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Abstract 

 

Palm oil is a widely used agricultural crop in the world, and most of them are produced in Malaysia and Indonesia covering millions 

of hectares. However, climate change which induces water stress and extreme weather such as El Niño poses a risk to oil palm 

production. Therefore, it is crucial to identify areas vulnerable to climate change to prioritize adaptation actions for sustainable palm 

oil production. Several studies have implemented vulnerability assessments for climate change using a limited number of climate 

variables, despite the complex relationships among vegetation and various water components. Given these situations, this study aims 

to identify areas vulnerable to climate change for oil palms by analyzing the relationship between vegetation productivity and climate 

variables, and their changes from 2002 to 2012 and from 2013 to 2022. This analysis utilized satellite-based multiple water components 

and applied principal component analysis. The identified vulnerable areas were then compared with the biophysical suitability map 

from another study. Severe El Niño impacts from 2015 to 2016 were also assessed as an indicator of the actual decline in productivity. 

The results showed that more than half of the study area had experienced water stress recently, particularly in Java, southern Borneo, 

and the southern New Guinea islands. There was a discrepancy between the biophysical suitability map and the identified vulnerable 

areas in this study, especially in the southern part of Borneo. These findings highlighted the importance of considering multiple water 

components in tropical regions and future projections for appropriate palm oil cultivation areas.   

 

 

1. Introduction 

Palm oil is the most widely produced edible oil in the world. 

Malaysia and Indonesia are the dominant producers with millions 

of hectares for its cultivation. Global demand for palm oil is 

expected to rise due to population growth and increased industrial 

applications, including bioenergy usage. Despite this growing 

demand, palm oil production is projected to face negative impacts 

from climate change, particularly water stress (Fleiss, et al., 

2017). Additionally, the available land for expanding cultivation 

is limited due to concerns about deforestation. To sustain and 

enhance productivity within these vast yet restricted areas, it is 

crucial to identify areas vulnerable to climate change to prioritize 

areas for adaptation strategies. Identifying non-vulnerable areas 

can help intensify productivity, while detecting vulnerable areas 

can facilitate the application of appropriate management 

practices, thereby preventing the exhaustion of environmental 

and operational resources. 

 

Generally, oil palms prefer high temperatures, and balanced 

precipitation and soil evaporation an important factors for their 

growth (Corley and Tinker, 2015). Khiabani, et al. (2020) 

developed a biophysical suitable map for oil palms using five 

meteorological and two geomorphological criteria including 

temperature, precipitation, elevation, and slope based on the 

contexts of the framework proposed by Food and Agriculture 

Organization of the United Nations (FAO).  

 

However, Climate change is projected to affect the climate 

environment in the primary palm oil-producing countries, 

Malaysia and Indonesia. A climate scenario suggests that the 

temperature could rise by 1.7 to 4.2 degrees Celsius across 

Malaysia, while precipitation will exhibit spatial and seasonal 

variance by the end of the 21st century (Loh et al., 2016). The 

extreme weather associated with El Niño is projected to become 

more frequent in Indonesia (Tangang et al., 2020). These impacts 

may be altering suitable conditions for oil palms. 

 

To understand climate change impacts on vegetation, several 

studies have been conducted to capture the responses of 

vegetation to climate factors and disturbances. For example, 

Seddon et al. (2016) analyzed the relationships between climate 

variables and enhanced vegetation index (EVI) using satellite 

data on a global scale. These studies define high sensitivity as 

vulnerable to climate change or disturbances. 

Regarding oil palms, Paterson et al. (2015) simulated changes in 

the suitable regions for oil palm cultivation using climate models, 

indicating most areas will remain suitable by 2070.  

Many of these models or simulations, however, utilize a few 

climate parameters such as precipitation and temperature, or 

focus on a country-wide production despite the complexity of 

ecosystems. In addition, the magnitude of the influence of 

climate variables may vary among places. Therefore, assessing 

the spatial heterogeneity of impacts and the response of 

vegetation to climate variables is important. Tracking changes in 

these responses over different periods can help identify 

particularly sensitive areas to climate change. 

