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Abstract

Wildfires have become increasingly prevalent worldwide due to climate change, posing significant threats to human lives, property,
and natural ecosystems. The rapid progression of wildfires necessitates predictive computational models to assist firefighters in
effectively developing strategies to control firefronts. However, existing models often face challenges in computational complexity
as the firefront expands. This study aims to develop a faster, more computationally efficient, deep-learning-based model for pre-
dicting wildfire spread. We hypothesise that firefront propagation can be modelled using stochastic cellular automata and that a
deep-learning model can mimic this approach. With this in mind, we will first introduce our in-house stochastic cellular automata
model, which is being validated with data from a known Finnish wildfire. After that, we propose a novel deep-learning model which
uses the data generated by our cellular automata. The deep-learning-based model was based on Unet architecture, and it is capable
of predicting firefront progression accurately and efficiently one time-step at a time. The model provided realistic simulations of
firefronts with high computational efficiency, leaving future development needs to longer time series. One potential application of
the developed model is in UAV-based real-time wildfire management systems.

1. Introduction

Global warming is causing droughts, increasing the risk of forest
fires, which have become more common almost everywhere.
Fire management and strategic firefighting planning require real-
time information on where and how the firefront is advancing.
Such information can be provided by a computational model
that estimates the direction and speed of the firefront based
on the inputs it receives. Computational firefront propagation
models (FPMs) require multisource background information as
input. A typical FPM inputdata includes the current location
of the firefront, the amount of forest fire fuel in the terrain, the
strength and direction of the wind, information about the shape
of the terrain, and the humidity of the terrain. Models can be
made more precise by separating different fuels (biomass types)
from each other.

1.1 Real-time monitoring technology

Real-time monitoring technology is required to generate the in-
formation the models need to monitor the fire area. Drones
can be used for the detection and mapping of wildfires (Raita-
Hakola et al., 2023). For example, they can provide data suit-
able for FPMs if equipped with the right sensors, such as a
thermal camera, an RGB camera, spectral imagers and lidars.
The thermal camera can produce information about the loca-
tion of the firefront. A spectral imager can be used to identify
combustibles. A point cloud can be photogrammetrically pro-
duced with an RGB camera. Lidar produces a more accurate
point cloud and possibly information about the understory ve-
getation. Wind direction and strength can be derived from the
drone’s autopilot data.

1.2 Real-time forecasting models

Real-time forecasting requires an efficient computational model.
Many different firefront progression models have been proposed,

which can be roughly divided into physical, empirical mathem-
atical (Sullivan, 2009) and stochastic cellular automata models.

Physical models, such as ForeFire (Filippi et al., 2014) and
FireTec (Linn et al., 2002), are designed to work with high spa-
tial resolution. These models are based on fluid dynamics and
heat transfer models.

Well-known empirical models are, for example, Prometheus
(Tymstra et al., 2010) and Farsite (Finney, 1998). In these, the
starting point of modelling has been to fit a suitable mathemat-
ical model to the empirically observed data. For example, Pro-
metheus uses an elliptical propagation model that inputs envir-
onmental parameters, while Farsite is based on Huygens wave-
let transforms.

Besides physical and empirical approaches, a classic way to
model the progress of the firefront is stochastic cellular auto-
mata models (SCA). SCA models are intuitively easy-to-under-
stand models so that clear rules can be written for the ignition
probability of the cells. Rules increase or decrease the probab-
ility of ignition. The first cellular automata for modelling the
firefront were already made in the 1970s (Kourtz and O’Regan,
1971), and their development and production are actively con-
tinuing (Trucchia et al., 2020, Mastorakos et al., 2023, Vanas,
2023).

What is typical for physical, empirical, and SCA models is
that as the firefront expands, its computational complexity in-
creases. This may reduce the implementation of these meth-
ods in real-time systems. Thus, more computationally efficient
models are required to lower the threshold of enabling real-time
systems.

1.3 Hypothesis and proposed approach

We hypothesise that since a real-time FPM requires a computa-
tionally efficient model, the efficiency might be accelerated by
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developing a deep-learning (DL) model that learns the opera-
tion of firefront propagation models from a traditional mathem-
atical model, resulting in a computationally effective DL-mimic
of the original propagation model.

