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Abstract: 

 

This study presents results regarding the estimation of two critical variables for modelling fire behaviour and fire danger: the canopy 

base height (CBH) and the canopy bulk density (CBD). Both variables have been mapped as raster datasets at a 100-meter spatial 

resolution across Europe, harmonizing data for all EU countries. Therefore, these canopy fuels are subsequently used for further 

processing regarding the identification of fire danger assessment, being a key input for forest fire prevention actions. A more in-depth 

analysis of these findings has been submitted to a journal and is currently in a revision phase. We present here a summary of the results 

and ideas for future developments. The overall study consists of estimating CBH and CBD using Earth observation products combined 

with artificial intelligence and species-specific allometric equations, applied geo-spatially using a tree species map of Europe 

encompassing the 16 most important tree species. Validation was carried out by comparing the results with higher-accuracy sampling 

methods, combining LiDAR data and field measurements in different European latitudes, typically applied on a smaller scale and with 

greater detail. Results show, as expected, a higher level of uncertainty than local methods, but they are still applicable to the European 

scale for which they were implemented. The accuracies reported in our study, when considering aggregated data on the 7 areas in 

Portugal were the following: R = 0.75, RMSE = 0.890 m, and MAPE = 54% for the mean CBH, and R = 0.93, RMSE = 0.020 kg m-3, 

and MAPE = 57% for the mean CBD.  

 

 

1. Introduction 

 

Wildfires are influenced by biophysical variables such as climate 

conditions, vegetation distribution and structure (fuel), and 

topography (Meigs et al., 2020; Wasserman and Mueller, 2023). 

These factors primarily drive fire ignitions and fire behaviour 

(Ganteaume et al., 2013), as well as fire occurrence, spread, and 

severity (Zin et al., 2022). Fire danger is predominantly caused 

by dry, hot, and windy weather conditions, which increase the 

occurrence of fires (Venäläinen et al., 2014). Ignitions are caused 

mostly by human activities, and according to Kolanek et al. 

(2021), human activities cause up to 90% of forest fires in the 

world. In Europe, wildfires are a major hazard, causing 

significant economic damage, ecological impacts, loss of human 

lives, and destruction of infrastructure (Galizia et al., 2022). 

Recent analyses show that fire events are increasing in frequency, 

intensity, and extension (Grünig et al., 2023; Giannaros and 

Papavasileiou, 2023), particularly in southern Europe, where the 

number, size, and frequency of forest fires have shown an 

increasing trend (Turco et al., 2019; Dupuy et al., 2020). Each 

year in Europe, over half a million hectares of forest resources 

are affected (Khabarov et al., 2016). Therefore, enhancing fire 

prevention is crucial to mitigating the trend of extreme wildfire 

events across Europe.  

 

For effective fire suppression planning, it is crucial to 

characterize canopy fuels and analyse the transition from surface 

to crown fire spread (Mitsopoulos and Dimitrakopoulos, 2007). 

This characterization primarily involves two attributes, such as 

the canopy base height (CBH) and the canopy bulk density 

(CBD). The CBH refers to the vertical distance from the ground 

to the bottom of the crown (Mišić et al., 2024), while the CBD 

represents the dry mass of available canopy fuel per unit of 

canopy volume (Maltamo et al., 2020; Willis et al., 2024). 

Accurately measuring these attributes is challenging due to the 

high variability of vegetation within the same area. However, 

precise data on CBH and CBD are essential for simulating forest 

fire behaviour in different software such as FARSITE (Finney, 

2004), FlamMap (Finney, 2006), Wildfire Analyst (Monedero et 

al., 2019) or Cell2Fire (Pais et al., 2021). Therefore, these 

softwares, through the geospatial data available, can provide 

simulation outputs, including the rate of spread, fire intensity, or 

flame length, among other outputs (e.g., Wu et al., 2022; 

Kudláčková et al., 2023). Despite this, there is a significant 

information gap at the pan-European level, where harmonized 

and operationally available data are needed for all EU-countries. 

 

Remote sensing can play a crucial role in providing accurate data 

on canopy fuels. Different sensors, active and passive, can be 

combined to provide the variables of CBH and CBD in local 

areas and to extrapolate to large scales (e.g., Garcia et al., 2017). 