 

Given the conditions mentioned above, this study aims to: (1) 

assess the vegetation responses and these changes to climate 

variables or disturbances at different periods to identify 

vulnerable areas for vegetation to water stress and (2) compare 

the identified vulnerable areas with the biophysical suitability 

map for oil palm cultivation. The analysis utilized satellite time 

series data. 
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2. Methodology 

2.1 Study area 

The study area of this research is the land area of Malaysia and 

Indonesia. Both countries are located in Southeast Asia, and 

classified as tropical regions based on the Köppen-Geiger climate 

classification. 

 

2.2 Dataset 

Satellite data used in this study included data on Solar Induced 

Chlorophyll Fluorescence (SIF) as an indicator of plant growth. 

The GOSIF dataset (Li and Xiao, 2019) was selected for its high 

spatial and temporal resolution (0.05°, 8-day). Water components 

as climate variables included Temperature at 2 meters above the 

surface from ERA5-Land hourly data from 1950 to the present 

(hereafter referred to as ERA5, 0.1°, daily), precipitation from 

GPM IMERG L3 (0.1°, daily), evaporation and transpiration, 

both from GLEAM v3.8a (0.25°, daily), and soil moisture and 

vegetation optical depth (VOD) at 6.9 GHz from AMSR-E/Aqua 

L2B V002 (from June 2002 to November 2011) and 

AMSR2/GCOM-W1 L3 (from November 2011 to December 

2022). VPD was calculated based on Liu et al., 2024).  

 

All data was resampled into a spatial resolution of 0.1°. The study 

period was set from January 2003 to December 2021, and this 

period was separated from 2002 to 2012 (the first period) and 

from 2013 to 2022 (the second period) for the relationship change 

analysis. 

 

A global oil palm area distribution map, including information on 

the planted years dataset, was available in Descals et al. (2024) 

with a spatial resolution of 30 meters. In this study, the map was 

extracted within the extents of Malaysia and Indonesia and 

resampled to a resolution of 0.001 degrees using bilinear 

interpolation (Figure 1).  

 

 
Figure 1. Palm areas in Malaysia and Indonesia in orange color. 
 

Khiabani, et al. (2020) developed a biophysical suitability map 

for oil palms in Malaysia and parts of Indonesia as of 2017. This 

study compared identified vulnerable areas with the suitability 

map to assess any discrepancies between current suitable 

conditions and potentially vulnerable areas. 

 

2.3 Calibration of the age effect of oil palms 

Since oil palms are typically replanted after reaching 20 to 25 

years of age, and considering that palms in the immature phase 

exhibit a higher growth rate compared to mature palms  (Foong 

et al., 2019), the productivity of palms represented by SIF needed 

to be adjusted for age effects. To calibrate the age effect, this 

study selected 0.1-degree pixels that matched with pixels of the 

SIF image and contained an area where palms were planted in 

2002 with more than 40% of the grid area. After selecting these 

pixels, SIF time series data from 2002 to 2022 of these pixels 

were plotted and a quadratic equation was obtained as a palm 

growth curve. In the quadratic equation, values from the 

minimum to the maximum were scaled so that the maximum 

value was normalized to 1. Then, the inverse of scaled values was 

calculated to derive weights for each year from planting, thereby 

calibrating them to the corresponding value at the maximum year. 

After obtaining age weights, the average planted year was 

calculated for each 0.1-degree pixel. The average planted year in 

a grid was determined by multiplying the planted year by its area 

ratio in a grid and then summing them across the grid. The age 

weights and average planted year were used to calibrate SIF data 

at each year. The average planted year was considered as the 

initial year of growth, and the difference between the year of SIF 

data and this initial year was considered as the age of the oil 

palms in the grid. Thus, the age weights were applied to each SIF 

data based on the identified age so that the SIF data for any year 

was calibrated to reflect the mature phase. If the planted year was 

more than 20 years ago, or if a pixel did not contain a palm, a 

weight of 1 was applied, meaning the original SIF data remained 

unchanged. 

