation maintain soil infiltration capacity, 

decreasing the impact of the urban growth on the runoff and 

contributing to effective stormwater management by mitigating 

flooding and preserving the natural hydrological cycle (Campana 

& Tucci, 2001).  

 

The use of satellite images for monitoring intra-urban vegetation 

in a systematic way is limited by the spatial resolution of the 

images. Some aspects can be monitored with moderate-

resolution images, like the phenological cycle of vegetation, 

controlled by meteorological variables, that can be monitored 

inside the urban areas using the MODIS sensor, with 250 meters 

of spatial resolution in the red and near-infrared bands (Zhang et 

al., 2003; Zhang et al., 2022). With a spatial resolution of 30 

meters and a temporal resolution of 16 days, Landsat satellite 

images are possible to identify the tree canopies (Wang, 1988; 

Nölke, 2021) with some limitations regarding the spatial 

resolution. In some cases, the Landsat images were fused with 

higher resolution images like Planet Scope, (Twumasiet al., 

2022) to improve the ability to detect isolated trees in urban areas. 

Very high-resolution imagery can be used to identify tree height 

(Tola et al., 2023) and even trees species within urban 

environments (Pinheiro et al., 2020), enabling detailed analysis 

and improved management of urban vegetation. 

 

 

Figure 1 – Location map 
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Image processing techniques, like the Linear Spectral Mixture 

Model (LSMM), also known as Linear Spectral Mixture Analysis 

(LSMA), can retrieve information at a sub-pixel level. The 

LSMM (Equation 1) considers that the response of each 

resolution unit of the image (pixel) in any spectral band is the 

linear combination of the responses of the targets (endmembers) 

that occurs inside the resolution unit on the ground (Shimabukuro 

and Smith, 1991).  

 

 
𝑟𝑖 =  ∑(𝑎𝑖𝑗𝑥𝑗) + 𝑒𝑖

𝑛

𝑗=1

 (1) 

 

Where r = pixel spectral reflectance  

a = endmember spectral reflectance  

x = proportion value of the endmember in the pixel  

e = error term  

j = number of endmembers  

i = number of spectral bands  

 

The LSMM output is one image for each endmember, called 

“fraction-images” or “abundance-images”. In an abundance 

image, each pixel presents the proportion of each endmember (xj) 

in the interior of this pixel. Also, the sum of the proportions for 

each pixel considering all the abundance-images is 100%. A 

LSMM analysis requires a priori knowledge of the spectral 

patterns of targets present in the area of interest (Heinz and 

Chang, 2001). Endmembers’ spectral patterns can be collected 

directly from the analyzed images, and this approach presents 

some advantages, such as being easy to obtain and being at the 

same scale as the image data (Quintano et al., 2012). 

 

The LSMM procedure can be used in the Landsat images in urban 

areas to estimate the urban vegetation abundance (Small, 2001), 

and to improve the classification results, using the abundance-

images with the other information derived from the images to 

map the urban trees (Lu and Weng, 2004; Lu and Weng, 2005). 

This procedure can also identify the land use urban classes, which 

differ from land cover classes usually used in regional maps 

(Guindon et al., 2004). 

 

This work aims to analyze global and local endmembers spectral 

patterns datasets, both collected directly from Landsat images, to 

estimate the built-up structures inside the urban areas in Porto 

Alegre city (Brazil) based on the LSMM analysis and Landsat 

imagery. These analyses allow a better understanding of how 

useful the global endmembers' spectral patterns are in applying 

the LSMM in different Brazilian cities in an operational way 

when compared with local endmembers' spectral patterns 

collected over each analyzed city.  

 

2. Methodology 

The analysis was made using Google Earth Engine (GEE) with 

its native Javascript interface (Gorelick et al., 2017) and Landsat-

8 (OLI sensor) imagery. All the methodological steps in the 

workflow are presented in Figure 2. A time-series imagery was 

generated with all cloud-free Landsat 8 images (USGS Landsat 8 

Level 2, Collection 2, Tier 1), acquired over Porto Alegre from 

2014 to 2021 (path/row 221/81). The selection was made based 

on the metadata selection (“cloud cover” less than 0%) and visual 

inspection, resulting in a 27-image time ‘’series. The OLI sensor 

has six optical bands, with 30 meters spatial resolution (Band 2 – 

Blue, Band 3 – Green, Band 4 – Red, Band 5 – Near infrared, 

Band 6 – Shortwave infrared, Band 7 – Shortwave infrared) 

which were used as input data for the LSMM. 

 

Figure 2. Methodology workflow 

 

Two different sets of endmembers spectral patterns were tested 

to perform the LSMM. One dataset is composed of global 

spectral patterns acquired over 100 Landsat image subsets (Small 

and Milesi, 2013) and the other dataset is composed of local 

patterns collected over Porto Alegre, using the analyzed time-

series images. Both datasets were generated by collecting 

spectral patterns based on the pure pixel concept, i.e., a pixel with 

only one target inside. The global patterns (Table 1) were 

generated by collecting spectral information over 100 subsets 

with different targets inside and the principal components 

procedure was used to identify the endmembers spectral patterns 

for vegetation, substrate and dark targets (Small and Milesi, 

2013).  

