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Abstract 

 

Ecosystem conservation and restoration is recognized by the international community as a key strategy for human well-being as well 

as our planet’s health. Assessing the efficiency of actions implemented in this context is essential, as their application on the ground 

may prove challenging. In the present paper, we present a methodology for characterising vegetation regeneration. This methodology 

has been developed and tested at the scale of the Sao Paulo state. It is based on two successive steps. Firstly, annual land cover maps 

are produced with breakpoints detection and Random Forest classification. This process is performed on biophysical variables derived 

from more than 10 000 optical images (2016 – 2021 included) and 4774 reference data. Secondly, we applied an expert-based rules 

algorithm to derive land regeneration map from annual land cover time series. The distinction is made between natural and 

anthropogenic regeneration. The accuracy assessment shows an overall accuracy of more than 80% for both the annual land cover 

maps and the regeneration map. 

 

1. Introduction 
1.1 Context 

Natural ecosystems play a critical role in maintaining sustainable 

living conditions on Earth for people and wildlife (IPBES, 2019). 

However, natural resources have been largely and globally 

damaged due to deforestation practices, intensive farming and 

overgrazing. This global land degradation phenomenon affects 

over 3 billion people and over 30 percent of Earth’s arable land. 

Every year, it is estimated that 24 billion tons of fertile soil 

(IPBES, 2018) and 13 million hectares of forests (FAO, 2020) 

are lost. The scientific community has provided evidence that 

fostering natural regeneration constitutes an efficient action to 

restore high quality ecosystems and to mitigate climate change 

(Chazdon et al., 2020; Crouzeilles et al., 2017).  

 

In response, the international community committed itself to end 

deforestation and promote natural land restoration. In 2011, a 

global effort named the Bonn challenge was launched with the 

objective to bring 150 million hectares of degraded and 

deforested landscapes into restoration by 2020. In 2020, 74 

pledgers from 61 countries, 8 states and 5 associations were 

restoring 210 million hectares of degraded and deforested lands 

(Flasbarth, 2020). Based on these preliminary results, the 

objective was revised to 350 million hectares by 2030, during the 

UN Decade of Ecological Restoration (2021–2030; 

https://www.decadeonrestoration.org/). However, going beyond 

these positive figures, it is essential to estimate how effective 

rehabilitation efforts are around the world, since implementation 

on the ground may prove challenging (Frietsch et al., 2023).  

 

To do so, nine principles were proposed. Among them, one 

consists of “planning and undertaking monitoring, evaluation, 

and adaptive management throughout the lifetime of the 

restoration project or program” (Science Task Force for the UN 

Decade on Ecosystem Restoration, 2021). This aspect is even 

more important considering the long-term nature of natural land 

regeneration (Holl and Cairns, 2002).  
 
1.2 Related work 

Restoration is a key component of ecosystem resilience. In the 

field of Ecology, resilience corresponds to the capacity of an 

ecosystem to deal with disturbances and recover under 

restoration processes. A disturbance is defined as “any relatively 

discrete event in time that disrupts an ecosystem, community, or 

population structure and changes resource pools, substrate 

availability, or the physical environment” (Pickett and White, 

1985). Disturbances should be large and rare enough to 

significantly differ from the normal variability of the ecosystem. 

Restoration is defined as actions aimed at promoting the natural 

or anthropogenic regeneration of vegetation cover after 

deforestation and achieving full restoration is a long-term process 

that takes several years or decades. 

 

In this paper, we focus on monitoring areas concerned by a forest-

landscape restoration (FLR) process after being impacted by 

human activity or disasters and leading to deforestation (Chazdon 

et al., 2017). In the FLR context, the term “under restoration” 

corresponds to any measures, anthropogenic or natural, 

consisting of stopping and gradually reversing degradation into 

regeneration (Dave et al., 2019). Anthropogenic and natural 

regeneration differ particularly from successive stages from bare 

soil to full natural land recovery. On one hand, anthropogenic 

regeneration corresponds to renewal or regrowth of natural 

ecosystem that has been influenced by human activities. Whereas 

natural regeneration corresponds to natural recovery of an 

ecosystem without human interventions.  
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Earth observation (EO) data has been proven efficient in 

monitoring ecosystem restoration, since relying solely on ground 

data can be challenging (Frietsch et al., 2023). Nevertheless, its 

full potential in planning and monitoring ecological restoration 

across different levels, from individual trees to whole landscapes, 

is yet to be fully explored (Harrison et al., 2021). 

