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Abstract 

 

The increase in heat islands in large cities, especially in tropical areas, has been a significant problem, as the rise in temperature can 

cause health issues for people. Therefore, this research aimed to analyze changes in land surface temperature (LST) and urban heat 

islands (UHI) in 1986 and 2023. The methodological procedures were carried out in four steps: I) Calculation of LST and UHI using 

the Landsat collection; II) Zonal statistics of the mean, the median, the minimum, maximum, and standard deviation of LST and UHI 

in each neighbourhood; III) Kruskal-Wallis Test applied to the average LST between 1986 and 2023; and IV) Assessment of the 

spatial autocorrelation of neighbourhoods using Bivariate Global and Local Moran’s I Index between LST and UHI. The results 

showed that in 2023, there was an increase in heat islands in central city neighbourhoods compared to 1986, as demonstrated by the 

Kruskal-Wallis test, which showed significant differences in LST. The global Moran’s I Index presented a value of 0.642, indicating 

a robust spatial autocorrelation in local studies. The neighbourhoods that showed high correlations were Campina, Cidade Velha, 

Cremação, Condor, Fátima, Jurunas, Nazaré, Pedreira, Reduto, São Braz, and Umarizal. The neighbourhoods that showed low 

correlations were Águas Lindas, Aurá, Curió-Utinga, Guanabara, and Parque Guajará. These results are directly linked to the 

intensification of urbanization and low vegetation cover, especially in central areas of the city, which showed a high correlation. 

These findings can aid decision-makers and support urban planning, focusing on neighbourhoods with higher average temperatures. 

 

1. Introduction 

Global warming induced by climate change is an alarming phe-

nomenon intensely affecting the 21st century (Kafy et al., 

2022). Therefore, it causes long-term temperature variations, 

yearly precipitation, sea level increases, and the frequency of 

hydrometeorological dangers that threaten most of the world’s 

population (Rahaman et al., 2022). One of these consequences 

is the Urban Heat Islands (UHI), a significant concern due to 

urbanization and industrialization. The excessive heat generated 

by urban structures and anthropogenic heat sources contributes 

to increased temperatures in urban areas, creating UHI Intensity 

(Rizwan et al., 2008). This issue is particularly pronounced in 

cities with large populations and extensive economic activities 

(Zhou et al., 2015). 

UHI research has become popular in recent decades due to the 

impacts of heat stress on the population and the environment, 

mainly affecting children and the elderly due to respiratory 

difficulties, heat stroke, heat exhaustion, cramps, and mortality 

(Diem et al., 2024). Climate change acts as a catalytic agent for 

UHI, exerting its intensification, with its main causes at the 

local, microclimate, and mesoscale being the ability of building 

materials to store heat, heat production, the alteration and min-

imization of wind speed as a function of surface roughness, and 

the increased absorption of solar radiation by albedo surfaces 

(Almeida et al., 2021; Diem et al., 2024). Other consequences 

are the increased energy demand in the use of electronics for 

cooling and thermal comfort, which drives the increase in the 

use of electricity, in addition to the emission of greenhouse 

gases, reduced water availability, droughts, and changes in bio-

diversity (Diem et al., 2024). 

In the Brazilian Amazon, the increase in LST is also associated 

with deforestation and fire foci in protected areas and 

indigenous lands (Silva et al., 2023). Several studies have found 

a significant increase in LST and UHI, with urban areas being 

the most affected compared to rural areas (Carrasco et al., 2020; 

Espinoza et al., 2023; Furtado et al., 2024). Among the 

applications of UHI and LST, the use of thermal sensors from 

the MODIS and Landsat satellites stands out, the latter being the 

most widespread in the world, as it is appropriate for long-term 

monitoring, while MODIS provides a daily to monthly analysis 

(Almeida et al., 2021; Diem et al., 2024). 

The municipality of Belém in the Eastern Amazon is a great 

important metropolis. Given this, the city has been affected by 

Land Surface Temperature (LST) rising over the years, which 

causes thermal stress on the population (Silva et al., 2021). 

These trends were observed due to human pressure, vegetation 

suppression, and disorderly urban expansion in many cities 

worldwide (Waleed et al., 2023; Furtado et al., 2024). 