Several studies were carried out using LiDAR data to provide 

CBH and CBD at different forest stands, which is a reliable 

approach for estimating canopy fuel attributes since LiDAR can 

penetrate the canopy and provide sub-canopy information 

(Chamberlain et al., 2021). Other works have been carried out at 

the pan-European level to determine canopy fuels. For example, 

Aragoneses et al. (2024) used the Global Ecosystem Dynamics 

Investigation (GEDI), which is a full-waveform lidar instrument 

that produces detailed 3D structures from the Earth surface, 

creating datasets on forest canopy features (Dubayah et al., 

2020). The results by the authors were satisfactory to estimate the 

canopy height, canopy cover, and CBH, but the spatial resolution 

was coarse (1 km), making it difficult to use for operative 

purposes. 
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The aim of this study was to integrate remote-sensing-derived 

products with allometric equations and artificial intelligence, and 

add spatial information regarding tree species, to predict canopy 

fuel attributes, such as CBH and CBD, at a pan-European level, 

reaching a spatial resolution of 100 m and co-registering in the 

same reference system. This data will be available on an 

operational scale to support countries lacking the necessary 

information to simulate forest fire behaviour.  

 

2. Materials  

2.1 Study area 

The study area covers all the pan-European continent, in the 

sense that all EU countries and the UK are included, as shown in 

Figure 1. Due to the availability of LiDAR data on forest 

inventory plots, we only used four countries (Portugal, Greece, 

Italy, and Norway) for the validation phase. 

 

Figure 1. Study area with validation plots in red dots. The number 

indicates the number of plots per validation area. 

 

3. Methods 

3.1  Canopy base height and canopy bulk density 

Canopy base height is the first dependent variable to be assessed, 

as it is then used to estimate canopy bulk density along with tree 

height, canopy volume, and the foliage fraction. Tree height was 

an available earth observation product from the work by Lang et 

al. (2023), while canopy volume and foliage fraction were 

estimated as products through allometric models. These models 

were species-dependent, so knowledge of the tree species in each 

100-m cell is important. For this, a 30 m resolution European tree 

species map was used (Bonannella et al., 2022). This map does 

not represent the actual present species, but the probability of the 

presence of the following 16 tree species: Abies alba Mill., 

Castanea sativa Mill., Corylus avellana L., Fagus sylvatica L., 

Olea europea L., Picea abies L.H. Karst., Pinus halepensis Mill., 

Pinus nigra J.F Arnold, Pinus pinea L., Pinus sylvestris L., 

Prunus avium L., Quercus cerris L., Quercus ilex L., Quercus 

robur L., Quercus suber L., and Salix caprea L. This map 

provided the realized distribution of these 16 tree species using 

300 variables as independent covariates to feed an AI framework 

using spatiotemporal machine learning, including a total of three 

million points to train different algorithms. 

 

Species-specific allometric equations were developed to estimate 

two specific variables: the CBH and the foliage fraction that is 

necessary for the CBD map. It should be noted that CBH depends 

not only on the species but also on the silvicultural management, 

age, and biosocial status of the tree at a specific stand density 

(Maltamo et al., 2018). Foliage fraction is also correlated with the 

above-mentioned factors, with tree species explaining a lot of the 

variance in the models, but they are not the only covariate. The 

CBD also depends on the amount of overlap between crowns in 

the vertical canopy profile and tree height and crown ratios (Ex 

et al., 2016). Mapping microclimatic and local ecological factors 

are also partly correlated to foliage fraction, but mapping such 

values at the pan-European scale is out of the scope of this work. 

It would add unnecessary complexity, and the foreseen 

improvement of the model is marginal. The model thus focusses 

on using solely tree species, which explain a large part of the 

variance of foliage fraction values. 

 

CBH = f 

Canopy 

Heights 
(Lang et al., 2023) 

(1) 

Species (Bonannella et al., 2022) 

 

 

 

CBD= f 

CBH (see equation 1) 

(2) 

Species (Bonannella et al., 2022) 

AGB (Pirotti et al., 2023) 

DBH 
Allometry from canopy heights 

(Lang et al., 2023) 

 

3.2  Validation 

The validation was carried out using seven LiDAR-based canopy 

fuel maps from surveys carried out in the same year as the CBH 

and CBD maps and on 804 ground plots distributed in four 

countries in Europe. Figure 1 shows the position of the plots. 

The seven LiDAR-derived canopy fuel maps with CBH and CBD 

values were located in Portugal. CBH and CBD were estimated 

using field samples and LiDAR data with a flight between 2020 

and 2021 (Mihajlovski et al., 2023). Field measurements from the 

forest inventory in the same period were used to calibrate the 

models for the estimation of CBH and CBD. Final raster maps 

have a 25 m cell resolution. These areas represent a mapped 

estimation of CBH and CBD based on calibration using ground 

plots and thus are a reliable source for validation of our results. 