 

1.3 Problem statement 

Measuring changes in ecosystems resilience to disturbances is an 

important field of application for EO data. In their review, 

Bathiany et al. (2024) provide recommendations to remote 

sensing experts on EO data requirements and processing methods 

to accurately estimate ecosystems’ recovery rate following 

disturbances.  

 

Looking for a restoration assessment method applicable 

everywhere and continuously throughout time requires the 

consideration of methods that look for trends in EO data time-

series, taking into account permanent fluctuations related to 

natural ecosystem variability. These methods require long time-

series, at least enough to cover the recovery period after a single 

disturbance and separate seasonal changes from long-term 

change. With respect to this particular requirement, producing 

such time-series implies the use of data coming from multiple 

satellites. Consequently, this would require data processing with 

an adapted method to provide (as much as possible) a dataset that 

is homogeneous as well as consistent in space and time. In that 

context, methods that apply inversion of radiative transfer model 

on raw reflectance are well suited.  

 

Crouzeilles et al. (2019) presented a study to estimate the total 

amount of “restored forest” in the Brazilian Atlantic Forest 

between 2011 and 2017. Their approach consists of analysing 

changes in annual landuse/landcover (LULC) maps derived from 

satellite images time-series. A set of criteria was defined to 

identify restored forest. Results of their experiment determine 

key points necessary while designing a methodology for 

monitoring ecosystem recovery using EO data: 1) need to define 

a clear criteria to classify an area as restored (focus on restoration 

of native forest cover either under natural regeneration or tree 

planting); 2) use of reliable remote sensing or LULC maps with 

appropriate space and time resolution and based on standardised 

approaches to enable the use of multi-sensor images and to 

monitor restoration commitments at large scale; 3) need to define 

a robust and locally adaptable criteria to analyse remote sensing 

images or LULC maps to avoid under/over-estimation of the area 

undergoing restoration. For example, a forest could be classified 

as ‘restored’ if it is observed a minimum of three consecutive 

years: typically, this number of years of forest persistency should 

be adapted according to the type of forest and the soil-climate 

conditions (tropical, temperate, boreal climate) as these factors 

influence the forest regeneration speed. 

 

The international organisations which involve in nature 

conservation (such as International Union for Conservation of 

Nature, United Nations) are actively seeking methods to monitor 

the progress of restoration efforts in different national and 

subnational pledges. Under the Bonn Challenge, since 2017, 

government officials and implementing agencies in pilot 

countries have worked with IUCN staff to identify appropriate 

progress indicators (Dave et al., 2018; Dave et al., 2019), the 

central indicator being “the area under restoration”. However, no 

official guidelines or standard exist so far to measure these 

indicators and check progress towards the achievement of 

international restoration pledges.  

 

In this context, the objective of the paper is to propose an accurate 

and robust methodology applicable everywhere to provide a 

solution for large-scale monitoring of restored natural land 

estimates. We look for a cost-effective, automated method for 

natural land restoration that minimises expertise and supports 

large processing power requirements. More specifically, we 

present a methodology to characterise natural land restoration 

with two successive steps. Firstly, we generate annual LULC 

maps based on satellite image time series and ground data. The 

next step is to combine them to track land cover changes over 

time and identify successive stages of vegetation changes at 

scale. While developing the methodology, we made sure to work 

in close collaboration with IUCN, who are engaged in restoration 

activities and interested in diagnosing natural land regeneration, 

to better align the capabilities of EO data with user requirements. 