Accordingly, this study aimed to analyze the changes in the 

LST and UHI in the years 1986 and 2023 in the urban area of 

the Belém, using remote sensing techniques and a cloud 

computing-based platform to support decision-makers and 

urban planners. 

2. Study Area 

The municipality of Belém is the second most populous city in 

the northern region of Brazil, with 1,303,403 inhabitants and a 

territory of 1,059.466 km² (IBGE, 2022). Considering the island 

and continental portions, the municipality of Belém is divided 

into 8 (eight) administrative districts, encompassing 39 (thirty-

nine) islands and 71 (seventy-one) neighbourhoods (IBGE, 

2010; Moreira; Vitorino, 2017). The study area, which refers to 

the urban area (Figure 1), has 48 neighbourhoods and   177.26 

km² (IBGE, 2010). According to the Köppen climate 

classification, the municipality of Belém is in two categories, 

with the southern side corresponding to the urban area in Af (no 

dry season) and the northern region in Am (monsoon) (Alvarez 
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et al., 2013). The municipality of Belém has an average annual 

rainfall of 3,000 to 4,000 mm and average temperatures of 26 ± 

0.4ºC, with maximum and minimum temperatures ranging from 

31.5 ± 0.7 to 22.0 ± 0.3ºC, respectively, with a dry period from 

July to November and rainy periods from January to April 

(Silva Junior et al., 2012; Alvarez et al., 2013; Furtado et al., 

2024). 

 
Figure 1. Study area. 

3. Methodology 

3.1 Data Gathering and Framework 

The methodological procedures (Figure 2) involved two phases: 

I) data processing involving the acquisition and retrieval of the 

LST and calculation of the UHI using the cloud computing-

based platform (Google Earth Engine - GEE) (Velastegui-

Montoya et al., 2023); and phase II) in which the data analysis 

was performed involving descriptive statistics and Moran Index 

calculation. All phases are described in the following sections. 

The codes used to retrieve LST and calculate UHI on GEE are 

available for Landsat 8 OLI/TIRS 

(https://code.earthengine.google.com/928179c88c4600963817b

a7b52ccc513) and Landsat 5 TM 

(https://code.earthengine.google.com/3dd0b31f9b58a8fd44de1c

3d219b4dd5). 

 
Figure 2. Methodology flowchart. 

3.2 Land Surface Temperature Retrieval 

Images from Landsat Collection 2 calibrated top-of-atmosphere 

(TOA) reflectance were used through GEE. The pre-processing 

images started with select images based on a cloud filter by 5%, 

corresponding to the dates 07/17/1986 (Landsat 5 TM) and 

07/23/2023 (Landsat 8 OLI/TIRS). The choice of these dates is 

justified because July is part of the dry period with fewer 

clouds, as well as to avoid seasonal variations and bias. The 

resulting images for each year were cropped to the study area. 

The thermal bands of Landsat-5 TM and Landsat 8 OLI/TIRS 

were used to estimate the LST, bands 6 and 10, respectively. 

Band 11 of Landsat 8 OLI/TIRS is not used because it has less 

calibration than 10 (Waleed and Sajjad, 2022). 

The procedures adopted to estimate the LST were based on 

Waleed and Sajjad (2022), in which the Thermal bands are used 

to convert Digital Numbers (DN) into spectral radiance (Lλ) 

using equations (1) and (2). The resulting top of atmospheric 

radiance (Lλ) is in watts/(m2 × ster × μm) shown in equation 

(1). 

   (1) 

where LMAX = maximum spectral radiances (15.600 for TM), 

LMIN = minimum spectral radiances (1.238 for TM), 

QCALMAX = maximum Digital Number (DN) value (255), 

QCALMIN = minimum Digital Number (DN) value (1), QCAL 

= Digital Number value of band 6. 

The values of LMAX, LMIN, QCALMAX, and QCALMIN are 

obtained from the metadata file attached to each Landsat image. 

The Landsat 8 OLI thermal band, the top of atmospheric radi-

ance (Lλ), is calculated using the following equation (2). 

 

                  (2) 

where ML = multiplicative rescaling factor for specific band 

(0.0003342), QCAL = digital numbers of band 10, and AL = 

additive rescaling factor for specific band (0.1). 

