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Abstract 

Accurate crop yield prediction is crucial for efficient agricultural and socio-economic management. Remote sensing, using satellite 

imagery and unmanned aerial vehicles (UAVs), provides an effective approach for yield prediction and crop monitoring, allowing time 

series of vegetation indices such as NDVI to be obtained and facilitating detailed analysis of crop phenology. In this study, multi-

seasonality in rice yield prediction is analysed using NDVI time series obtained from Sentinel-2 (S2) and UAVs in the Lambayeque 

region, Peru. NDVI from S2 was extracted by applying scene classification map (SCM) masks to remove clouds and shadows. A total 

of 7 and 11 UAV flights were conducted during the growing season for 2022 and 2023, and yield was collected mechanically in 35 

rice-producing plots. The results showed an overestimation of NDVI values obtained by UAV compared to Sentinel-2 values, as well 

as a significant difference in yield prediction between 2022 and 2023. In 2022, by integrating S2 and UAV NDVI series, a coefficient 

of determination (R²) of 0.66 was obtained for the combination of UAV and S2, higher value than those obtained with UAV or S2 

independently, with a root mean square error (RMSE) of 1.096 t/ha and a %RMSE of 10.36. In 2023, a R² of 0.32, a RMSE of 0.85 

and a %RMSE of 9.21 were achieved. This difference is interpreted as a consequence of the cyclone Yaku, which caused rainfall and 

damage to the irrigation infrastructure, and fungi disease, leading to water stress and a decrease in yield, highlighting the importance 

of considering the meteorological conditions in the development of yield predictions based on NDVI series metrics obtained along the 

campaign. 

1. Introduction

Rice is one of the most important cereals in terms of area, and 

more than 50% of the world's population depends on it as a 

primary food (Jiang et al., 2019; Sun et al., 2024). Therefore, 

accurate and timely yield prediction is important for yield 

assessment, market planning and food security monitoring. 

However, there are a number of complex factors that influence 

yield prediction, such as crop environment and weather 

conditions at key growth stages, which significantly impact yield 

(Tsujimoto et al., 2022). Climate change also affects plant 

metabolism and growth, with temperature and precipitation being 

key determinants of crop yield (Sun et al., 2024). 

Satellite remote sensing data have been widely used for 

monitoring vegetation phenology and crop yield prediction (Sun 

et al., 2024). Crop yields have been estimated using different 

types of moderate and high-resolution satellite imagery. For 

example, the Moderate Resolution Imaging Spectroradiometer 

(MODIS) provides a temporal resolution of one to two days with 

a spatial resolution of 250 m to 1 km (Atzberger et al., 2013); 

Landsat has a nominal temporal resolution of 16 days and a 

spatial resolution of 30 m; and Sentinel-2 provides a higher 

temporal resolution of 5 days and a spatial resolution of 10-60 m, 

used for regional and parcel-scale monitoring. Normalised 

difference vegetation index (NDVI) time series have commonly 

been used throughout the year, mainly in environmental 

monitoring, agricultural forecasting, wildlife and biodiversity 

modelling, climate change impact assessment and drought 

monitoring (Mangewa et al., 2022). NDVI time series allows for 

the extraction of phenological metrics as independent variables 

to build regression models. Identifying the most reliable variables 

and metrics is crucial to increase the efficiency and accuracy of 

models, as well as to determine the point in the growing season 

from which models can be reliable (Bao et al., 2024). 

Direct extraction of phenological metrics is hampered by noise 

and lack of temporal information in satellite data, due to 

atmospheric conditions and obstructions such as clouds and snow 

(Gou et al., 2019). To address this problem, data are filtered and 

smoothed before the extraction of phenological metrics. Several 

methods have been developed for this, ranging from simple linear 

smoothing windows to more sophisticated analytical curve 

functions. Most algorithms identify the beginning and end of the 

growing season using predefined thresholds or analytical 

indicators, such as the maximum curvature rate (Araya et al., 

2018). 

With the advancement of unmanned aerial vehicles (UAV) 

equipped with spectral sensors, which offer high spatial and 

temporal resolution, acquired data sets are less affected by 

external conditions. In recent years, more sophisticated 

operational performance and more affordable prices have been 

achieved. UAVs are being considered as an interesting 

alternative for local performance predictions. Both space-based 

systems and UAVs have advantages and limitations (Sun et al., 

2024). Satellite imagery is cheaper, and even free, and is captured 

regularly, but is subject to cloud restrictions and has limited 

spatial resolution (Bao et al., 2024). UAVs, although more 

expensive, are suitable for mapping at higher resolution and 

detail, including intra-plot yield variability in small plots. This is 

crucial for correcting deficiencies in cultivation practices and for 

early identification of localised crop diseases and pests. 