 

2. Study area 

The study area in this paper focuses on Sao Paulo state (Brazil, 

South America) which spans over 250000 km2. It is composed of 

two biomes (the Cerrado and the Brazilian Atlantic-Forest) and 

can be divided into three main parts (Figure 1). The narrow 

coastal area is bordered by the Serra do Mar mountains: one of 

the largest continuous primary forests of the state can be found in 

these mountains. The terrain becomes flatter toward the Paraná 

River, the most western part of the state. Inland area is mainly 

comprised of plains, with a large hydrographic network. Here, 

the vegetation is mainly composed of savannas, remaining dense 

forest patches, gallery forest and cropland. 

 

Sao Paulo state’s economy is one of Brazil's largest. It is driven 

by various industries including finance, manufacturing and 

agriculture. Agriculture plays a significant role thanks to its 

production of sugarcane, orange, coffee, cotton, corn (maize), 

rice, beans, Indian or Paraguayan tea (maté), potatoes, and 

bananas. Cattle, hogs, sheep, horses, and goats are also raised. 

 

 

Figure 1. Location of Sao Paulo state and characterization in 

terms of biomes defined by (Olson, 2020) in the Terrestrial 

Ecoregions of the World package. Esri, HERE, Garmin, © 

OpenStreetMap contributors, and the GIS user community. 

 

Due to agricultural expansion and extensive urbanisation, both 

Cerrado and Brazilian Atlantic-Forest biomes have faced 

significant deforestation and habitat fragmentation over the years 

(Calaboni et al., 2018). The Brazilian Atlantic-Forest is the most 

impacted biome in Brazil. However, there have been concerted 

efforts by both governmental and non-governmental 

organisations to preserve and restore these ecosystems. Notably, 

during the COP 21, Brazil announced the target of restoring 12 

million hectares of vegetation by 2030, which will involve 

important environmental and biodiversity monitoring challenges. 

 

For all these reasons, Sao Paulo state is an ideal study area to test 

and evaluate the land restoration assessment method described in 

this paper. 
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3. Data  

3.1 Ground truth 

For the purpose of this study, we defined seven LULC classes to 

describe the Sao Paulo landscape. This nomenclature focuses on 

vegetation types: ‘tropical moist forest’, ‘dry and secondary 

forest’, ‘plantation forest’, ‘shrubland’, ‘water’, ‘artificial’, and 

‘bare soil-low vegetation-cropland’. The reference dataset is 

composed of 4774 polygons, totalling approximately 35000 ha, 

labelled with their LULC in 2021. An effort has been made to 

ensure label repartition evenness. 

The dataset has been digitised by computer assisted photo-

interpretation based on images from Google Earth Pro version 

7.3.3.7786 (2020) and ©OneAtlas Basemap, Airbus DS (based 

on Airbus Defence & Space satellite constellation imagery). To 

ensure a good representativeness of the landscape, the study area 

was divided into 696 tiles of 2048 x 2048 pixels at 10 meters 

spatial resolution. Digitisation was carried out on 200 tiles 

randomly selected amongst these. As much as possible, each tile 

contains 20 to 30 polygons with a balanced number of polygons 

of each class. 

3.2 Remote sensing dataset 

The remote sensing dataset is a dense optical images time series 

acquired by Sentinel-2 and Landsat satellites. Sentinel-2 is a 

European mission, aiming to provide systematic global 

acquisitions of multispectral images. It is comprised of two twin 

satellites with a 5-day revisit frequency at the Equator. Sentinel-

2A was launched on 23 June 2015 and Sentinel-2B followed on 

7 March 2017. The Sentinel-2 carries an optical instrument 

payload that samples 13 spectral bands: four bands at 10 m, six 

bands at 20 m and three bands at 60 m spatial resolution. 

 

Landsat-8 and Landsat-9 were developed as a collaboration 

between NASA and the United States Geological Survey 

(USGS). Considering both satellites, the revisit frequency is 8 

days. Landsat-8 was launched on 11 February 2013 and Landsat-

9 followed on 27 September 2021. Landsat-8 and Landsat-9 each 

carry an optical instrument payload that samples 8 spectral bands 

at 30 m, and a panchromatic band at 15 m. 