The TOA brightness temperature was calculated from spectral 

radiance using the following equation (3): 

   (3) 

where TB =at-satellite brightness temperature in Kelvin (K), Lλ 

=spectral radiance, K1 and K2 =calibrated constants depending 

on the sensor, and it can be found in the metadata files. 

The emissivity correction depends on the category of land use, 

and it is evaluated using the Normalized Difference Vegetation 

Index (NDVI) per pixel value (Waleed and Sajjad, 2022). Equa-

tion (4) is used to evaluate emissivity corrected LST:  

 

  (4) 

   

Where ST = land surface temperature in (°C), TB = at-satellite 

brightness temperature (K), λ = wavelength of emitted radiance 

(11.5 μm), ρ = 1.438 × 10−2 mK, ε = emissivity (ranges from 

0.97 to 0.99). 

Emissivity can be calculated by using equation (5), which is: 

   (5) 
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Where Pv = proportion of vegetation. 

The proportion of vegetation Pv can be calculated using the 

following equation (6); 

  (6) 

In which NDVI, NDVImin, and NDVImax are per pixel value of 

NDVI, minimum NDVI, and maximum NDVI values, 

respectively. 

3.3 Urban Heat Island Calculation 

The UHI effect is a relative concept, and its degree indicates the 

temperature difference between the city centre and surrounding 

areas that show lower temperatures (Xu et al., 2013). The UHI 

is also associated with LULC and the geographic distribution of 

vegetation (Rahaman et al., 2022). 

A normalized method is adopted to compare UHI due to ob-

served variations in LST within a year (Faisal et al., 2021; Ra-

haman et al., 2022). UHI is given as Equation (7) 
 

     (7) 

 

Subsequently, the resulting UHI values were reclassified 

according to the classes and proportions of value ranges defined 

by Xu et al. (2013). Table 1 presents the UHI classes and their 

corresponding ranges. 

 

Ranges Classes 

<0 Green Island 

0-1 Weak UHI 

1-2 Medium UHI 

2-4 Strong UHI 

>4 Extremely Strong UHI 

Table 1. Classification of the Urban Heat Island (UHI) intensity 

levels. 

3.4 Land Surface Temperature Validation 

Data from the National Institute of Meteorology (INMET) with 

station codes 82191 and A201 were used to validate the LST. 

The INMET data were collected on the same dates as the 

images (July 17, 1986, and July 23, 2023) and, at times, 

approximating the Coordinated Universal Time (UTC) of the 

Landsat imagery, as described in Table 2. Subsequently, 

sampling of LST raster values was performed according to the 

coordinates of each station. 

Weather Station 

code 

82191 82191 A201 

Date 17/07/1986 23/07/2023 23/07/2023 

LST (ºC) 27.51 27.57 29.00 

Weather station 

(ºC) 

26.60 27.10 29.00 

Weather station 

measurement 

time (UTC) 

 

12:00 

 

12:00 

 

13:00 

Landsat imagery 

measurement 

time (UTC) 

 

12:46 

 

13: 23 

Table 2. Information about LST and Air temperature values 

from Landsat and weather stations in the study area. 

Afterwards, the Pearson correlation (ρ), the Coefficient of 

Determination (R²), and the Root Mean Square Error (RMSE) 

were applied in the RStudio software as validation metrics. The 

Pearson correlation (ρ) assesses the strength and linear direction 

between the variables, where 1 indicates a perfect positive linear 

association, and -1 indicates a perfect negative linear 

association. R² is a statistical measure that indicates the 

proportion of the variance in the dependent variable that is 

predictable from the independent variable(s), where a value of 1 

indicates that the model explains all the variation. The RMSE is 

a metric for evaluating forecast models, measuring the average 

of the squared errors. The lower the RMSE, the better the model 

fits the data. 

3.5 Statistical Analysis 

The statistical analysis was conducted using RStudio software, 

where the non-normality of the data (p-value < 0.05) was first 

verified using the Shapiro-Wilk test. Following this, the non-

parametric Kruskal-Wallis test was performed to determine 

whether there were significant differences in the LST averages 

in the neighbourhoods between 1986 and 2023. The LST and 

UHI averages were extracted for the neighbourhoods in QGIS, 

using the zonal statistics tool to obtain the mean, median, 

maximum, minimum, and standard deviation to identify the 

behaviour patterns of these two variables. 

