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Abstract 

The expansion of invasive species is a global challenge that leads to the loss of biodiversity habitat, and there are few tools to 
control it. In São Paulo, identification of invasive species is done through field inspections, in parts of Conservation Units and 
parks, making it difficult to map all tree individuals for adequate management and coping strategies. This manuscript presents a 
workflow that combines Unmanned Aerial Vehicles (UAVs), or drones, with Artificial Intelligence (AI) to accurately map 
invasive species in the Atlantic Forest. It describes best practices on how to conduct drone flights to map the forests, 
exponentially expanding the range of identification and efficiency in invasive tree species management. It also presents an AI 
workflow that uses few-shot learning and Explainable AI techniques (to guarantee transparency and understanding of the 
decisions made by the algorithms). Preliminary results indicate that the method obtains acceptable results in the range of 70 
percent accuracy for Archontophoenix cunninghamiana (popular name: Seafórtia), an invasive Australian palm. 

1. Introduction

The expansion of invasive species is a global challenge that 
leads to the loss of biodiversity habitat, and there are few 
tools to control it. This aligns with Sustainable Development 
Goal (SDG) Target 15.1, which focuses on ensuring the 
conservation, restoration, and sustainable use of terrestrial and 
inland freshwater ecosystems, and SDG Target 15.2, which 
emphasizes sustainable management of all types of forests, 
halting deforestation, restoring degraded forests, and 
significantly increasing afforestation and reforestation 
globally. At the Municipality of São Paulo, the remaining 
fragments of the Atlantic Forest can have the presence of 
native and exotic species (see Figure 1 for some examples). 
Here, a distinction is made between exotic species in general, 
and exotic species which are more concerning as they are 
invasive and therefore more threatening to the natural 
environment. The monitoring and identification of native and 
exotic species is done through field inspections, only in parts 
of Conservation Units (UCs) and Municipal Parks, making it 
difficult to map all individuals for adequate management and 
coping.  

Remote sensing presents significant advantages over 
traditional field-based methods for forest monitoring, 
including scalability, multi-sensor capabilities, and cost and 
time efficiency (Cohen and Goward, 2004). Satellite imagery 
is effective for covering extensive areas. However, Unmanned 
Aerial Vehicles (UAVs), commonly known as drones, have 
recently become versatile tools for collecting high-resolution 
data, offering promising solutions to overcome the limitations 
of satellite-based data (Torresan et al, 2017). Both satellite 
and UAV imagery can be integrated with artificial 
intelligence techniques, such as machine learning, to automate 
information extraction, including identifying invasive species. 

(a) 

(b) 

Figure 1. Example UAV image of the Atlantic Forest in São 
Paulo in Bororé Natural Park, marked by local experts: in green, 

native species, in yellow, exotic species and in red, exotic 
invasive species (a) and a close view of the invasive species 

Seafórtia (b). 
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However, how AI algorithms can be incorporated into public 
policy decision-making to promote the Sustainable 
Development Goals in a transparent and reliable way is still 
a challenge, considering that the reasoning behind the 
workings of AI models is still difficult to understand. 
Furthermore, drone flights are still an expanding practice in 
developing countries' governments. As a result, there is little 
availability of images obtained by drones of Atlantic Forests, 
which hinders AI advancements, since a significant number of 
labelled images are needed to both train models and prove the 
accuracy of the results. This paper presents a novel workflow 
for municipal workers in Brazil to (1) use drones to collect 
imagery of forests in Brazil and (2) classify invasive and 
native species using a novel, Explainable, few-shot learning 
workflow.  

2. Methodology 

The methods consist of two main stages. Firstly, drone flights 
are conducted over a section of the Atlantic Forest to be 
monitored. Section 2.1 explains more about the study area for 
this area and Section 2.2 provides recommendations on 
Unpiloted Aerial System flights for forest monitoring. The 
second phase on using few-shot learning techniques to 
classify trees in the obtained imagery is described in Section 
2.3. This second stage consists of: object detection, 
classification, and an explanation (Section 2.4). An overall 
overview of the workflow is provided in Figure 2. 

2.1 Study area 

The Atlantic Forest is a dense and tall formation, with diverse 
plant extracts and a high diversity of fauna and flora. 
However, due to urban expansion in São Paulo city, there are 

only a few remaining areas of this forest in different stages of 
conservation, most of them in some degradation process. 
Most of the remaining areas of the Atlantic Forest are on the 
edges of the city, where are located the five city’s natural 
parks (integral protection conservation units, which aim to 
preserve natural ecosystems of ecological relevance), such as 
the Bororé Natural Park, the area of the first case study of the 
project DE OLHO NA MATA. Despite being conservation 
areas, and thus protected from urban expansion, the remaining 
Atlantic Forest in these parks also suffer from the expansion 
of invasive exotic species over the native forest.  