 

We collected images between the 1st of June 2015 and the 1st of 

June 2022. Optical images are sensitive to clouds and cloud 

shadows. No optical data can be retrieved if weather is cloudy. 

Considering only images with less than 90% cloud cover, we 

collected 7401 Sentinel-2 and 3130 Landsat images to cover the 

Sao Paulo state. Then, we reduced the number of images to be 

processed ensuring a 95% probability of having one valid 

observation per pixel and per month. 

 

4. Method 

The proposed method to characterise and monitor natural land 

restoration using satellite images time series relies on two main 

steps: 

- Step 1: Annual LULC processing 

- Step 2: Regeneration map based on annual LULC 

 

4.1.  Annual LULC maps 

A complete processing chain was developed to classify LULC 

time series (Figure 2) (Coquet and Poilvé, 2019). It was first 

developed to monitor deforestation over tropical forests. This 

processing chain is currently being used operationally in the 

Starling service (Airbus Defence & Space, no date) and delivers 

annual basemaps at large scale. 

 

 

Figure 2. Satellite images time-series processing workflow to 

produce annual LULC maps. 
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4.1.1 Biophysical processing: First, each satellite image 

within the time-series is computed by a tool called Overland, 

developed by Airbus Defence & Space (Poilvé, 2010). The tool 

focuses on image processing and enables a complete 

characterisation of the elements which comprise a natural 

landscape, vegetation in particular, regardless of the conditions 

of acquisition. Moreover, by performing a homogenisation of the 

sensors, we minimise their effects to produce data that is 

independent from the sensor used to collect it. Our interest here 

lies in collecting information coming from different sensor 

sources that, once converted into biophysical variables, can be 

merged and compared. We do so through the inversion of 

reflectance models (SAIL/PROSPECT for modelling response of 

vegetation and LOWTRAN/MODTRAN for atmospheric 

modelling). Effects of topographic conditions are also taken into 

account using a Digital Elevation Model, here Shuttle Radar 

Topography Mission (SRTM) at 90 m spatial resolution (Jarvis 

et al., 2008). The result consists of a time-series of various 

biophysical variables which help characterise ground cover or 

vegetation: Brown Cover Fraction, Green Cover Fraction, Soil 

Cover Fraction, Leaf Chlorophyll Content, Fraction of Absorbed 

Photosynthetically Active Radiation, Leaf Area Index, Leaf 

Water Content, Vegetation Brown Ratio and Canopy Shadow 

Factor Normalised that characterises the mean roughness of 

vegetation canopy (green plus brown) through a shade factor. The 

Normalised Difference Water Index (McFeeters, 1996) and the 

Normalised Difference Fraction Index (NDFI) (Souza et al., 

2005) are also derived.  

 

 

4.1.2 Breakpoint algorithm: A breakpoint detection 

algorithm (Bai and Perron, 2003) is applied on the NDFI to check 

whether change in vegetation has occurred during the entire time-

series. NDFI is preferred due to its robustness and sensitivity to 

canopy cover. Breakpoints split the time-series into 

homogeneous segments. To reduce the amount of data, a 

compression is performed. On each segment, biophysical 

variables are fitted against a linear model and a multitude of 

features are computed such as median, quartiles, regression 

coefficients and residuals. We obtain a time-series composed of 

segments associated with their statistics on every biophysical 

variable. Working with an extensive number of observations (i.e., 

segments) that follow the same trend produces a classification 

that is more robust to the variability between each observation. 

 

4.1.3 Classification: The purpose of the classification is to 

assign a land-use class for each segment of the time-series and 

for each pixel. First, labels were retrieved from the 4774 

polygons of the ground truth dataset of LULC observed over the 

study area. Classification samples are segments intersecting 

ground truth date and spatial location, associated with its label. 

Second, learning models are performed on segments with the 

Random Forest algorithm. To produce annual LULC maps, we 

retrieved the label of the segment covering the first day of the 

year for every pixel and every year, with a 0.5 ha minimum 

mapping unit. 