With this in mind, we developed two models. 1.) An in-house
implementation of stochastic cellular automata (SCA-FPM), ad-
apted to the Kalajoki wildfire’s progression by adjusting the
parameters using a differential evolution optimisation algorithm.
The SCA-FPM was fitted into publicly accessible remote sens-
ing data: fuel map, moisture levels and digital elevation models
collected from the Kalajoki burning site. Kalajoki wildfire oc-
curred in 2021 in Finland, where over 200 hectares of forest and
dried marshland burned (Puustinen, 2022).

2.) The SCA-FPM was used as a basis for our DL-based fire-
front propagation model (DL-FPM). After optimising the SCA-
FPM for the Finnish environment, we randomly selected 1400
coordinates from Finland and simulated 75,000 separate fire
events. Each fire event had 16 time steps, each lasting 15 minutes.
Each time step provided firefront, fuel and intensity prediction
maps after the step.

The proposed DL-FPM utilised 100,000 SCA-FPM time steps
as its training data. The selected architecture was based on
Unet. For each to-be-predicted firefront parameter map, we
trained a separate model.

2. Material and methods

2.1 SCA-FPM simulation input data description

Simulating wildfires requires understanding landscape charac-
teristics, especially fuel, moisture and topography details. For
example, it is necessary to get an approximate impression of the
flammable material in the landscape that feeds the fire. A fire
will be extinguished either when it runs out of fuel or when it
encounters areas where there is no fuel.

Another critical element is the presence of moisture and water
within the landscape. Dry terrains are more prone to ignition
than their moist counterparts, and a fire will be extinguished
upon encountering an area with sufficient moisture or a water
body. The topography significantly influences the direction of
fire spread, exhibiting a marginally higher propensity for up-
ward rather than downward propagation.

In Finland, the aforementioned environmental characteristics
are publicly available, and our SCA-FPM used this processed
remote sensing data for its simulation. The quantification of
fuel within the terrain is accomplished by utilising a nationwide
tree stand carbon inventory. This carbon stock estimation is
derived from the National Forest Inventory Programme, which
employs lidar data and a comprehensive network of tree stand
plots for forest inventories. Moisture levels were determined
utilising a topographic moisture index calculated from the laser
scanning data. Additionally, the terrain configuration is readily
available in a 25x25 m elevation model, also derived from laser
scanning data. The utilised materials are publicly accessible at
(CSC, 2024).

Figure 1 shows an example of Finnish data. A fuel, height
model and topographic water index maps describe the Kalajoki
wildfire burning area, further discussed in subsection 2.3.

Figure 1. The inputs for the stochastic model are the wood
carbon content as a fuel estimate, the height model and the

topographic water index from the Kalajoki 2021 burning site.

2.2 SCA-FPM input data sampling and output

Besides fuel, moisture, and topography information, simula-
tion requires the determination of wind direction and velocity,
with the direction expressed in radians and velocity expressed
in meters per second.

The input data was randomly sampled from 1400 distinct loc-
ations across Finland for SCA-FPM simulation. A 5000 ×
5000 m window was gathered around each coordinate with a
ground sampling distance (GDS) of 16 m. This procedure gen-
erated 313x313 pixel rasters for fuel, moisture, and the elev-
ation model. The resolutions of the maps were corrected to
match each other

Wind direction underwent variation by estimating five distinct
directions and intensities, which were then applied within the
simulation. The simulation spanned 16 time steps, with each
step lasting 15 minutes. This resulted in a total of 75,000 dis-
tinct fire events, with a firefront moving through over 1.2 mil-
lion incidents. From this data set, we randomly sampled 100,000
incidents to train and test DL-FPM.

As an output, the stochastic fire simulator yields data on the
location of the firefront, fire intensity, and remaining fuel quant-
ity. This information is crucial for simulating subsequent time
steps.
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2.3 SCA-FPM validation: the Kalajoki wildfire in 2021

To validate the simulation, its results was compared against
actual events. In Finland, significant wildfires are infrequent;
the most recent extensive wildfire occurred during the summer
of 2021 in Kalajoki, located in western Finland, covering an
area exceeding 200 hectares. The wildfire is thoroughly doc-
umented, with available sources providing detailed informa-
tion on the progression of the firefront in half-hour intervals.
This particular wildfire had two distinct fronts, each with its
own timeline. One front was utilised to calibrate the stochastic
model to align with accurate parameterisation. The efficacy of
both the stochastic propagation model and the machine learn-
ing model were evaluated within this wildfire scenario. Figure
2 depicts both fires and the progression of their respective fronts
in 30-minute intervals.