The 804 ground plots were selected from Greece (153 plots), 

Italy (64 plots), Norway (176 plots), and Portugal (411 plots). 

The surveys were done in different years, between 2010 and 

2020. The difference between the time of the modelled CBH and 

CBD maps and the surveys was taken into consideration by 

removing the parts that had suffered some kind of forest loss. We 

used the Hansen et al. (2013) canopy cover loss map as a mask 

to remove any pixels that were detected as having had a canopy 

loss between the years 2000 and 2020.  
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For each validation site, we calculated the root mean square error 

(RMSE), the relative error with the mean absolute percentage 

error (MAPE), and the coefficient of correlation R using the 

Pearson method. 

3.3 Uncertainty 

It is worth noting that error propagation is important to establish 

the sensitivity of the model and final uncertainty. This is also 

calculated in this work using two methods: for CBH the chain 

rule is used, as the model is relatively simple, whereas for CBD 

Monte Carlo simulations are used to infer the distribution of the 

uncertainty to each cell in the map. We assessed the number of 

runs for the Monte Carlo simulations as a function of the target 

accuracy.  

 

           𝑁 = 𝑍𝑐𝑖 ⋅
𝜎

𝜖
   (3) 

 

where N is the number of iterations needed, σ is the estimated 

standard deviation of the output, ε is the desired margin of error, 

and ZCI is the critical value of the normal distribution for a 

specific confidence interval, i.e., the z value such that the area of 

the right-hand tail in a normal distribution is α/2 where α is.  

 

 

4. Results 

The following two tables report respectively the accuracy metrics 

from the seven LiDAR-derived canopy fuel maps and the ground 

plots, while Figure 2 shows some details regarding the final 

canopy fuel maps of CBH and CBD near the ground plots. An 

overall view of the pan-European map is given in Figure 3. 

 

  ACCURACY METRICS 7 AREAS 

Canopy Fuel CBH CBD 

RMSE 0.890 0.020 

MAPE  54% 57% 

R 0.749 0.937 

Table 1. Results from the 7 areas in Portugal with LiDAR derived 

fuel maps. 

 

 

  ACCURACY METRICS PLOTS 

Canopy Fuel CBH CBD 

Forest Cover Fc > 0% Fc>80% Fc > 0% Fc>80% 

N 804 322 486 225 

RMSE 3.9 3.8 0.109 0.090 

MAPE  61% 50% 77% 56% 

R 0.445 0.524 0.309 0.412 

Table 2. Results from the 804 ground plots, compering different 

fraction cover. 

 

 

Figure 2. Details of the validation area in Italy with results of CBH and CBD at various scales.
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Figure 3. Pan-European canopy fuel maps for CBH (top) and 

CBD (bottom). 

 

Specific scatter plots for the seven LiDAR-derived CBH and 

CBD maps are given in Figure 4 and Figure 5. The CBH and 

CBD values of the 804 plots were compared with estimated CBH 

and CBD values in Figure 6 and Figure 7, respectively. A partial 

subset of the 804 plots is represented in Figure 6 and Figure 7, as 

only fully forested areas were chosen (>80% canopy cover). This 

was done to harmonize the data as plot values consisted in the 

mean of the canopy measurements, whereas our method takes 

into consideration a cell of 100 m x 100 m area (larger than the 

plot size). If the plot is in a partially forested area, the CBH and 

CBD values of the cell will be averaged and thus lower than the 

plot values. Taking into account only cells with a complete 

canopy cover (or close to a total canopy cover) mitigates this 

problem and makes the data more comparable. It should be noted 

that the number of cells with a canopy cover of 80% or more are 

322 and 255, respectively, for CBH and CBD. This difference is 

due to not having CBD values for all the plots; thus, the number 

of plots for CBD is lower than for CBH.  

 

 
Figure 4. Scatterplot of predicted values in the pan-European map 

and observed values aggregated for each area in the LiDAR-

derived CBH maps. 

 

Figure 5. Scatterplot of predicted values in the pan-European map 

and observed values aggregated for each area in the LiDAR-

derived CBD maps. 

 

 

Figure 6. Scatterplot of predicted CBH values in the pan-

European map and observed values at a subset of the 804 plots, 

where canopy cover was above 80%. 
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Figure 7. Scatterplot of predicted CBD values in the pan-

European map and observed values at a subset of the 804 plots, 

where canopy cover was above 80%. 