 

Three points were selected over the following longitudes and 

latitudes: (-51.228014, -30.029546) for urban shade;  

(-51.219815, -30.069096) for urban vegetation; and (-51.203262, 

-30.060039) for urban built-up structures to collect the local 

endmembers spectral patterns. These points were the same for all 

the time-series and were selected based on the visual inspection 

and user experience. The spectral patterns were collected for each 

image, and the median value of the 27 images analyzed for each 

endmember was used to perform the LSMM analysis (Table 1).  

 

The LSMM was performed to estimate the proportion of three 

endmembers, namely urban vegetation, urban shade and urban 

built-up structures over Porto Alegre city. The output was three 

images, called “abundance-images,” showing the proportion of 

each endmember within each pixel. The LSMM is implemented 

in GEE (unmixed command) and was used with the following 

restrictions: A) the sum of the fraction images generated must be 

equal to one in the same pixel; B) no fraction can be negative 

(Shimabukuro and Smith, 1991). The two endmembers’ datasets 

were used, generating two abundance-images datasets for each of 

the 27 dates analyzed, from 2014 to 2021, which were analyzed 

and compared.  
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Endmembers 
Landsat bands 

B2 B3 B4 B5 B6 B7 

Global        

Substrate 0.178 0.337 0.458 0.559 0.683 0.645 

Dark 0.019 0.010 0.005 0.007 0.003 0.002 
Vegetation 0.030 0.060 0.031 0.669 0.240 0.096 

Local       

Urban built-up 0.060 0.085 0.117 0.193 0.280 0.235 
Urban shadow 0.023 0.030 0.030 0.041 0.061 0.059 

Urban vegetation 0.018 0.035 0.023 0.302 0.100 0.038 

Table 1. Global and local endmembers reflectance spectral 

patterns values for the Landsat 8 optical bands. 

 

3. Results and discussion 

The endmembers spectral patterns (Table 1) show different 

values for each dataset (global and local) across all Landsat 

bands. To better analyze the spectral patterns a graph considering 

the central wavelength for each Landsat band is presented in 

Figure 3. Both vegetation patterns exhibit low reflectance values 

in the visible bands (lower than 0.1), a significant increase in 

reflectance in the near-infrared band, and a decrease in the 

shortwave-infrared wavelengths. The ‘urban shadow’ and the 

‘global dark’ both present very low reflectance values at all 

wavelengths. The ‘urban built-up’ and the ‘global substrate’ both 

show an increase in the reflectance as the wavelengths increase 

until the short-wave infrared. We can observe that both datasets 

show patterns for each target similar to those presented in the 

literature (Jensen, 2007). These patterns were manually searched 

for in both datasets, and in both cases, they represent most targets 

present in a satellite image.  

 

 

Figure 3. Endmembers’ reflectance spectral patterns. 

 

The values of the ‘global dark’ endmember significantly lower in 

all bands compared to ‘urban shadow’, with the difference 

increasing with wavelength (Table 2). These differences can be 

attributed to atmospheric attenuation, which is strong at infrared 

wavelengths. The global coefficients were generated using 

subsets with water target in different regions of the Earth, 

including coastal areas where it is well-documented that models 

for the atmospheric correction do not work properly (Warren et 

al., 2019). For the other two endmembers, the global set of 

endmembers has values higher than the local set of endmembers 

(Table 2). 

 

 

 

 

 

 

Endmembers 
Landsat bands 

B2 B3 B4 B5 B6 B7 

Diference       

Buil-up 0.118 0.252 0.341 0.366 0.403 0.41 

Shadow -0.004 -0.02 -0.025 -0.034 -0.058 -0.057 
Vegetation 0.012 0.025 0.008 0.367 0.14 0.058 

Table 2. Different between global and local endmembers’ 

reflectance. 

 

The Figure 4 shows the yearly variation in the abundance-images 

generated by LSMM for three different neighborhoods: 

‘Restinga’, characterized by a large vegetated area, ‘Cidade 

Baixa’, with high density built-ups structure, and ‘Bom Jesus’, 

where many trees are spread out amidst the buildings. For each 

acquired date the average value for each endmember was 

calculated for each neighborhood. Despite the differences in 

magnitude, the temporal variations in each neighborhood show 

similarities in their interannual course. In this sense, the results 

support the notion that utilizing global endmembers in 

standardized mixture models can be advantageous, enhancing 

simplicity, consistency, inclusivity, and applicability, especially 

when the abundance-images will be use as input data for a 

classification or clustering procedure (Halbgewachs et al., 2022).  