Figure 2. Progression of Kalajoki 2021 wildfire: The burn
investigators’ assessment of the propagation of the firefront in
green in 30-minute intervals. The ignition point of the fire is in
the middle of the Figure (EPSG:3067 N: 7100439, E: 361200).

2.4 Operating principles of SCA-FPM data generator

The Stochastic cellular automata-based firefront propagation mo-
del (SCA-FPM) uses Python, and utilises libraries such as Num-
Py, Matplotlib, and the random module. The simulation is mod-
elling the spread of a wildfire over a grid-based landscape, con-
sidering factors like fuel availability, moisture levels, wind dir-
ection and strength, and elevation.

The input and output data of a SCA-FPM is presented in Table
??. Figure 1 is an example of the Finnish remote-sensing ma-
terial used as an input in our simulation starting points. The top
figure represents the fuel, middle figure is a height model and
bottom figure is a moisture level map (A., B. and C. in Table
??) For each time step, the model updates the firefront, fuel and
fire intensity maps as output (H, I and J in Table ??).

In this study, the SCA-FPM generates training and validation
data for the proposed DL-FPM approach. For each randomly
selected fire location, the first values of D-G (Table ??) are
randomly generated and values A-C are gathered from remote
sensing data. The time step is 15 minutes. SCA-FPM runs four
hours lasting wildfire events, generating related updated output
maps (H-J).

Inputs
A. Fluel map (wood carbon content)
B. Height model (digital elevation model)
C. Moisture level (topographic water index)
D. Current firefront or ignition point
E. Fire intensity
F. Wind direction
G. Wind strength
Outputs
H. Updated firefront map
I. Updated fuel map
J. Updated fire intensity map

Table 1. Inputs and outputs of SCA-FPM.

The stochastic approach allows the simulation to incorporate
the inherent unpredictability of fire spread, where even under
similar conditions, the outcome can vary. This randomness is
crucial for simulating real-world scenarios where many small,
unpredictable factors can significantly influence the spread of
a wildfire. The stochastic element in the simulation primarily
comes from the random number, which determinates whether
the fire spreads to a neighboring cell based on calculated total
ignitation factor from input parameters.

Let the probability of fire spreading from cell (i, j) to a neigh-
boring cell (ni, nj) to be

Pspread(i, j → ni, nj). (1)

Let now

• W (i, j, ni, nj) be the wind influence on the probability of
fire spread from cell (i, j) to cell (ni, nj), considering the
wind direction and strength,

• M(ni, nj) be the moisture influence at cell (ni, nj), in-
versely related to the moisture level,

• L(i, j, ni, nj) be the landscape influence based on the el-
evation difference between cell (i, j) and cell (ni, nj) and

• I(i, j) be the flame intensity at cell (i, j).

The total influence T (i, j, ni, nj) on the transition probability
can be expressed as the product of these factors, scaled by the
flame intensity of the active cell:

T (i, j, ni, nj) = W (i, j, ni, nj)M(ni, nj)L(i, j, ni, nj)I(i, j).
(2)

The stochastic step to determine if the fire spreads to the neigh-
boring cell is modeled by comparing a random number R from
a uniform distribution to the total influence:

Pspread(i, j → ni, nj) =

{
1 if R < T (i, j, ni, nj)

0 otherwise.
(3)

If Pspread(i, j → ni, nj) = 1 fire spreads to cell (ni, nj). In
case Pspread(i, j → ni, nj) = 0 the fire does not spread to cell
(ni, nj).
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2.5 SCA-FPM optimisation

In developing the stochastic simulator, the environmental para-
meters were calibrated using the empirical data from the Kala-
joki wildfire, Finland, in 2021 (Puustinen, 2022). The differ-
ential evolution optimisation method was used to achieve an
optimal fit of these parameters, which is known for its efficacy
in handling complex optimisation problems (Storn and Price,
1997).