5. Discussion 

Our innovative method, which combined different remote 

sensing-derived products with allometric equations and artificial 

intelligence, utilized harmonized data, which was provided by 

other authors. First, the probabilistic tree species map provided 

by Bonannella et al. (2022) specified the spatial distribution of 

the main 16 European tree species. This information was crucial 

to determining the use of the species- specific allometric equation 

at a specific pixel location. Therefore, this information was used 

to apply the species- specific equations to determine the CBH 

based on several datasets that predict the height branch insertion 

and the hamonized biomass models at tree components provided 

by Forrester et al. (2017), helping to extract the foliage biomass 

and thus determine the CBD. However, testing the accuracy of 

the canopy fuels related to our method is a challenging task due 

to the different uncertainties accumulated through the use of 

different rasters, mainly related to the canopy height (Lang et al., 

2023), aboveground biomass (Pirotti et al., 2023), and the 

uncertainty of identifying the right tree species at the pixel 

location, considering that several tree species can be found in a 

pixel of 30 m of spatial resolution (Bonannella et al., 2022). In 

addition, the species- specific allometric equations to predict the 

height branch insertion and the specific foliage biomass also 

provide uncertainties that are added to the uncertainties that 

already come from the remote sensing derived-products. On the 

other hand, variables such as CBH and CBD may represent a 

large amount of variability in their values at the individual tree 

level, in which, in a reduced area, some trees can have different 

crown dimensions and distributions, making it difficult to extract 

a representative value at the pixel level. 

Despite the uncertainties mentioned above concerning the inputs 

used in the canopy fuel maps. The results presented reasonable 

accuracy metrics, considering that 804 plots were well-

distributed and precisely measured with LiDAR data, and field 

measurements were used as independent data for validation. It is 

important to note that ground plots only cover a small fraction of 

the pixel size, which normally area areas between 250 and 1,000 

m2 in most of the conventional forest inventories (e.g., Botequim 

et al., 2019; Mihajlovski et al., 2023) and in exceptional cases 

larger plots (1 ha) can also be measured (e.g., Chávez-Durán et 

al., 2024), but with a limited number of samples. In our case, the 

pixel size of the canopy fuel maps was about 100 x 100 m, which 

can be mixed by different CBH and CBD scenarios. However, 

covering such large areas for measuring CBH and CBD as 

ground-truth data is quite time-consuming and expensive, being 

an unfeasible alternative for a more robust validation process.   

However, in spite of the limitations of the presented study, that 

showed clear overestimation in CBH and underestimation in 

CBD. There are not many studies that have attempted to 

harmonise these two important variables to simulate forest fire 

behaviour outputs at the pan-European scale. Aragoneses et al. 

(2024) produced through GEDI data a pan-European map, but 

only for the CBH variable. The results by the authors using GEDI 

data were satisfactory, obtaining low CBH map uncertainties 

(RMSE - m). These authors included a robust validation using 

airborne laser scanning (ALS) observations over forest inventory 

plots as reference data in different locations around Europe, 

including 6,587 forest inventory plots distributed in three 

countries (Germany, Spain, and Slovenia), but Spain was the only 

country with CBH reference data. However, this CBH map has 

the limitation of the coarse spatial resolution (1 km), not being 

suitable for operational uses. On the other hand, to our 

knowledge, there are no CBD maps available at a pan-European 

level, which is another crucial layer to complete the geospatial 

data needed to run the forest fire behaviour simulations.    

6. Conclusions 

The primary objective of this study was to estimate the two 

fundamental canopy fuel variables using remote sensing-derived 

products combined with allometric equations and artificial 

intelligence. The allometric relationships were derived from open 

data and field data collection within the FIRE-RES project. The 

final rasters were produced at a spatial resolution of 100 m and 

were updated to the year 2020. Accuracy metrics for both rasters 

were validated using two independent datasets: one LiDAR-

derived maps of CBH and CBD and one set of 804 ground-truth 

plots located in Portugal, Greece, Italy, and Norway. The plots 

provided CBH and CBD values by integrating LiDAR data with 

field measurements. The resulting canopy fuel maps cover the 

entire pan-European territory with harmonized data, which is 

essential for modelling forest fire behaviour. Due to limited 

space, an overview of results was given. A more in-depth report 

is under peer-review at a scientific journal. We believe that these 

new inputs with reasonable accuracy are valuable information for 

countries lacking such data, as they can support the development 

of mitigation plans to reduce the potential damage from extreme 

wildfire events. 
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