 

2.4 Calibration of AMSR-E for AMSR2 

This study used soil moisture and VOD captured at 6.9 GHz from 

AMSR-E and AMSR2. However, gaps were observed in two 

sensors in some pixels. To address this, the median values across 

all periods for both AMSR-E and AMSR2 were calculated. Then, 

the ratio of AMSR2 to AMSR-E was determined. This ratio was 

then used to adjust the AMSR-E data to align it with AMSR2 

data. 

 

2.5 Variable relationship analysis 

The relationships between SIF and climate or water component 

variables were calculated as the relationship values to understand 

the different influences of these variables across the study area. 

The calculation was based on Seddon et al. (2016), in which the 

principal component regression (PCR) was employed using 

monthly time series data of each SIF and variables. In analysis, 

SIF and each variable were normalized by z-scoring using 

monthly averages and standard deviation for each month for the 

first period and the second period at each pixel. Multilinear 

regression between normalized SIF and scores of each 

component was performed. The coefficients of significant 

components (p<0.1) were obtained and multiplied by loading 

values. Lading values represent the correlation coefficient 

between the original variables and scores of each component, and 

this process produced the magnitude of the relation between each 

variable and SIF. The result of positive relationship values 

indicates a positive correlation between SIF and variables, while 

negative relationship values mean a negative correlation. 

 

2.6 Variable relationship changes in two periods 

Pixels that became more affected by water stress in the second 

period compared to the first period were identified from the 

changes in relationship values. For example, if the relationship 

with precipitation was negative or zero in the first period and then 

became positive in the second period, this area may indicate 

increased water stress requiring additional precipitation input, 

and such pixels and changes in the absolute values of the 

relationship were extracted. The magnitude of relationship 

change was determined by calculating the sum of the changes in 

values across the variables. 
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2.7 Anomaly of SIF by El Niño from 2015 to 2016 

El Niño–Southern Oscillation (ENSO) is a recurrent event of 

extreme weather. The most severe El Niño hit this region 

between 2015 to 2016 (Qian et al., 2019). To quantify the impacts 

of this El Niño on vegetation productivity, the decrease in 

monthly SIF during the El Niño period compared to the monthly 

average for each month was calculated. The El Niño event was 

defined by the Multivariate ENSO Index Version 2 (MEI.v2) 

(https://psl.noaa.gov/enso/mei/) when the index exceeded 0.5. 

The deviation for each month during the El Niño period was 

obtained by subtracting the monthly SIF average during the El 

Niño from the corresponding monthly average without El Niño.  

Then, these deviations were summed up for every 3 months. The 

largest deviation among the 3-month deviations was used as the 

SIF deviation value. 

 

 
Figure 2. Process flow of relationship analysis 

 

2.8 Comparison with identified vulnerable areas with a 

biophysical suitable map 

Identified vulnerable areas in relationship analysis were visually 

compared with the biophysical suitable map as of 2017 

mentioned in 2.2. To enhance the depiction of the possible 

vulnerable areas, pixels with 75% percentile of values of 

relationship change were extracted. 

 

3. Results 

3.1 Growth curve for age calibration 

The weights of SIF based on age obtained from the palm growth 

curve (n=10) from 2002 to 2022 are shown in Table 1. The 

following results used monthly SIF data which had been adjusted 

with these age weights.  

 

Age 0 1 2 3 4 5 6 

weights 1.3 1.3 1.3 1.2 1.2 1.1 1.1 

Age 7 8 9 10 11 12 13 

weights 1.1 1.1 1.1 1.0 1.0 1.0 1.0 

Age 14 15 16 17 18 19 20 

weights 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 1. Age weights for oil palms 

 

3.2 Variable relationships and their changes in two periods 

Figure 3 shows the relationship values between monthly SIF and 

each variable in the first and second periods. A distinct change 

can be observed in evaporation in which the positive relationship 

in the first period decreased to the negative side in the second 

period, especially in Borneo (Figure 3c). Soil moisture had also 

clear changes from negative to positive in the whole area of Java 

Island and the southern area of Borneo (Figure 3d). A similar 

trend as soil moisture was observed in VOD (Figure 3e). These 

changes indicated water stress may have occurred requiring 

moisture in these areas.  