This approach adapted the parameters of the simulation model
to accurately track the environmental conditions prevailing dur-
ing a wildfire, thus improving the predictive accuracy and re-
liability of the simulator in modelling such events. In the cost
function, we utilised the structural similarity index

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

,
(µ2

x + µ2
y + c1)(σ

2
x + σ2

y + c2)

(4)
where x is Canny edge of propagated firefront from SCA-FPM
and y is corresponding firefront from figure 2. The µx and µy

are the means (average pixel values) of images x and y, re-
spectively. The σ2

x and σ2
y are the variances of images x and

y. The σxy is the covariance of images x and y. And c1 and
c2 are small constants added to stabilise the division with weak
denominators . Here

c1 = (k1L)
2

c2 = (k2L)
2

where L is the dynamic range of the pixel values , and k1 and
k2 are constants (here k1 = 0.01 and k2 = 0.03). The SSIM
index ranges from -1 to 1, where 1 indicates perfect similarity.
By employing SSIM, we could quantitatively evaluate the re-
liability of our models’ predictions in replicating the complex
dynamics observed in actual wildfire propagation. Thus, actual
cost function

LSSIM = 1− SSIM.

2.6 Deep-learning-based firefront propagation model ar-
chitecture

Our deep-learning-based firefront propagation model (DL-FPM)
aims to predict these events similarly to SCA-FPM. Unet-type
architecture has been used promisingly in previous research with
similar types of multi-dimensional image data. Therefore, a
natural choice for this DL-based simulator was Unet architec-
ture (Al-Dabbagh and Ilyas, 2023).

The Unet architecture, originally designed for biomedical im-
age segmentation (Ronneberger et al., 2015), is characterised
by its U-shaped design, which consists of a contracting path
to capture context and a symmetrically expanding path that en-
ables precise localisation. This structure suits it, particularly
for the semantic segmentation task, where the goal is to assign
a label to each pixel in an image.

In the context of wildfire simulation, the Unet model can be
adapted to analyse spatial data, assimilating various environ-
mental inputs to accurately delineate and predict the firefront’s
evolving boundaries and intensity.

DL-FPM implementation has an encoder-decoder structure with
skip connections. Both the encoder and decoder stages apply

padding to maintain the spatial dimensions of the feature maps
throughout the network.

The encoder consists of four stages of double convolutional lay-
ers, each followed by batch normalisation and ReLU activation.
The number of filters starts at 16 and doubles at each stage,
reaching up to 256 in the deepest layer. This structure allows
the model to capture increasingly complex features while pre-
serving the spatial resolution due to the padding applied in the
convolutional layers.

Double convolutional blocks, comprising two convolutional lay-
ers with batch normalisation and ReLU activation, ensure con-
sistent and stable learning throughout the network. The double
convolutional block is visualized in figure 3.

Conv2D Batch Norm ReLU

x y

Figure 3. The double convolutional block. The block includes
two convolutional layers, two batch normalisation layers, and

two ReLU activation layers. Here x is the input of the block and
y is output of the block

The decoder mirrors the encoder’s structure, including padding
to maintain the spatial dimensions. The number of filters de-
creases at each stage, to maintain symmetry with the encoder.
The final layer is a 1x1 convolution that maps the 16 feature
maps from the last decoder stage to a single output channel,
producing the final prediction. The whole architecture is de-
scribed in figure 4.

Input (313× 313× 7)

DoubleConv 16

DoubleConv 32

DoubleConv 64

DoubleConv 128

DoubleConv 256

Bottleneck

DoubleConv 256

DoubleConv 128

DoubleConv 64

DoubleConv 32

DoubleConv 16

Output (313× 313× 1)

Figure 4. Modified Unet architecture.
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2.7 DL-FPM loss function and optimiser

The masked mean squared error (MSE) loss function focuses on
relevant regions of the input data while including a regularisa-
tion term. Therefore, it was a natural choice for the DL-FPM,
and it was implemented as follows:

Let ytrue be the ground truth and ypred be the predicted output.
The mask M is defined as:

M = (ytrue > 0) (5)

The masked mean squared error (MSE) is then computed as:

MSEmasked =

∑
i,j

(
(ytrue − ypred)

2 ·M
)∑

i,j M
(6)

Additionally, a regularisation term was included to penalise the
overall MSE across the entire image. The final masked MSE
loss function is given by:

L = MSEmasked + α ·
∑

i,j(ytrue − ypred)
2

N ×M
(7)

where α is a regularization coefficient (in this case, α = 0.1)
and N and M are the spatial dimensions of the image.