Invasive species compete with native species in natural 
environments, which can significantly alter habitats, causing 
the local extinction of native species and generating other 
ecosystem complications. To define actions that prevent the 
loss of biodiversity, the few experts from the Municipal 
Green and Environment Secretariat (SVMA), carry out field 
visits in the natural parks to elaborate biodiversity 
assessments of some existing plant formations and species, 
including the invasive ones. As natural parks are large areas, 
these assessments are carried out in only parts of the parks, 
that is, in a sample area. Therefore, there is not a mapping of 
individual invasive trees in the municipal parks, let alone 
outside parks or conservation units. Without knowing where 
the invasive species are in the municipality’s territory, it is not 
possible to adequately manage them and protect the native 
forest. In the Bororé Natural Park, the SVMA assessment 
found 141 individual trees of invasive exotic species. Based 
on this assessment, a section of this sampling with the highest 
concentration of identified species was selected to carry out 
the drone flight that generated the base image for the case 
study of this project, where individuals of the 

 

 

Figure 2. A schematic overview of the complete proposed workflow, including data collection with UAV and a custom 
classification algorithm for few-shot learning. 
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Archontophoenix cunninghamiana (popular name: Seafórtia), 
an invasive Australian palm were identified for the first 
classification experiment. 

2.2 Data Acquisition Considerations  

While planning a UAV flight for vegetation monitoring, 
various elements should be accurately considered. These 
elements need to be carefully designed and decided upon, as the 
flight is primarily the main step in each study, considering 
factors such as cost, time, risk, and reliability. Any issues 
during flight or data acquisition can lead to inaccuracies in 
further processing steps, and a worst-case scenario may require 
repeating the entire mission. 

In studying natural phenomena such as plants and forests, 
certain aspects of flight design hold special importance. For 
instance, environmental conditions like wind speed and 
direction, along with lighting conditions (due to the sun angle 
and any cloud coverage), must be precisely examined. 
Furthermore, in areas where tree height significantly varies 
concerning flight altitude, anticipating potential changes in 
image scale is crucial. Utilizing multiple flight designs with 
different altitudes can help maintain a constant relative height 
of the camera from the tree canopy or a consistent image scale. 
The platform should also be equipped with PPK post-
processing GPS to provide accurate position of the imaging 
points which can later support photogrammetric processing 
while reducing the need for ground control points which is not 
easy to handle, especially in forests. 

Moreover, obtaining a comprehensive overview of the targeted 
objects is essential considering the necessity of generating true 
orthophotos in such applications. Therefore, designing a grid 
network or at least incorporating crosslines into flight planning 
is recommended. Larger values for overlap and side lap (80% 
and 80%) are also suggested. 

Ground Sampling Distance (GSD) also plays a critical role in 
earth observation, especially for classification applications 
(Anderson and Gaston, 2013). Extremely fine GSDs can result 
in large datasets and higher computational time and expenses. 
Conversely, coarser resolutions can impact the accuracy of 
object detection and final classification results. 
 
2.3 Classification workflow 

 
The classification workflow consists of (1) detecting tree 
crowns, (2) classifying the tree crown, and (3) providing an 
explanation. An overview flowchart of the methodology will 
be added to the camera-ready paper. The first step is object 
detection, which uses the pretrained Deep Forest model 
(Weinstein et al., 2019). This is an object detection 
model which was trained on aerial RGB imagery from almost 
3000 hand-annotated trees and more than 400,000 self-
generated trees from the National Ecological Observation 
Network. For this study, we utilized the model available 
through the repository (Weinstein et al., 2019), it was not 
further trained or fine-tuned with data from Bororé Natural 
Park. The second step is classification. A few-shot learning 
technique was selected, in this case a Siamese Neural 
Network.  
 
Siamese networks are a type of neural network architecture 
designed for tasks requiring the comparison of two inputs, 

such as image recognition, face verification, and signature 
matching. Unlike traditional neural networks, Siamese 
networks consist of two identical subnetworks that share the 
same weights and parameters. These twin networks process 
two different inputs and produce comparable feature vectors. 
The core idea is to measure the similarity between these 
feature vectors using a distance metric, like Euclidean or 
cosine distance. During training, the network learns to 
distinguish between similar and dissimilar pairs through a 
contrastive or triplet loss function, optimizing to minimize the 
distance for similar pairs and maximize it for dissimilar ones. 
This unique architecture makes Siamese networks particularly 
effective for tasks involving similarity and ranking, where the 
goal is to determine whether two inputs belong to the same 
class or are related in some meaningful way (Bromley et al., 
1993; Koch et al., 2015). 
 
