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Abstract

Interferometric Synthetic Aperture Radar (InSAR) is a well-established remote sensing technique that enables a precise monitoring
of the Earth’s surface. Accurate estimation of InSAR parameters, such as phase and coherence, is critical for deriving meaningful
geophysical information. However, there are many challenges in evaluating the performance of different estimation methods. This
work aims to standardize performance evaluation metrics to ensure consistent and reliable results across different applications.
We address this challenge by examining factors such as the nature of the data (real or simulated), the processing stage of the
evaluation, the signal properties under test, and the nature of the metrics (quantitative and qualitative). We emphasize the need
for a comprehensive evaluation framework that integrates multiple metrics to assess different properties of the interferometric data.
Examples of both simulated and real data are provided to demonstrate performance evaluation. In addition, we outline various
metrics and evaluation frameworks to facilitate benchmarking in InSAR parameter estimation.

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) has emerged
as a key technology in remote sensing, revolutionizing our abil-
ity to monitor the Earth’s surface with unprecedented accuracy
and detail (Moreira et al., 2013). InSAR makes it possible to
measure surface topography, ground displacements and their
evolution over time at fine temporal and spatial scales. It fa-
cilitates the monitoring of natural hazards such as earthquakes,
volcanic eruptions and landslides, providing invaluable insights
into their dynamics and helping to assess associated risks (Fer-
retti et al., 2011, Fornaro et al., 2015). It also plays a critical role
in the inversion of parameters of the imaged scene, e.g., agri-
culture and forestry (Solberg et al., 2017, Pulella et al., 2020),
or land cover classification (Sica et al., 2019).

At the heart of any InSAR technique is the accurate estima-
tion of interferometric phase and coherence, which are the key
parameters for extracting meaningful information from SAR
data. The interferometric phase contains valuable information
about the topography or relative displacement between the radar
sensor and the observed surface, while the coherence indicates
the quality of the interferometric measurements. Accurate es-
timation of these parameters is essential to achieve accurate In-
SAR derived products. Various estimation methods have been
developed over the years, ranging from classical algorithms
(Lee et al., 2003) via recent nonlocal methods (Deledalle et
al., 2015, Sica et al., 2018), to the newest and most advanced
Deep Learning (DL) based techniques (Sica et al., 2020). These
methods aim to optimize the trade-off between detail preserva-
tion and denoising power to meet the diverse needs of InSAR
applications. The choice of the estimation techniques has a pro-
found impact on the accuracy of phase and coherence estima-
tion, which directly affects the reliability of the derived geo-
physical information. Therefore, standardization of perform-
ance evaluation metrics for InSAR parameter estimation is im-
perative to evaluate the effectiveness of different methods and
to ensure consistent and reliable results across different applic-
ations.

In the field of SAR processing, previous review works on SAR

despeckling have faced the problem of finding a fair frame-
work for evaluating different despeckling algorithms, as done
in (Singh et al., 2021). Similarly, in (Dellepiane and Angiati,
2013) the authors highlight the difference between the per-
ceived quality of SAR despeckled images with respect to statist-
ical metrics and propose an alternative to the usual performance
metrics. Despite being a very important topic, there is not much
review work in this direction. In addition, while SAR despeck-
ling has been more studied, this type of analysis is still lacking
for InSAR data.

In this paper, we address the importance of standardizing per-
formance evaluation metrics for InSAR parameter estimation.
Section 2 highlights the challenges and the rationale behind this
work. In Section 3 we discuss the various aspects involved in
the design of a testbed for the evaluation of estimation meth-
ods. In the final version of the manuscript, we will also provide
example data, evaluation metrics, and a comparison of state-
of-the-art methods, ranging from the full spectrum of classical
methods to the latest DL approaches. Finally, in Section 6
we summarize the presented work and draw the perspectives
planned for the final version of the manuscript.

2. Challenges

Whether analyzing a single pair of SAR images or construct-
ing time series datasets, the reliability of InSAR measurements
depends heavily on the accuracy of phase and coherence estim-
ation. Algorithms developed to this aim focus on improving
various aspects of the InSAR signal, among which the most im-
portant are: spatial and vertical resolution, preservation of fine
details, and effective noise suppression. Achieving improve-
ments in all of these aspects simultaneously, or even partially,
is a significant challenge and requires thorough testing to en-
sure optimal performance. However, assessing the effective-
ness of these algorithms is not always straightforward due to the
multifaceted nature of the problem and limitations of existing
metrics. Many metrics used for performance evaluation do not
comprehensively consider all critical aspects simultaneously,
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leading to potentially misleading conclusions when used singu-
larly. For example, measuring only the regularity of the signal,
such as residual calculations, tend to favor methods that over-
smooth the signal. Consequently, it is essential to complement
such metrics with others that specifically measure the degree
of detail preservation. In addition, the quality of the signal it-
self adds another layer of complexity to the evaluation process.
In certain applications, particularly those that involve multiple
processing steps after phase estimation, a smoother signal may
actually be advantageous, facilitating subsequent processes, as
for example phase unwrapping. Therefore, it is imperative to
consider the downstream effects of signal quality on the entire
InSAR processing chain when evaluating estimation methods
performance.