 

 

Figure 4. Estimated proportions for each endmember in all 

analysed dates for Cidade Baixa (A), Restinga (B) and 

Bom Jesus (C) neighbourhoods. 

 

As we can observe in Figure 5, despite of endmember dataset 

(global or local), the areas with vegetation as well as areas with 

built-ups structures can be well identified in the color composite, 

allowing any clustering algorithm to identify and map these two 

different urban structures. 
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Figure 5. (A) Google base-map screenshot over Porto Alegre 

city. Abundance-images color composite (“Substrate / built-up”, 

“vegetation” and “dark / shadow” endmembers mapped in red, 

green and blue channels, respectively) (B) LSMM processed 

with (B) global endmembers and (C) local endmembers. 

Landsat 8, scene 221/081, 10/dec/2021. 

 

The estimated proportion of each endmember using global 

patterns shows an overestimated ‘urban shadow’ for all analyzed 

images compared to proportions estimated using local patterns 

(Figure 4). Regarding the pixels used to define the endmember 

spectral pattern, the ‘urban shadow’ considered the same single 

pixel, over a building shadow target, collecting information from 

the 27 analyzed images. In contrast, for ‘global dark,’ the water 

pixels were considered to collect spectral information in 100 

different subsets. The water, in fact, has near zero reflectance 

value in the NIR and SWIR wavelengths, whereas urban shadow 

is not a completely dark pixel because of the diffuse solar 

radiation it receives, resulting in some reflectance being detected 

in the infrared wavelengths. In the color composites (Figure 5), 

the influence of the ‘global dark’ endmember becomes evident. 

Built-up areas are characterized by a mixture of dark and 

substrate fractions, with substrate being more prominent in areas 

featuring brilliant roofs and bare soil. 

In contrast, local endmembers are fine-tuned, optimizing 

outcomes tailored specifically for local LSMM. By accounting 

for the nuanced spectral characteristics inherent to the local 

environment, these endmembers contribute to a more precise 

understanding of the composition and distribution of targets 

within each studied area. In a detailed analysis, we can observe 

in Figure 6 the influence of the endmembers’ proportions based 

on the abundance-images color composite compared to the 

basemap (Figure 6A). Areas where both vegetation and built-up 

structures are predominant are well identified when the LSMM 

was performed using the local endmembers reflectance values 

(Figure 6C). 

 

      

Figure 6. (A) Google base-map screenshot over Restinga 

neighborhood. Abundance-images color composite (“Substrate / 

built-up”, “vegetation” and “dark / shadow” endmembers 

mapped in red, green and blue channels, respectively) (B) 

LSMM processed with (B) global endmembers and (C) local 

endmembers. Landsat 8, scene 221/081, 10/dec/2021. 
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The Table 3 presents the proportions calculated for endmembers 

using global and local coefficients for a pixel with a 

predominance of built-up structures (Point 1, long: -51.138807 / 

lat: -30.143107) and for another pixel with a predominance of 

vegetation (Point 2, long: -51.136044, lat: -30.144987) (Figure 

6B and 6C). We observe underestimation in pixels proportions 

obtained with the global coefficients. This discrepancy prevents 

the generation of maps of urban structures such as building or 

vegetation maps, based on proportion thresholds, as the estimated 

proportions do not correspond to the reality observed by the 

reference images (Figure 6A). 

 
Endmembers Point 1 Point 2 

Global    

Substrate 0.615 0.019 

Dark 0.288 0.497 
Vegetation 0.095 0.482 

Local   

Urban built-up 1 0.071 

Urban shadow 0.0 0.0 
Urban vegetation 0.0 0.929 

Table 3. Global and local endmembers proportion 

 

4. Conclusions 

This study examined two distinct spectral patterns to assess urban 

structure estimation within Porto Alegre city, Brazil: one derived 

from global patterns acquired from 100 Landsat image subsets 

and the other from local patterns gathered across 27 analyzed 

images.  

 

Results reveal that the utilization of global endmember patterns 

tends to overestimate the presence of urban shadow in all 

analyzed images compared to estimates derived from local 

patterns. Consequently, this overestimation impacts the relative 

proportions of other endmembers.  

 

Despite the magnitude differences, the temporal variations 

exhibit interannual trends. In this context, the findings endorse 

the idea that using global endmembers in standardized mixture 

models can be beneficial, improving simplicity, consistency, 

inclusivity, and applicability. In contrast, local endmembers are 

fine-tuned to optimize outcomes specifically tailored for local 

LSMM. By considering the subtle spectral features specific to the 

local environment, these endmembers enhance a more accurate 

and detailed comprehension of the materials' composition and 

distribution of materials in each studied area.  

 

Additionally, this investigation points to the importance of 

careful consideration of the features that must be represented in 

the resulting maps should guide the selection between global and 

local endmembers. Also, the processing level of the Landsat 

collections must be considered. The global coefficients were 

generated using Landsat Collection 1, which is currently 

deprecated, while the local patterns were generated using Landsat 

Collection 2.  
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