The Siamese Network utilized in this study was a small 
network using two 128 x 128 pixel input images with three 
bands, a densely connected layer, comparing both images 
with a feature vector with a length of 128, and a Euclidean 
distance function. All programming was done in Python using 
the Keras library. 

Despite an exhaustive search, we team was unable to identify 
an online benchmark of image data for Atlantic Forest trees. 
It was therefore decided to utilize existing benchmarks of 
other trees and pre-trained models and few-shot learning 
strategies to perform the classification. 
 
The Siamese Network was thus trained using the ReforesTree 
benchmark (Reiersen et al., 2022), a dataset of six tropical 
trees. Siamese Networks take two images and are trained to 
indicate whether the images are similar or not. The 
supervised training directs the loss function to learn 
characteristics from the images (in this case of trees) which 
are key to differentiating different types of tree species. To 
then move to a multi-class classification step, a test sample is 
run through the Siamese Network with many different 
labelled training samples. The result is a vector of similarity 
scores comparing this test image to each of these labelled 
samples. Samples were assigned to the class by taking the 
average similarity score between the test image and all of the 
labelled samples of a given class, and then determining which 
of the classes had the highest average similarity score. As a 
final step, the user has the option to request an explanation 
for each classified tree crown.  
 
2.4 Explanation 

 
The field of Earth Observation is starting to recognize the 
need for explainable machine learning workflows, also known 
by the term Explainable Artificial Intelligence or XAI 
(Gevaert 2023). This drive is one of six main research areas in 
Earth Observation (Tuia et al., 2021). The terms transparency, 
interpretability, and explainability are often used 
inconsistently (e.g. Roscher et al., 2020b). Transparency 
refers to the ease of accessing model parameters and decisions 
(Roscher et al., 2020; Tuia et al., 2021) and includes the 
broader ML system context, code availability, bias mitigation, 
and human rights considerations (European Commission, 
2021; UNESCO, 2021). Researchers often use explainability 
and interpretability interchangeably to mean understanding 
the cause of a decision (e.g. Miller, 2019). Others distinguish 
between interpretability (understanding model predictions) 
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and explainability (linking predictions to domain knowledge) 
(e.g. Roscher et al., 2020; Tuia et al., 2021).  
Adadi and Berrada (2018) identify four motivations for XAI: 
to justify, to control, to improve, and to discover. Justification 
addresses societal concerns about algorithmic transparency 
regarding a single decision. Control helps identify and debug 
errors. Improvement aims to enhance models, and discovery 
helps scientists uncover new knowledge. From a societal 
perspective, there is also an increasing call for explainable 
algorithms – for example for high-risk use cases in the 
recently adopted EU AI Act (European Commission, 2021) 
and the UNESCO recommendations for AI (UNESCO, 2021). 
Yet social scientists also identify a mismatch between the 
XAI methods developed by technical researchers and the way 
that human reasoning works. For example, Miller (2019) 
identifies three main gaps: human explanations are typically 
contrastive, selective by focusing on one or two key reasons 
rather than all possible reasons and are often part of social 
interactions to convey knowledge. Additionally, Miller notes 
that explaining the causes of predictions is more helpful for 
human understanding than simply providing statistical 
probabilities.  
 
Gevaert (2023) provides a framework on how different types 
of XAI methods can be used by different persons and to 
different ends. In the context of this manuscript, 
explainability is important to control and improve the 
classification model used to identify the tree species in the 
UAV imagery. As such, we will add a post-hoc, model-
specific, local explanation to the output classification. The 
explanation which will accompany the classification will be 
inspired by the limitations given by Miller (2019), having 
elements of contrastivity and be based on a few key 
reasonings. 
 
The explanation method in this workflow visually presents the 
user with the most similar labelled samples from each class. 
So, from the list of similarity scores, it selects the most 
similar labelled sample per class and the corresponding 
similarity score. This helps the user understand why the 
classifier made their decision as well as get an idea of how 
well the classifier is working in a few-shot situation. 
 

3. Results 
 

3.1 Regarding data acquisition 

Taking into account all the recommendations for flight 
planning, the primary components of the flight plan in this 
study are listed in Table 1 and a picture of the low-cost UAV, a 
DJI Mavric pro, used to collect the imagery is in Figure 3. 
Figure 4 also contains a sample of one of the different missions 
planned through flight planning. 
 

Feature  Description  
System  Mavic pro  
Sensor  FC220, RGB  

Focal length  5 mm  
Resolution  4000, 3000  

Flight height  120 m  
 

Table 1. Flight mission planning and applied system 
elements. 