The objectives of this work are (1) to compare two rice yield 

prediction datasets acquired from the same area of Lambayeque, 

in the North of Peru: Sentinel-2 time series and UAV-based 

multispectral images; (2) to identify and evaluate the most 

efficient time series metrics for building prediction models; (2) 

to explore the integration of Sentinel-2 time series and UAV data 

acquired in strategic moments of the campaign to cover potential 

lacks of satellite images due to clouds or other constraints; and 
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(2) to compare and analyze the prediction results obtained in two 

field campaigns with very different regimes of rainfall and 

subsequent diseases. 

2. Materials 

2.1. Study Area. 

The study area is located in the Lambayeque region, province of 

Ferreñafe - Peru (79º 47‘ 09.73’ W; 6º 35‘ 36.68’ S; 46 masl) 

(figure 1). It has a desertic climate, with deficient rainfall in all 

seasons, a relative humidity classified as humid (Useche et al., 

2020), with temperatures ranging from 13 to 33 ºC and a total 

annual rainfall of about 20 mm (Quispe et al., 2024). Water 

supply comes from the Tinajones reservoir for the agricultural 

sector of the valley; however, it is scarce due to droughts and low 

rainfall. In addition, the region is vulnerable to extreme events 

such as droughts and floods related to El Niño, negatively 

affecting agriculture and Gross Domestic Product (GDP) 

(Ramírez-Juidias et al., 2024). 

 
Figure 1. Geographical location of Peru (a); rice cultivation map 

of the study region (b) and study rice plots (c). 

2.2. Field data collection 

A total of 35 rice plots were harvested in 5 subareas comprising 

the following names: Zapote (FPF), Caballito (FSV-EC), Garcia 

(FSV-G), Santa Julia (FSV-SJ) and Totora (FSV-T) ranging in 

size from 5 to 12 ha per subarea. Yield data were mechanically 

collected by plot and weighted after harvest for the campaigns 

2022 and 2023. Figure 2 shows the rice yield measured per plot 

for the two years considered. In general, considerably higher 

yield values were obtained during the 2022 campaign. 

Figure 2. Rice yields as measured in the study plots for 2022 

and 2023. 

 

2.3. Meteorological data 

Figure 3 shows the variation of precipitation in the study area 

based on data from two weather stations. Figure 3a shows the 

precipitation data from the Lambayeque weather station from 

2020 to 2023. In contrast, figure 3b shows the 2023 precipitation 

from the station closest to the study area. 

 

 
Figure 3. Evolution of annual precipitation in the study area. 

Annual precipitation of 2020-2023 year series from the 

Lambayeque station (a); and annual precipitation for 2023 

from the Vista Florida station (closest to the study area) (b). 

Peru's northern coastal climate is conducive to rice cultivation, 

making the Lambayeque region the main producer. However, it 

faces considerable threats from climate change. Rice is 

vulnerable not only to rising temperatures, water scarcity and 

droughts (especially during the growing season), but also to 

excessive flooding, particularly during the ripening phase 

(Useche et al., 2020). In addition, the region is vulnerable to 

extreme drought and rainfall events related to the El Niño 

(ENSO) phenomenon, which significantly affect agricultural 

production, resulting in a 13% decrease in Gross Domestic 

Product (GDP) and damage to different infrastructures (Ramírez-

Juidias et al., 2024; Sandweiss and Maasch, 2022; Yglesias-

González et al., 2023). 

 

As shown in graphs of figure 3, an abrupt peak of rainfall in 

March 2023, due to heavy storms related to El Niño 

meteorological phenomenon, produced an anomalous increase of 

annual precipitation as compared to the regular years which were 

not affected by these events. 