 

4.2. Regeneration map 

The aim is to detect regeneration occurring during a given period 

and sustained in a reference year. We defined a nomenclature of 

three natural land regeneration types: ‘anthropogenic 

regeneration’, ‘natural regeneration’ and ‘no regeneration’.  

 

An expert-based system was developed to build a regeneration 

map from annual LULC maps. First, to address the uncertainty 

of the annual LULC maps, LULC objects too small or with low 

confidence were removed and re-labeled with the label of 

surrounding higher confidence polygons. Then, LULC classes 

were aggregated into three superclasses. ‘Natural vegetation’ 

superclass includes ‘tropical moist forest’, ‘dry and secondary 

forest’ and ‘shrubland’. ‘Forest plantation’ superclass remains 

unchanged. All other classes (‘water’, ‘artificial’, ‘bare soil-low 

vegetation-cropland’) are included in ‘All other LULC’ 

superclass. Finally, a decision rule algorithm relying on temporal 

LULC sequences and based on a conversion table (Table 1) is 

run. 

 

 

FROM 

TO 

Natural 

vegetation 

Forest 

plantation 

All other 

LULC 

Natural 

vegetation No 

regeneration 
No regeneration 

No 

regeneration 

Forest 

plantation 

All other 

LULC 

Natural 

regeneration 

Anthropogenic 

regeneration 

Table 1. Conversion table defining regeneration classes 

according LULC superclasses change 

 

A regeneration process can have various stages. The restored area 

can be bare soil, then developed into low vegetation and finally 

shrubland. So, to detect a regeneration process, we are looking 

for a significant change, from all other LULC to natural 

vegetation (for natural regeneration), or from all other LULC to 

forest plantation (for anthropogenic regeneration). As 

recommended by Crouzeilles et al. (2019), we decided to use a 

criterion to ensure the persistence of the regeneration: the site has 

to be classified as natural vegetation or forest plantation for at 

least three consecutive years. 

This regeneration detection algorithm was tested over the Sao 

Paulo state study area for the period 2016-2021. Taking into 

account these characteristics, we specified below the information 

needed to interpret the results: 

- If a regeneration was in place before the reference year 

(2021) but was damaged (for example, tree cuts in 

2020), it will be a ‘no-regeneration’. This regeneration 

is not taken into account because there is no more 

regeneration at the reference year.  

- Only significant changes happening during the 

monitored period will be detected. For example, a 

regeneration process started in 2000, with already 

matured vegetation (so no significant change during 

2016-2021), will be identified as ‘no-regeneration’. 

- Regeneration process has started less than three years 

before the reference date (2021), i.e. after 2019, will 

not be detected (the persistence criterion is not 

reached). 

- Forest plantations with fast-growing trees and 

established before 2016 will be detected as 

‘anthropogenic regeneration’ if the cut between two 

rotations happens during the monitoring period 2016-

2021. 

Lastly, for each object in the reference year’s map, the type of 

natural land regeneration it belongs to is retrieved at a 10 m pixel 

scale. 
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4.3. Validation 

The objective is to evaluate the accuracy of both annual LULC 

maps and the regeneration map. A comprehensive validation, 

through space and time was performed. We used a stratified 

random sampling protocol (Olofsson et al., 2014) facilitating 

sufficient statistical representation of each class of the map. A 

stratification is a partitioning of the study area. The classes 

determined from the maps were used as strata. A random 

sampling was performed within each stratum. According to 

Cochran's sample size formula (Cochran, 1977, eq. 5.25), a 

sample size of 900 assessment units was recommended for both 

annual LULC maps and regeneration map. Sections 4.3.1 and 

4.3.2 below show allocation made for each assessed map. 

 

The labelling of the selected samples was performed by 

computer-assisted photo-interpretation of optical imagery time-

series (using Google Earth Pro version 7.3.3.7786 (2020) and 

©OneAtlas Basemap, Airbus DS images). 