MSE loss function ensured that the model focused on accur-
ately predicting the relevant regions while also considering the
overall error across the image.

The Adam optimiser was employed to minimise the loss func-
tion (with a learning rate of 0.0001), chosen for its adaptive
learning rate capabilities that help efficiently converge to a solu-
tion.

2.8 Training strategies

The training of the DL-FPM involved a few key steps. At first,
separate models were trained to achieve high accuracy for each
desired output (firefront, fire intensity and fuel), of which the
most interesting in this study was the firefront since it is the only
map that can be compared to real ground truth observations of
Kalajoki fire event.

Since we were utilising a large amount of multi-dimensional
data in the training process, custom data generators were em-
ployed to load and preprocess the data and corresponding ground
truth labels, which were divided into training and validation
sets. These sets were loaded in batches (batch size 8) using
PyTorch’s DataLoader.

The training loop iterated over a predefined number of epochs.
In each epoch, the model was set to training mode, and for each
batch of data, the input images and labels were loaded onto the
GPU. The model performed a forward pass to generate predic-
tions, the loss was computed using the masked MSE function,
and backpropagation was performed to compute gradients, al-
lowing the optimiser to update the model weights. The running
loss for the epoch was accumulated for monitoring.

After each epoch, the model was evaluated against the valid-
ation set. During this validation loop, the model was set to
evaluation mode, predictions were made for each batch of val-
idation data, and the accuracy of the predictions was calculated

by comparing the predicted firefronts to the ground truth la-
bels. The models were trained within 10 epochs (each epoch
lasted approximately 10 hours). The final models had no obvi-
ous marks of overfitting. The training process was executed on
a GPU (NVIDIA RTX A4000, 16GB).

3. Results

3.1 SCA-FPM results

Figure 5 represents the SCA-FPM prediction results of the Kala-
joki wildfire event propagation against the actual fire event. The
green pixels represent the ground truth based on the official fire
propagation reports. The simulation is drawn with red pixels.
The firefront propagation direction is from right to left. The
top figure represents the situation after one hour, the middle
after two hours, and the bottom figure is the situation after three
hours. The SCA-FPM seems to predict well the the Kalajoki
fire event.

Figure 5. The propagation of the firefront inone, two and three
hours after it has started. The green represents the ground truth,

the red shows the prediction produced by SCA-FPM.

3.2 DL-FPM firefront prediction results

One fire event at a time, the DL-FPM produces a probability
distribution-like firefront map of the fire progression. Figure
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6 represents the results of one fire-event time-step. The top
figure visualises the ground truth prediction (SCA-FPM), the
middle figure is the DL-FPM prediction and the mean absolute
error of the SCA-FPM simulated and DL-FPM predicted fire-
front propagation is seen in the bottom figure.

Here, it is noticed that most of the error is generated at the edge
of the firefront, but the prediction error is mostly small (values
mainly < 1), indicating that the model is predicting the firefront
relatively right.

Figure 6. DL-FPM firefront prediction results of one simulated
fire event. Top: SCA-FPM simulation ground truth, middle:

DL-FPM prediction, bottom: mean absolute error.

To evaluate the DL-FPMs’ capability to predict accurate fire
propagation direction, we compared the SCA-FPAs firefront
simulation map one time-step earlier to the DL-FPM prediction
of the next time-step of the same fire event.

In figure 7, the absolute difference between the previous DL-
FPM input (SCA-FPM generated firefront) and the DL-FPL
model-generated prediction is calculated. The figure shows that

the firefront propagates in the direction of the given wind input
(yellow) and along the fire zone’s boundaries. The firefront has
been burned out from the centre (dark area), where the fire has
had the longest time to burn. This indicates that the DL-FPM
follows accurate fire propagation direction.

Figure 7. DL-FPM prediction compared to input firefront of the
model, absolute difference.

While the DL-FPM performs well in predicting the first step,
the model’s performance could be enhanced in the time-series
prediction of the complete four hours of fire events.

Errors were found in the simulations of the four-hour fire event.
In an experiment using Kalajoki event as ground truth, where
the first 15-minute time step was based on the SCA-FPM simu-
lation and the remaining time steps were simulations generated
by DL-FPM, the accuracy of the results deteriorated as the time
steps progressed.