2.4. Unmanned aerial vehicle and Sentinel-2 image 

acquisition 

UAV images were collected using a DJI Matrice 300-RTK 

equipped with a real-time kinematic (RTK) positioning system 

with a vertical and horizontal hovering accuracy of ±0.1 m in D-

RTK mode, and two multispectral cameras. A Micasense 

RedEdge-MX (MicaSense, Inc., Seattle, WA, USA) was used in 

2022 and a Parrot Sequoia (Parrot S.A., France) in 2023 

campaigns, with 5 and 4 spectral bands, respectively, in the 
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visible, red-edge and NIR regions of the electromagnetic 

spectrum. Both sensors have a sunlight sensor that measures the 

light intensity for their corresponding spectral bands. A 

calibrated reflectance panel corresponding to each sensor and a 

sunlight sensor that automatically adjusts the readings according 

to the ambient illumination were used for radiometric calibration 

of the multispectral images (Karmakar et al., 2024). The flight 

plan considered a flight altitude of 120 m, a forward and lateral 

overlap percentage of 85 % and 80 %, respectively, and a flight 

speed of 8.6 m/s. A total of 7 flights were performed in 2022 and 

11 flights in 2023. Image processing was carried out with 

Pix4Dmapper Pro software (Pix4D S.A., Prilly, Switzerland) 

version 4.4.12. 

 

NDVI (Normalised Difference Vegetation Indices) time series, 

obtained for the 2022 and 2023 rice campaigns, were extracted 

from S2 imagery using the Google Earth Engine (GEE) platform, 

with spatial resolution of 10 m and temporal resolution of 5 days. 

In addition, a masking filter was applied to cloud and shadow 

pixels using the Scan Classification Map (SCM) provided in the 

S2 metadata. 

3. Methods 

3.1.  NDVI time series interpolation, smoothing and 

integration 

Missing NDVI time series data from S2 and UAV imagery were 

filled in with linear interpolation before smoothing, applying the 

Savitzky-Golay method (Chen et al., 2004; Araya et al., 2018). 

The Python library scipy.interpolate and scipy.signal, 

which includes the savgol.filter method, was used with a 

window_length of 8 and polyorder of 3. Since S2 images are 

affected by clouds and lack of data in the time series due to 

changing meteorological conditions, and in order to analyze the 

potential combination of the two data sets (S2 and UAV) to 

reduce these lacks in the NDVI time series of S2, both curves 

were integrated into one. This was performed by adjusting the 

available UAV curve to the S2 curve. 

It was observed that the UAV NDVI data values were higher 

than the S2 NDVI data by, on average, 0.089 for 2022 and 0.087 

for 2023. These results agree with the findings of Mangewa et 

al. (2022), who reported higher NDVI values for UAV compared 

to Sentinel-2 in the range of 0.09 to 0.20 in different habitats. S2 

NDVI values are significantly affected by atmospheric 

conditions, unlike UAV NDVI values, which are obtained with 

low flight altitude and radiometric calibration (Guo et al., 2019). 

Figure 4 shows the results of this integration process for a 

particular plot (FSV-EC207) from seeding period to harvest (day 

of year, DoY) as an example in both seasons for 2022 (341 DoY 

2021 to 176 DoY 2022) and 2023 (336 DoY 2022 to 171 DoY 

2023). Plots (a) and (d) show the original UAV (red) and S2 

(blue) NDVI values as registered for the available dates, plots 

(b) and (e) show the result of creating the independent sensor 

curves and smoothing them using the Savitzky-Golay method, 

and plots (c) and (f) represent the resulting curves after the 

combination of both sensor curves into one.  

 

 

Figure 4. Example of Sentinel-2 and UAV NDVI data from seeding date to harvest (day of year, DoY) for 2022 (341 DoY 2021 to 

176 DoY 2022) and 2023 (336 DoY 2022 to 171 DoY 2023) for plot FSV-EC207: Available Sentinel-2 and UAV NDVI time series 

values for 2022 and 2023 (a, d). Interpolated and smoothed NDVI data for 2022 and 2023 (b, e). Integrated Sentinel-2 and UAV 

NDVI curves for 2022 and 2023 (c, f). 
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3.2. Phenological metrics, prediction models generation and 

evaluation 

Following the methodology proposed by Araya et al. (2018), a 

set of 15 phenological metrics were defined, such as: NDVI 

value at Onset (OnsetV), Time at Onset (OnsetT), Maximum 

NDVI value (MaxV), Maximum NDVI time (MaxT), NDVI 

value at Offset (OffsetV), Time at Offset (OffsetT), Length of 

growing season (LengthGS), Length of growing season before 

MaxT (BeforeMaxT), Length of growing season after MaxT 

(AfterMaxT), Growth rate between Onset and MaxT 

(GreenUpSlope), Growth rate between MaxT and Offset 

(BrownDownSlope), Area under the NDVI curve (TINDVI), 

Area under the NDVI curve between Onset and MaxT 

(TINDVIBeforeMax), Area under the NDVI curve between 

MaxT and Offset (TINDVIAfterMax), and Measure of skewness 

between TINDVIBeforeMax and TINDVIAfterMax (Skewness) 

(see Figure 5). These metrics were obtained from the Sentinel-2 

and UAV NDVI time series for the two corresponding years. 