 

3.3 SIF anomaly due to El Niño 

Figure 4a shows the spatial distribution of the anomalies of SIF 

during El Niño from 2015 to 2016 in all study areas, and Figure 

4b presents the decreased SIF values among islands where oil 

palms are currently cultivated. The largest decrease was observed 

in the entire Java islands with a median of -0.45 W m−2 μm−1 sr−1, 

followed by Sulawesi in the southern part with a median of -0.30 

W m−2 μm−1 sr−1. Some islands such as East Malaysia and 

Sumatra exhibited hotspots of positive anomalies (Figure 4b). 

 

3.4 Relationship changes due to water stress 

Fifty-seven percent of pixels where at least one variable changed 

the relationships due to water stress were identified. This 

suggested that most areas had water stress. This study focused on 

pixels where at least one variable was changed as an indicator of 

water stress.  

 

After identifying sensitive pixels with changing relationships in 

at least one variable, those pixels were overlaid with pixels where 

negative anomalies from El Niño occurred. This helped to focus 

on actual affected areas by extreme climate. Negative 

relationship changes were scattered, but dense clusters of large 

changes were notably observed in Java, southern Sulawesi, 

inland, the east coast and southern Borneo, and the southern part 

of New Guinea islands. The magnitude of changes in relationship 

values was highest in Java with a median of 0.44, followed by 

similar values in other islands. The high relationship change and 

large SIF anomalies due to El Niño were observed in Java, and 

relative consistency with such patterns was observed in Sulawesi, 

Borneo, and New Guinea islands. These matched areas may be 

considered potentially vulnerable. Whereas, areas with high 

relationship change and small SIF anomalies may be attributed to 

their vegetation types (Li et al., 2018).  

 

3.5 Comparison with biophysically suitable map 

To enhance the depiction of the possible vulnerable areas 

identified in relationship change analysis, 75th percentile values 

of relationship changes were extracted and compared with the 

biophysical suitability map. The suitable map indicates the east 

coast of Borneo is less suitable, which was depicted with high 

relationship change in this study. An interesting finding was that 

the biophysical suitability map shows relatively high suitability 

in the southern part of Borneo. However, the relationship analysis 

in this study indicated vulnerability, as seen in both high and 

dense changes in relationship values, and SIF anomalies in the 

same area. Sumatra is also presented as suitable in the suitable 

map, whereas scattered high relationship changes were observed 

in this study. Therefore, these regions, especially southern 

Borneo, may be increasingly vulnerable to climate change 

impacts.  
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4. Discussion 

4.1 Vegetation response and changes to climate variables 

The relationship change analysis revealed more than half of the 

pixels experienced water stress in the recent period. A distinct 

change was observed in the relationship change of evaporation 

where a large decline of its dependency was depicted from the 

first period to the second period in Malaysia, Borneo, and 

Sulawesi islands. The finding that soil-related factors were 

dominant in these regions is partly consistent with reports that 

tropical regions are less sensitive to precipitation than other 

factors such as VPD and evapotranspiration (Sun et al., 2016; 

Oettli et al., 2018; Liu et al., 2020).  

 

 

 

 

 

 

 

 
Figure 3. Relationship changes in the first and second periods for (a) precipitation, (b) temperature, (c) evaporation, (d) transpiration, 

(e) soil moisture, (f) VOD, and (g) VPD. Left column is for 2002-2012 and right column is for 2013-2022. Red color indicates a 

positive relationship, while blue color indicates a negative relationship. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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(a) 
 

(b) 

(c) (d) 

Figure 4. (a) Three months SIF anomalies during El Niño. Blue color indicates a negative anomaly of SIF and red color indicates 

positive anomaly of in SIF compared to the monthly average. (b) Areas where relationship values of variables were changed due to 

water-stressed, overlayed by pixels with negative SIF anomalies. Values in the figure are logarithms to base 10 of the sum of changes 

in the relationship values. (c) Seventy-five percentile of the sum of relationship change values converted to logarithm to base 10, (d) 

biophysically suitable map (Khiabani et al., 2019) where greater values indicate high suitability for oil palm growth. 
 