3.6 Moran Index Calculation 

The results of the LST and UHI averages for the 

neighbourhoods were used to analyze Moran’s I Index. The 

Bivariate Global and Local Moran’s I Index assessed the spatial 

autocorrelation between the neighbourhoods. The values used 

were the LST and UHI averages for 1986 and 2023. In general, 

the Moran’s I Index tests the null hypothesis of spatial 

independence; in this case, a value of zero indicates no spatial 

correlation, positive values (between 0 and +1) indicate direct 

correlation and negative values (between 0 and -1) indicate 

inverse correlation (Câmara et al., 2004). This analysis was 

conducted using Geoda software. 

 

4. Results and Discussion 

4.1 Land Surface Temperature Validation Analysis 

The results obtained from the LST from Landsat showed a 

strong positive correlation (ρ = 0.99), with the coefficient of 

determination explaining 97% of the variation in the LST data 

in the linear model (R² = 0.97). The Root Mean Square Error 

(RMSE) calculated was 0.59. Therefore, the results are 

satisfactory despite the limited number of measurements from 

meteorological stations in the years analyzed. Another point that 

may influence future research to improve the accuracy of the 

Landsat LST is to relate it to values measured from automatic 

meteorological stations. According to Table 2, station A201 (an 

automatic station) presented the same value of 29.00 ºC as 

measured in the Landsat image from 2023, indicating that 

automatic stations may offer greater reliability in collecting 

measured values. 

The accuracy of the LST generated from Landsat images 

obtained satisfactory results when compared to Sentinel 3 

SLSTR images, which are optimized to measure LST with a 

systematic uncertainty of 1.3 K and a precision of 1.3 (Batoni et 

al., 2024). Other research on the LST generated from Landsat 

was also compared with in situ measurements, meteorological 

stations, and with MODIS LST retrievals, which presented 
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results with high accuracy (Wang et al., 2020; Aslan and Koc-

San, 2023; Ghasempour et al., 2023; Batoni et al., 2024). 

4.2 Land Surface Temperature Changes 

Figure 3 shows the temperature variation in the urban area of 

Belém. It was possible to observe an expansion of higher 

temperatures in other neighbourhoods, primarily towards the 

north. In 1986, the urban area had an average temperature of 

27.17 ºC ± 1.60 ºC, which increased to 28.67 ºC ± 1.80 ºC by 

2023, representing a rise of 1.5 ºC over these 37 years (Table 3). 

 
Figure 3. LST of the years 1986 and 2023 for the urban area of 

the Belém. 

This increase of 1.5 ºC represents an average rise of 0.04 ºC per 

year over the 37 years. This increase in the LST average reflects 

the rise in thermal amplitude during these periods, where the 

minimum temperature increased from 22.80 ºC in 1986 to 25.17 

ºC in 2023 (Table 3). Similarly, the maximum temperature rose 

from 32.43 ºC to 36.88 ºC in 2023. 

LST values 1986 2023 

Minimum Temperature (ºC) 22.80 25.17 

Maximum Temperature (ºC) 32.43 36.88 

Mean (ºC) 27.17 28.67 

Standard Deviation (ºC) 1.60 1.80 

Table 3. Descriptive statistics for study area in the years 1986 

and 2023. 

The increase in mean LST over the study area was considered 

significant according to the Kruskal-Wallis test (chi-squared = 

29.482, df = 1, p-value < 0.05) (Figure 4). This significant rise 

in LST aligns with the global surface temperature increase of 

1.1°C above the years 1850-1900 during 2011-2020, with more 

significant increases over land averaging between 1.34°C and 

1.83°C, as reported by the Intergovernmental Panel on Climate 

Change (IPCC) (IPCC, 2023).  

 
Figure 4. Boxplot of the temperature average in the years 1986 

and 2023 for the study area. Each black dot represents the mean 

for each neighbourhood. 