This process included a linear interpolation to fill in missing data 

and a smoothing process using the Savitzky-Golay algorithm, as 

described in section 3.1. 

 

Figure 5. Smoothed NDVI-S2-UAV curve with representation 

of rice phenological metrics for plot FSV-EC207. 

Figure 6 shows the flowchart for obtaining and evaluating the 

yield prediction models using S2, UAV, and combining S2-UAV 

imagery. 

 
Figure 6. Flowchart for rice yield prediction. 

Forward stepwise statistical multiple linear regressions were 

applied to select the best set of independent variables 

(phenological metrics) and to generate the rice yield prediction 

models. Leave-One-Out Cross-Validation (LOOCV) (Stone, 

1974) was used to evaluate the models, computing the 

coefficients of determination (R2), Root Mean Squared Error 

(RMSE) and Root Mean Square Error Percentage (%RMSE). 

4. Results  

4.1. Selected prediction variables  

 

Table 1 shows the most relevant phenological metrics variables 

selected by applying forward stepwise regression. Attending to 

this criteria, and considering a maximum of three variables per 

model to avoid overfitting, for NDVI-S2 (2022) the three selected 

variables were: Max_Value, Offset_Time and TINDVI; for 

NDVI-UAV (2022) the three variables selected were Max_Time, 

Offset_Value and TINDVIAfterMax. For 2023, the most 

important variables were TINDVIBeforeMax and GreenUpSlope 

for NDVI-S2, while for NDVI-UAV only one variable, 

Offset_Time, was considered. 

 

When NDVI of S2 and UAV were combined, only two variables 

were selected for 2022, Offset_Time and TINDVI, while for 

2023 Max_Value, Max_Time, Offset_Value, Offset_Time and 

BrownDownSlope were selected (see Table 1). 

Years S2 UAV S2+UAV 

2022 

Max_Value,                

Offset_Time and 

TINDVI 

Max_Time,         
Offset_Value 

and 

TINDVIAfter
Max 

Offset_Time and 

TINDVI 

 

 

2023 
TINDVIBeforeMax 

and GreenUpSlope 
Offset_Time 

Max_Value, 

Max_Time,                  

Offset_Value,         
Offset_Time, and 

BrownDownSlope 

   

 
 

Table 1. Phenological metrics selected by applying forward 

stepwise regression as the most relevant for the models tested. 

 

4.2. Comparative performance of prediction models 

 

Table 2 shows the indices of model performance for campaigns 

2022 and 2023, considering the three different data sets used: 

Sentinel-2, UAV, and a combination of both. The NDVI-S2 

model for 2022 obtained R² of 0.6, RMSE of 1.41 t/ha, and 

%RMSE of 13.40%, higher than for 2023, which had R² of 0.30, 

RMSE of 0.88 t/ha, and %RMSE of 9.53%. Regarding NDVI-

UAV models, the R² was 0.45, RMSE 1.62 t/ha, and %RMSE 

15.40% for 2022, higher than for 2023, which had R² of 0.35, 

RMSE of 0.86 t/ha, and %RMSE of 9.32%. Only 21 plots were 

available for 2023. 

 

In the case of the combined data set, NDVI-S2-UAV, for 2022 

R² of 0.66, RMSE of 1.09 t/ha, and %RMSE of 10.36% were 

obtained, while for 2023 R² was 0.32, RMSE 0.85 t/ha, and 

%RMSE 9.21%. 

 
Table 2. Linear regression model performance results using 

LOOCV for 2022 and 2023 using the 3 different data sets. 

R
2 RMSE

(t/ha)
%RMSE R

2 RMSE

(t/ha)
%RMSE R

2 RMSE

(t/ha)
%RMSE

2022 0.6 1.41 13.40 0.45 1.62 15.40 0.66 1.09 10.36

2023 0.3 0.88 9.53 0.35* 0.86* 9.32 0.32 0.85 9.21

* Only 21 plots were considered

Years

S2 UAV S2+UAV
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5. Discussion 

It would be expected the selection of the same or similar 

phenological metrics in all cases, however, the predictor 

variables for each year were different. In 2022, the NDVI-S2, 

NDVI-UAV and NDVI-S2-UAV models had some variables in 

common, such as the end time of the phenological stage 

(Offset_Time) and the full integral of the NDVI curve (TINDVI). 