 

Following the good practices recommendations from Olofsson et 

al. (2014), for annual LULC, we reported the error matrix in 

terms of estimated area proportion using the Eq. (4) of Olofsson 

et al. (2014). The large disproportion between regeneration map 

classes forces us to report the regeneration matrix in terms of 

sample counts. 

 

4.3.1 Annual LULC maps: For each annual LULC map, we 

evaluated the accuracy of the three superclasses used as input in 

the regeneration detection algorithm: ‘natural vegetation’, ‘forest 

plantation’ and ‘All other LULC’. Nine hundred samples were 

selected per year. The initial allocation of sample units within 

each stratum was made proportionally to the stratum’s area. This 

choice was done because we wanted to evaluate the overall 

accuracy of the map. Table 2 shows the allocation after the 

points’ photo-interpretation. Some points have been removed for 

lack of usable data or re-labelled due to errors. This explains why 

the sample distribution has changed. 

 
 2016 2017 2018 2019 2020 2021 

Natural 

vegetation 
271 274 274 266 274 275 

Forest 

plantation 
74 73 71 67 75 75 

All other 

LULC 
555 551 555 564 551 548 

Table 2. Number of samples allocated by stratum for annual 

LULC map accuracy assessment after photo-interpretation 

 
4.3.2 Regeneration map: In the regeneration map, the ‘no-

regeneration’ class covers over 99 % of the study site. Thus, 

proportional allocation would not have been adequate. For this 

reason, we selected 800 samples within the ‘no-regeneration’ 

class, 100 samples from the ‘natural regeneration’ class and 100 

samples from the ‘anthropogenic regeneration’ class. To label the 

samples, we used the rules defined for the regeneration detection 

algorithm (see section 4.2). 

 
5. Results 

5.1.  Annual LULC maps 

Classification algorithm was applied to retrieve annual LULC 

maps from 2016 to 2021 (Figure 3) with the seven classes’ 

nomenclature, focusing on Sao Paulo State vegetation types. 

 

Assessment was performed on the three superclasses used in the 

regeneration map process, as well as on the seven initial classes, 

allowing to analyse intra-superclasses errors. Global precision 

metrics (overall accuracy and F-score) are good to very good. 

The overall accuracy is higher than 90% for every year and the 

F-score is higher than 0.80 for all superclasses and every year 

(Table 3). 

 

 2016 2017 2018 2019 2020 2021 

Overall 

accuracy 
91.7 93.6 91.8 94.9 93.5 93.4 

F-score 

Natural 

vegetation 
0.88 0.91 0.88 0.93 0.91 0.91 

Forest 

plantation 
0.81 0.85 0.86 0.87 0.82 0.85 

All other 

LULC 
0.95 0.96 0.95 0.97 0.96 0.96 

Table 3. Global precision metrics of LULC maps (grouped in 

superclasses) 

Accuracy remains stable over the years. We could expect better 

results for 2021 as the reference data is from 2021. But the 

homogenisation of sensors in Overland allows us to obtain 

satisfactory results on the whole time series. Results are better for 

‘natural vegetation’ than for ‘forest plantation’. 

 

Errors (omission or commission) are mostly due to vegetation 

composition and distribution characteristics. In open areas, 

dominated by herbaceous cover with sparse trees, differentiating 

cropland, low vegetation (included in the superclass ‘All other 

LULC’) and ‘shrubland’ is challenging. In closed areas mainly 

composed of trees with variable heights and more or less sparsely 

distributed, this is the ‘forest plantation’ that are confused with 

‘shrubland’. 

 

5.2.  Regeneration map 

Regeneration map for the period 2016-2021 is produced over Sao 

Paulo state (Figure 4).  

 

Using 2016 as the first year of monitoring and a threshold of three 

years to consider an area under restoration, the total area under 

restoration in 2021 is estimated to 188884 ha, with respectively 

65% and 35% of natural and anthropogenic regeneration.  

 

Then, visually, according to the nature of the regeneration, the 

polygons present a specific pattern and spatial distribution. 