The average increase in LST is in agreement with those found 

by Furtado et al. (2024), who analyzed the average increases in 

maximum and minimum temperatures in the period 

corresponding to the differences between 1985-2002 and 2004-

2021, whereby the minimum temperature increased by 0.39 and 

0.45ºC in the rainy season, and in the dry season it was 0.53 and 

0.60ºC for natural and artificial areas. Also, according to the 

authors, the maximum temperature increased by 0.58 and 

0.62ºC for natural and artificial areas in the rainy season, while 

in the dry season, it was 0.83ºC and 0.97ºC for natural and 

artificial areas, respectively. Dias et al. (2021) also found 

significant increases in minimum, maximum, and compensated 

temperatures in Belém and Manaus on a scale of 1 to 1.5 ºC 

from 1999-2008 and 2009-2018. 

Another factor that may explain the increase in temperature 

besides urban expansion and vegetation suppression over the 

years in the metropolitan area of Belém, as reported by Furtado 

et al. (2024) and Dias et al. (2021), is the influence of the El 

Niño-Southern Oscillation (ENSO), since in the period of 1986 

(considering the 3-month moving average of sea surface 

temperature anomalies referring to July) it was considered a 

period of neutrality, on the other hand in 2023 in the same 

period in July there was a strong influence of El Niño (NOAA, 

2024). 

4.3 Urban Heat Island Changes 

The UHI for 1986 and 2023 (Figure 5) shows an expansion, 

particularly of the Extremely Strong UHI classes towards the 

north, similar to the pattern observed with the LST. This result 

highlights that most of the urban area of Belém has UHI regions 

throughout the neighbourhoods within the study area. 
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Figure 5. UHI of the years 1986 and 2023 for the urban area of 

the Belém. 

This expansion of the UHI was quantified (Table 4). In 1986, 

the most representative classes were Strong UHI and Weak 

UHI, accounting for 30.77% and 25.97%, respectively, while 

the Extremely Strong UHI class was the smallest, at only 

0.93%. By 2023, there was a significant increase in the 

Extremely Strong UHI and Strong UHI classes, representing 

62.53% of the entire urban area. Notably, the Extremely Strong 

UHI class saw an increase of 2,942.68%. 

 

Classes 

1986 2023 

Area 

(km²) 

Area 

(%) 

Area 

(km²) 

Area 

(%) 

Green Island 41.64 23.50 30.15 17.01 

Weak UHI 46.02 25.97 22.65 12.78 

Medium UHI 33.39 18.84 13.60 7.67 

Strong UHI 54.52 30.77 60.91 34.37 

Extremely 

Strong UHI 

1.64 0.93 49.90 28.16 

Table 4. Area and percentages of UHI in 1986 and 2023. 

Other classes, such as Green Island, Weak UHI, and Medium 

UHI, showed a decrease of 27.59%, 50.78%, and 59.27% in 

their total area, respectively. This decrease is associated with 

reducing green areas and suppressing vegetation in the city, as 

discussed in previously mentioned research. 

4.4 Moran Index Analysis 

The results showed that in 1986, the peaks of maximum 

temperature of neighbourhoods were assigned in the Reduto 

(32.43°C), São Bráz (31,76°C), and Jurunas (31,76°C). The 

peaks of the minimum temperature of neighbourhoods were 

found in Aura (22,80°C), Águas Negras (23,31°C), and Curió-

Utinga (23,33°C). The UHI neighbourhood’sneighborhood's 

results concerning maximum and minimum were the same as 

LST, with values ranging between -1°C (Green Island) and 

5,60°C (Extremely Strong UHI). 

In 2023, the results showed the peaks of maximum temperature 

were found in Tenoné (36,88°C), Sacramenta (35,59°C), and 

Parque Guajará (34,66°C). The minimum peaks are in 

Maracacuera (25,17°C), Curió-Utinga (25,35°C), and 

Universitário (25,40°C). These LST results were the same 

neighbourhoods found by UHI as Green islands, in other words, 

below -1°C and above 6,00°C (Extremely Strong UHI). 

According to other local studies, the Global Moran's I Index 

(Figures 6 and 7) presented a value of 0,642, which is 

considered good (Silva et al., 2021). Regarding the Local Moran 

Index, the neighbourhoods that present the most correlation 

high-high were Campina, Cidade Velha, Cremação, Condor, 

Fátima, Jurunas, Nazaré, Pedreira, Reduto, São Braz e 

Umarizal. On the other hand, the neighbourhoods that presented 

the most correlation Low-Low were Águas Lindas, Aurá, Curió-

Utinga, Guanabara, and Parque Guajará. 