However, in 2023, the phenological metrics selected were 

different in all cases. According to some authors, the importance 

of the variables depends on the differences in the phenological 

development of the crops (Araya et al., 2018; Kong et al., 2022; 

Meng et al., 2014; Quille-Mamani et al., 2023). This may explain 

the annual differences between 2022 and 2023, which were 

driven by the big storms and precipitation, followed by water 

stress and the spread of diseases after March, 2023. These factors 

affected the phenological development of the rice fields (growth, 

flowering and ripening stages) during this campaign, and it could 

be the reason for the different metrics selected between seasons. 

On the other side, the different metrics selected in 2023 for the 

S2 and UAV data sets can be attributed to the small data set 

available for UAV, which didn’t properly get the different 

evolution of the NDVI curve before and after the event. 

 

The results shown in Table 2 indicate a better prediction of the 

models for 2022 compared to 2023. In 2022, the results using 

satellite time series are similar to other studies with R² ranging 

from 0.49 to 0.66 and RMSE from 1.2 to 1.5 t/ha (Skawsang et 

al., 2019; Ji et al., 2022). In general, the use of UAV usually 

offers a clear advantage in terms of high efficiency, ease of use 

and spatial resolution, with R² ranging from 0.75 to 0.82 (Yang 

et al., 2022), but yield predictions may be lower (e.g., R² of 0.56) 

depending on climatic zones and potential extreme events which 

influence growth or reproductive stage (Yang et al., 2024).  

 

 

In the first months of 2023, Peru suffered the effect of the El Niño 

Costero phenomenon, characterised by an increase in sea surface 

temperature on the northern coast, which caused high 

atmospheric temperatures, torrential rains and rivers to overflow 

(Yglesias-González et al., 2023). In addition, Cyclone Yaku 

affected the northern and central coast from late February to mid-

March 2023, intensifying the rains caused by El Niño Costero. 

within relation to this event, the Peruvian government declared a 

state of emergency in the area to mitigate the consequences of the 

disasters (Ramos et al., 2024; Warner et al., 2024). As shown 

previously in Figure 3, representing precipitation in the 

Lambayeque and Vista Florida weather stations increased 

dramatically in March 2023, and these events were reflected in 

the anomalous low yield and phenological development of the 

rice crop in the study area (Figure 2). Table 2 also shows the 

effect of these anomalies in the models obtained for 2023, 

reducing the R2 to 0.30 and 0.35 for the S2 and UAV models, 

respectively. 

 

Regarding the combination of the two data sets, S2 and UAV, the 

results for 2022, as a meteorological stable campaign, show a 

slight increase of the R2 (from  0.6 to 0.66) and a decrease of the 

RMSE (from 1.41 to 1.09 t/ha), even if the UAV NDVI series 

was not complete, but had only data in the middle and last part of 

the rice campaign, with discontinuities and variations depending 

on the plots. These results point out the opportunity of using a 

few UAV data acquisition at specific moments of the campaign, 

in order to ensure a continuity in the S2 series, filling punctual 

lacks of data due to clouds or other reasons, and allowing to 

create an integrated NDVI curve representing the complete 

evolution of the crop.  

6. Conclusions 

In this study, we compared the same methodology and datasets 

based on NDVI time series, from Sentinel-2 and UAV, and 

multiple regression linear models using phenological metrics, to 

estimate rice crop yielding in Lambayeque (Peru) in two different 

crop campaigns (2022 and 2023), finding important differences 

in terms of R2 and RMSE of the predictive models. Whereas in 

2022 the results were quite operative, in 2023 were substantially 

lower. This difference could be likely due to the different 

meteorological conditions. While 2022 was a typical dry year, 

with basically not rains, during 2023, and due to El Niño 

phenomenon, there were heavy rain storms and floods during the 

last part of the campaign, increasing the soil moisture and causing 

important damage in the rice plants. This change of 

environmental conditions could be responsible of the different 

behaviour of the prediction models, as well as in the different 

phenological metrics selected in the models for the two 

campaigns. In addition, the combination of two data sets, one 

from Sentinel-2 satellite images and the other from UAV 

acquisition with multispectral sensor at specific moments of the 

rice campaign, allows to complete the Sentinel-2 time series, 

slightly increasing the accuracy of the estimation and reducing 

the errors, which could be a potential operative approach to 

improve yield prediction when the relation cost-benefits allows 

it. Next steps of the research will be focused on obtaining more 

robust models for different years and campaigns, and correcting 

potential anomalies by including meteorological variables in the 

yield prediction models, such as accumulated rainfall, moisture, 

and others.  
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