‘Natural regeneration’ polygons are small and fragmented which 

makes sense as we look for hotspots of natural regeneration 

developed within a period of 3 years. They are predominantly 

located in Serra do Mar mountains, near the remaining primary 

forest. Anthropogenic regeneration polygons are larger and, 

logically, with geometric shapes since man-made. They are 

mostly located in the center of the Sao Paulo state, nearby forest 

plantations which were already in place at the beginning of the 

study period in 2016. 
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Figure 3. At the top: LULC maps over Sao Paulo state for 2016-2021 – At the bottom: 2021 LULC maps over a zoom area 

(21°53'59.45"S, 46°51'36.32"O) on the right with corresponding Pléiades imagery from 05/09/2020 on the left.  

© CNES (2020), Distribution Airbus DS  

 

An accuracy assessment was conducted on 1000 points over the 

three regeneration classes: anthropogenic regeneration, natural 

regeneration and no regeneration. Overall accuracy is good, 

reaching 0.91. Table 4 shows the F-score of each class. 

 

 F-score 

No regeneration 0.95 

Natural regeneration 0.49 

Anthropogenic regeneration 0.88 

Table 4. F-score for each class of regeneration map 

 

 

F-score is very good for ‘no regeneration’ class. For 

‘anthropogenic regeneration’, F-score is good meaning, that even 

over a short monitoring period, six years in this landscape could 

be enough to observe changes due to anthropogenic regeneration 

activities, especially for fast growing trees, such as eucalyptus. 

The remaining errors stem from the problem of accuracy in the 

classification of young forest plantations in the basemaps. In 

some areas, they are not consistently assigned to the same class 

within the monitoring period. For example, they may be wrongly 

classified as cropland or low vegetation at the beginning of the 

monitoring period and well identified at the end. In that case, 

these areas are wrongly classified as ‘anthropogenic 

regeneration’.  
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Figure 4. Regeneration map for the period 2016-2021 over Sao 

Paulo state (Brazil). 

 

Detection of ‘natural regeneration’ is less accurate with these 

areas largely over-estimated. There are two main reasons. Firstly, 

the regeneration detection algorithm is pixel-based. So, it is very 

sensitive to consistency in time of the geometric accuracy of 

annual basemaps. For example, in urban areas located next to 

forest edges, all forest pixels, wrongly classified as urban 

between 2016 and 2018 because of geometric error, are wrongly 

assigned to ‘natural regeneration’ in the regeneration map. 

Secondly, it is a consequence of classification errors between 

shrubland and cropland-low vegetation in the annual basemaps. 

For a given pixel, if the misclassification is not consistent in time, 

then there is a high risk for this pixel to be wrongly classified as 

‘natural regeneration’. 

 

Finally, we compare the spatial distribution of the regeneration 

classes obtained in the frame of our study with those from César 

et al. (2021). Results are consistent and they both led to the two 

same main conclusions. Figure 5 shows the map of natural 

regeneration rate, anthropogenic regeneration rate and sugarcane 

plantation rate on a 10-km x 10 km square grid made from our 

regeneration map. 1) There is a negative correlation between the 

location of sugarcane plantation and areas under restoration. The 

more the sugarcane plantation density is, the less is the area under 

restoration. This is mostly explained by the sugarcane practices. 

Sugarcane in Brazil is intensively conducted to ensure high 

productivity. Numerous phytosanitary treatments spread by 

aeroplanes are applied during the crop growth. After harvesting, 

fire is usually used to burn crop residue and is frequently 

uncontrolled. Both practices directly damaged land around 

sugarcane plantations, including land under regeneration. 2) 

Areas under ‘natural regeneration’ are preferentially located near 

the primary forest of Serra do Mar. 

 

6. Discussion 

Results obtained over the Sao Paulo state are satisfactory. They 

demonstrate the effectiveness of the methodology developed and 

presented in this paper for providing an operational solution for 

assessing and monitoring restorated natural land at a large scale. 

Nevertheless, the analysis also highlights improvements and 

evolutions required to be able to reach a higher accuracy in 

regeneration detection and better fit with users’ needs. 