 
Figure 6. Scatterplot of Moran's I index. 

The spatial correlation in these neighbourhoods is associated 

with the high and low average values between LST and UHI 

that remained in the respective years. This indicates a degree of 

spatial variation in magnitude between the variables, 

consequently presenting this trend with their neighbours. This 

trend with the neighbourhood is associated with the 

characteristics of urbanization and afforestation (Figure 7), in 

which the areas that presented high-high correlation have 

greater anthropization and urban verticalization. 

Silva Júnior et al. (2012) and Lola et al. (2013) also found high 

values of Heat Index (HI) and air temperature in the central 

neighborhoods of Belém, falling within the Caution and 

Extreme Caution ranges regarding thermal comfort. However, 

the Curió-Utinga neighbourhood presented lower values, 

indicating complete thermal comfort, which was also observed 

in this research (Silva Júnior et al., 2012). 

The maximum peak temperature values found in the year 2023 

in the neighbourhoods of Tenoné, Sacramenta, Parque Guajará, 

Mangueirão, Castanheira, Tapanã, Val de Cans, Bengui, 

Pratinha, Parque Verde, Reduto, Batista Campos, Campina de 

Icoaraci, Maracacuera, and Coqueiro were above 32ºC, 

considered at HI alert levels as extreme caution and a state of 

medical emergency in the studies developed by Silva Júnior et 

al. (2012) and Espinoza et al. (2023) in the cities of Belém and 

Manaus respectively. 

In the general average of the hottest neighborhoods, Reduto 

(30.51ºC), Campina (30.05ºC), and Umarizal (29.65ºC) stood 

out as the hottest in 1986. In 2023, the hottest neighbourhoods 
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were Reduto again (30.59ºC), Fátima (30.48ºC), and 

Sacramenta (30.46ºC). These average temperatures are 

classified as severe thermal stress and caution (Espinoza et al., 

2023; Silva Júnior et al., 2012). In contrast, the neighbourhoods 

with the best thermal comfort on average in 1986 were Aurá 

(25.49ºC), Águas Lindas (25.59ºC), and Águas Negras 

(25.79ºC). In 2023, the neighbourhoods with the lowest average 

temperatures were Aurá (26.25ºC), Curió-Utinga (26.36ºC), and 

Universitário (26.98ºC). Notably, the temperature differences 

between the hottest and coldest neighbourhoods (Reduto and 

Aurá) were 5.02ºC in 1986 and 4.34ºC in 2023. This result 

aligns with previous research findings, indicating that areas 

farther from the city centre have better thermal comfort than 

those closer to the city centre, which have greater soil 

impermeability and less afforestation. 

 
Figure 7. Cluster Map for LST and UHI. 

 

Therefore, the local Moran's I Index results (Figure 7) reflect 

that where there are high LST and UHI, these are induced by 

urbanization and low arborization, mainly in the centre 

areas. This problem can impact people's health due to a 

temperature increase. The insights of this research can help to 

understand climate change in Belém and better support the 

management of the city by decision-makers and urban planners, 

focusing on neighbourhoods that present high-value 

temperatures. 

5. Conclusions 

The assessment of UHI in the urban area of Belém in the years 

1986 and 2023 showed that there was an expansion mainly from 

the south to the north due to the average increase in LST on the 

scale of 1.5ºC on average, with an annual increase of 0.04ºC 

over the 37 years of analysis. This increase was significant 

according to the Kruskal-Wallis test, being explained by the 

advance of urbanization, urban verticalization, and the influence 

of El Niño given the reduction of natural areas in Belém, as 

reported by other research. The urban area of Belém presented a 

spatial autocorrelation of magnitude due to the correlation of 

LST and UHI; on the other hand, the areas further away from 

the centre, especially the Aurá neighbourhood, presented the 

most thermally comfortable. The neighbourhood most 

considered the hottest on average was Reduto, with 

temperatures averaging 30ºC. Therefore, these insights can help 

decision-makers and urban planners as a way to focus on the 

hottest neighbourhoods and promote measures that reduce the 

increase in temperature and projects focused on civil 

construction, nature-based solutions, and urban afforestation. 
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