 

4.2 Identification of vulnerable areas to water stress 

Relationship analysis indicated possibly vulnerable areas which 

has high relationship change and negative SIF anomaly during 

the El Niño in Java, the south and east coast of Borneo, and the 

southern New Guinea islands. These findings partially agreed 

with previous studies reporting water stress in these regions 

( Avia, 2019; Barkey et al., 2019; Tangang et al., 2020).  

 

Whereas regions identified as vulnerable in this study above were 

also reported by other studies, regions such as Sarawak state in 

East Malaysia which are also considered to be affected by climate 

change (Supari et al., 2020) did not decrease SIF during El Niño 

and had slightly greater relationship change compared. A similar 

situation was observed in especially inland Borneo. This means 

West Malaysia, especially Sarawak state and Borneo could 

maintain vegetation productivity by responding to climate factors. 

This may be attributed to rich natural forests having different 

responses from other vegetation types. This finding suggests the 

great value of natural forests currently withstanding climate 

disturbances and contributing regional environment.  

 

4.3 Comparison with the biophysical suitability map for oil 

palm cultivation 

The identified possibly vulnerable areas had discrepancies with 

the biophysical suitable map, especially in the southern part of 

Borneo where the suitability map indicates suitable while 

relationship analysis indicated the opposite. Although another 

study also projected suitable climate conditions in Kalimantan 

until 2050 (Paterson, 2020), these conditions may not persist as 

climate change continues to advance.  

 

The findings of this study highlight the heterogeneity and 

complexity of vegetation responses within the ecosystem. This 

analysis is crucial for making efficient decisions on 

implementing adaptation strategies to climate change in palm oil 

production. It underscores the importance of continuous 

monitoring of environment, and reflecting it to adaptation actions 

in vulnerable areas identified by this study, or considering 

avoidance of further expansion in these areas.  

 

4.4 Limitations and future work 

This study did not differentiate land cover or vegetation types in 

the analysis. Masking land cover with few vegetated areas or 

differentiating forest and crop areas could provide clearer results 

for interpretation.  In addition, this study utilized monthly SIF 

and climate datasets at the same temporal timing. However, there 

would be a time lag for vegetation to respond to climate as 

reported in several studies (Seddon et al., 2016; Ding et al., 2020). 

Also, the accumulation effects may exist (Ding et al., 2020). 

Borth time-lag and accumulation analysis, and adopting 

corresponding best-fitted temporal datasets are needed. Not only  

assessing the relationship between the sensitivity of vegetation to 

climate, but recovery ability is also an important feature for 

ecosystem to climate resilience (De Keersmaecker et al., 2015). 

 

5. Conclusion 

This study analyzed the relationship between monthly SIF and 

climate variable-related water components in the ecosystem and 

its change from 2002 to 2012 and from 2013 to 2022 to identify 

possible vulnerable areas under climate change. Monthly SIF 

anomaly due to El Niño in 2015 and 2016 and its negative 

anomalies were also obtained as another indicator of potentially 

vulnerable areas to extreme weather. The results suggested Java, 

south part and east coast of Borneo, south Sulawesi, and south 
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part of New Guinea islands may be vulnerable to climate change. 

The results partially agreed with climate projections of other 

studies such as climate impacts in Java and Sulawesi islands. East 

Malaysia and Borneo were reported to be prone to climate change 

and El Niño. However, these areas, especially inland Borneo 

presented a high response to climate but less SIF decline anomaly, 

which was opposite to other areas. This may be attributed to 

intact forest. However, recurrent and persistent impacts of 

climate may hinder vegetation stability. Comparison with the 

biophysical suitable map and identified vulnerable areas in this 

study found a relatively similar distribution of vulnerable areas, 

whereas it revealed discrepancy, especially in the southern part 

of Borneo island. These findings can contribute to climate 

adaptation actions. 
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