 

 

Figure 5. Map of natural regeneration rate, anthropogenic 

regeneration rate and sugarcane plantation rate on a 10 km x 10 

km square grid. Sugarcane plantation rate was derived from the 

Mapbiomass map (MapBiomas Project - Collection 8.0 of the 

Annual Land Use Land Cover Maps of Brazil, accessed on 

May, 30 2024 through the link: 

https://storage.googleapis.com/mapbiomas-

public/initiatives/brasil/collection_8/lclu/coverage/brasil_covera

ge_2021.tif). 
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6.1.  Evolution to improve the regeneration map quality 

6.1.1 Increase length of the satellite images time-series: In the 

context of this work, we were constrained to measure restoration 

between 2016 and 2021. Our study case was brought by IUCN, 

which wanted to monitor restoration activities started in 

2014/2015, necessitating the start of our monitoring process in 

2016. Moreover, the end of the monitoring is 2021, because the 

ground truth data were digitised in 2022 over the 2021 year. 

Assessing restoration over a 6-year period might not be long 

enough, in some cases, to detect the regeneration process, 

especially for natural regeneration. It would be better suited to 

consider a longer monitoring period. It should not be an issue as 

our processing is sensor agnostic and enables us to produce 

longer LULC time series.  

 

6.1.2 Reference data: The reference dataset to train the 

classification algorithm used to produce the annual LULC maps 

is from 2021. Getting ground truth data from other years of the 

monitoring period would help improve the accuracy of the annual 

LULC maps. It is even more important when increasing the 

length of the satellite images time series. Implementing this new 

development should not be an issue as the current processing 

chain enables the use of reference data over the whole time series. 

With reference data including all possible sensor configurations, 

the model should be more robust at the temporal level. 

 

6.2. Evolution to improve the regeneration map product 

6.2.1 Enrich the regeneration class characterization: 

Considering annual LULC maps with a more detailed 

nomenclature than the one used in this paper to produce the 

regeneration map would enrich the nomenclature of the 

regeneration map. For example, using the seven initial LULC 

classes would help distinguish forest regeneration from 

shrubland regeneration. However, to do so, misclassifications 

observed between shrubland, forest plantation, cropland and low 

vegetation must be reduced. 

 

6.2.2 Include an on-going regeneration class: Because we use 

a persistence criterion which does not allow us to detect 

regeneration of less than 3 years, we cannot currently capture the 

ongoing regeneration. It would be possible to flag areas where a 

change has been observed for less than 3 years as ongoing 

regeneration if natural vegetation or forest plantation is observed 

at the reference date. 

 

6.3. Update the regeneration status 

In this paper, we focussed on producing a regeneration map to 

provide, at a given date, an estimate of the areas under 

restoration, to fit with the most proprietary needs of the users. 

Nevertheless, there is a strong need to continuously monitor 

restored areas. The methodology presented here has the ability to 

compute an annual update of the regeneration status of natural 

land. However, several aspects of this monitoring process need 

to be defined including the frequency of the updates and the 

choice of satellite images time-series such as whether to include 

the period used to estimate the initial regeneration. 

 

7. Conclusion 

Ecosystem restoration is a critical issue that comes with urgent 

needs of effective monitoring solutions. Through this use case 

over the whole Sao Paulo state, we demonstrate the capability of 

the presented methodology to monitor forest landscape 

restoration through the years. Moreover, this study allows us to 

validate the processing chain ability to perform well at a large 

scale. 

 

The methodology meets the recommendation given by 

Crouzeilles et al. (2019). First, we defined clear criteria to 

classify an area as restored focusing on restoration of native 

forest-cover either under natural recovery or tree-planting. 

Second, we used a reliable methodology to produce annual 

LULC maps, utilising multi-sensor optical satellite images which 

is suitable for large scale implementation. Third, the criteria and 

the nomenclature can be adapted to the local context to avoid 

under- or over-estimation of the area undergoing restoration.  

 

The next step is to replicate the current processing chain over 

other areas to validate the methodology across various contexts 

in order to provide additional references of methodology 

performance, as well as make it available to the international 

community on a global scale. 
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