 

 

Figure 3. A visualization of the low-cost DJI Mavric used to 
collect imagery for the current study (Source: 

https://www.drones.nl/drones/dji-mavic-2-zoom/specs). 
 

 

Figure 4. A schematic overview of the flight plan employed 
for this study. Yellow lines indicate the flight path. 

 
(a) 

 
(b) 

Figure 5. The final generated orthomosaic covering a part (21.1 
ha) of the Atlantic Forest in São Paulo (a) and a sample image 
with a snapshot showing the detail captured at full resolution 

(b). 
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To process the captured images Agisoft Metashape software 
was employed to produce a Digital Surface Model (DSM) and 
orthophoto which generally involves a few key processing 
steps. First, the images are aligned using key points extraction 
and through structure from motion (SFM) processing (Crandall 
et al., 2011). As the images are precisely georeferenced, no 
Ground Control Points (GCPs) are needed. Afterward, the 
dense point cloud is generated to construct the model geometry, 
followed by the creation of a 3D textured mesh. Finally, the 
point cloud is interpolated to generate a DSM, and with the 
created DSM, the orthomosaic of the region is produced. Figure 
5 presents the final generated orthomosaic overlaid on satellite 
imagery with a close shot of a sample image acquired through 
the flight. 
 

 
3.2 Regarding classification and explanations 

Results of the study indicate that the classification accuracy 
obtains an average class accuracy of 0.71 (see Table 2). The 
first three classes, banana, cacao, and fruit trees, originate from 
the benchmark used to train the model (ReforesTree). Here we 
see that the accuracy of banana and fruit trees is very high. 
banana in particular was easier for the Siamese network to 
distinguish from the other species. Note that while training the 
model, no examples from the Seafórtia class were used in the 
Siamese network. It was only used for inference. Although there 
is still room for improvement in the classification results, note 
that the accuracy of the unseen Seafórtia class is similar to that 
of cacao. It is still thus within the range of accuracy as the 
classes which the Siamese network has been pretrained on. 

 
Class Accuracy 

Banana 1.0 
Cacao 0.57 

Fruit trees 0.71 
Seafórtia 0.57 

Overall 0.71 

Table 2: Results of the classification. 
 
An example of an explanation  provided by the Explainable AI 
component can be found in Figure 6. The explanation is a local 
explanation, which means that it explains the classification 
result of a single classification (as opposed to global models 

which explain the workings of the model over all of the testing 
samples). See how the test image which represents a sample of 
banana tree (on the left) compares to the three closest images 
from the classes banana (class 1), cacao (class 2), and fruit trees 
(class 3). The similarity scores at the top of the images also 
indicate how similar the trained Siamese Network considered 
the image to be to the test sample. The image considered closest 
by the algorithm (the second image from the left, with a 
similarity score of 0.9609) is also visually the most similar to 
the test image. This gives the user confidence that this image 
was correctly classified. In this way, the explanation can be 
used to give a user a visual indication of which training samples 
are the closest to the test image in question according to the 
algorithm. This helps give confidence in correct predictions and 
can perhaps in the future also be combined with active learning 
techniques – where a user may identify wrongly labelled 
samples or get a better understanding of the reasons why a class 
is difficult to classify, and obtain new labels more efficiently. 

 
4. Conclusions 

 
Satisfying results in the classification of the Australian palm 
Archontophoenix cunninghamiana were obtained, which means 
that the proposed workflow was able to identify individual trees 
with similarities with what we as human beings sought to 
identify. The innovation with Explainable AI is that when we 
provide the algorithm with a new tree to classify, it is possible 
to see which images it considers as a basis for previous 
comparison and this immediately allows it to evaluate its 
performance. Such visualizations can help identify mislabeled 
data or give the user an indication of which classes require 
additional labelled sampling if the user repeatedly encounters 
confusion between two classes.  

 
In future work, as more labeled data from the study area 
becomes available, we plan to fine-tune or re-train our models 
to better capture the unique characteristics of the local 
environment. Additionally, we recognize the importance of 
innovative modifications to the networks and will explore such 
enhancements in subsequent iterations. Thus, further research 
will focus on: further improving the accuracy of the 
classification model, training the model to recognize more tree 
species, and training employees of SVMA to utilize the tool. 
 

 
 

 
Figure 6. An example explanation with a unlabeled test sample (left) and the most similar training images per class. The images 

show the closest example of each of the three classes to the test sample, the scores indicate the similarity score between 0 and 1 that 
is the output of the Siamese Network where 1 is the most similar. Note that the test sample is visually much more similar to the 

selected sample of class 1 than class 2 and 3 – giving the user confidence that in this case the classifier is likely performing well. 
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