If the same event was simulated by letting the DL-FPM model
predict the fire progression time-step by time-step with SCA-
FPM data, the model could produce accurate predictions for
each time-step for four hours. Thus, the model’s ability to pre-
dict iterations independently requires further development.

Figure 8 shows DL-FPM predictions for the same three-hour
firefront progression time-steps as Figure 5. Here, DL-FPM
uses SCA-FPM-generated input data for each step.

4. Discussion

4.1 Pros and cons

SCA-FPM can model the progression of the Kalajoki firefront.
In this study, the SCA-FPMs input data, which was collected
from a Finnish database, and the predicted results were working
as expected in Kalajoki Fire event validation tests.

The input data required for the SCA-FPM are simple remote
sensing products, ie. surface models, biomass estimates and
moisture models, which could be obtained globally from re-
mote sensing satellites. Much of the forest resource data is col-
lected on a 16 m grid, making the model applicable beyond
Finland.

The SCA-FPM is robust and can only be used for rough pre-
dictions. For example, more detailed models, such as Prometh-
eus and the Wise, take into account different fuel types ran-
ging from tree species to terrain. Another major shortcoming of
SCA-FPM is that it cannot simulate different fire types. For ex-
ample, dangerously fast-moving crown fires are not given spe-
cial attention here.
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Figure 8. The propagation of the firefront in one, two and three
hours after it has started. The green represents the ground truth,

and red shows here the prediction produced by DL-FPM.

DL-FPM can learn single-time step prediction well. Unfortu-
nately, the straightforward training strategy used here did not
make it easily generalisable to multiple steps, such that it could
have used its own generated prediction as input. Training the
model itself is computationally expensive, but running the trained
model on larger firefronts was a couple of orders of magnitude
faster than running a simple stochastic cellular automata.

4.2 Future development

In conclusion, the SCA-FPM is accurate but robust. It serves
as a starting point for developing DL models. Our proof-of-
concept shows that DL architecture can be used to train a mimic
model for fire prediction. However, in further research, it would
be more sensible to use more advanced simulators instead of
SCA-FPM. Therefore, in our following studies, we will use data
from the Prometheus simulator to generate train data for DL-
FPM. We will also use more in-detailed fuel models, which are
gathered in the eastern part of Finland.

There are several options to change the architecture of the model.
The simplest is to take the time step to one input and train DL-
FPM with the SCA-FPM prediction of that time step. This way,

it would be possible to have better temporal propagation model.
In this case, the wind direction has to be assumed to be constant
over several steps.

Another option is to regularise the cost function with forecasts
over several time steps. This makes the script used to load and
train the data more complex, but the end result should be that
the model is better able to handle inputs, which are produced
by DL-FPM.

One possible direction of development instead of the reasonably
simple Unet-based model are attention-based transformer mod-
els. For example, (Bodnar et al., 2024) has developed a weather
prediction model that is quite predictive. The model uses SWIN
Unet (Cao et al., 2022) in its structure, which allows the input
of different sizes to the model.

Eventually, DL-FPM could be implemented into a real-time
system that gathers similar data from forests. The motivation
for this research stems from the potential future application of
drone swarms to map the locations of wildfires and estimate
essential parameters. These parameters are critical for the ma-
chine learning model to assist information in strategising the
containment of wildfire spread.

5. Conclusions

The integration of stochastic cellular automata with deep learn-
ing represents a novel methodology for wildfire modelling, com-
bining the strengths of rule-based and data-driven approaches.
The use of a real-world wildfire event for validation underscores
the model’s applicability and accuracy. Additionally, the suc-
cessful utilisation of publicly available remote sensing data for
wildfire prediction demonstrates the accessibility and scalabil-
ity of such models.

Practically, the efficiency of the DL model points towards its
feasibility for real-time application in wildfire management, po-
tentially optimising firefighting strategies. The computational
efficiency of the model allows for rapid updates and forecasts,
essential in dynamic wildfire scenarios. Moreover, the prospect
of integrating this model into UAV-based systems for real-time
data collection and prediction could transform wildfire monit-
oring and management, reducing response times and improving
safety outcomes. While further refinement and validation are
necessary, eventually, deep-learning-based models may offer
promising tools for enhancing wildfire management and mit-
igation efforts.
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