3. Performance evaluations criteria

Assessing the quality of an estimation method must consider
several aspects, including the characteristics of the InSAR sig-
nal under test and all the possible methodologies for the eval-
uation of these characteristics. We identified the following im-
portant aspects for the evaluation of InSAR estimation methods:

1. Nature of the data

2. Nature of Metrics

3. Stage in the Processing Chain

4. Evaluated Signal Properties

3.1 Nature of the data

Performance evaluation has always been divided between test-
ing on simulated or real data.

• Simulated data: Evaluation on simulated data provides a
controlled environment for assessing algorithm perform-
ance. Simulated datasets allow systematic manipulation
of signal characteristics and noise levels, facilitating a de-
tailed understanding of algorithm behavior under idealized
conditions. In (Sica et al., 2020), the authors show how to
obtain a large and varied dataset for simulated InSAR data.

• Real data: Evaluation on real data is essential to validate
algorithm performance in practical scenarios. Real-world
datasets capture the complexity and variability of natural
phenomena, providing insight into the robustness and reli-
ability of algorithms under different environmental condi-
tions. At the same time, the lack of a noise-free reference
doesn’t allow the use of the most common performance
metrics.

3.2 Nature of Metrics

The primary classification between metrics can be done de-
pending on their nature.

• Qualitative metrics: Visual inspection of estimated signals
provides qualitative insight into algorithm performance.
Visualization of interferograms and coherence maps, as
well as their comparison with external references of vari-
ous types, can provide an intuitive understanding of signal
characteristics and help identify important image details as
well as anomalies or artifacts.

• Quantitative metrics: These provide objective measures of
algorithm performance and are the most meaningful met-
rics. They allow for rigorous comparison and benchmark-
ing. Metrics such as Root Mean Square Error (RMSE),
Signal to Noise Ratio (SNR), and Correlation Coefficients
provide numerical assessments of estimation precision and
accuracy.

3.3 Stage in the Processing Chain

Another important aspect for this assessment is at what stage
the quality of the estimated data should be evaluated: immedi-
ately after parameter estimation or sometime later in the pro-
cessing chain.

• Immediately after estimation: The evaluation immediately
after the estimation step is the classic method used in
methodology papers. It focuses on evaluating the actual
output of the estimation algorithm. This provides insight
into the ability of the algorithm to accurately capture the
underlying signal properties without influence from sub-
sequent processing steps.

• At any point in the processing chain: Evaluation at inter-
mediate or final stages of the processing chain considers
the cumulative effects of estimation and additional pro-
cessing steps on the InSAR signal. This holistic approach
reflects real-world processing scenarios and provides a
more comprehensive assessment of algorithm perform-
ance. On the downside, further processing also reduces
resolution, which may penalize estimation methods that
better preserve resolution and fine detail.

3.4 Evaluated Signal Properties

The metrics can be distinguished according to the characteristic
of the signal that has to be tested. This is specifically true when
using real data, which cannot rely on a noise-free reference.

• Signal regularity: these metrics evaluate the smoothness
and continuity of the estimated signal. Algorithms that
produce smoother outputs may be preferred in certain ap-
plications, while others may require preservation of finer
details.

• Detail preservation: these metrics quantify the ability of
the algorithm to preserve high-frequency components and
fine-scale features in the estimated signal. This property
is particularly important in applications where subtle vari-
ations or small-scale structures are of interest.

4. Sample data

In this section, we provide examples for synthetic and real data
and highlight their suitability for a given performance evalu-
ation.

4.1 Simulated data

Simulated data is probably the most commonly used data type
for benchmarking InSAR parameter estimation methods. His-
torically, this has been due in part to the limited availability of
real data, necessitating the simulation of certain situations and
conditions. In addition, simulated data allow algorithm testing
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Figure 1. The five considered cases show all the possible combinations of noise-free parameters and the corresponding noisy data for
low phase spatial variations.

in a controlled environment where the baseline (or reference)
is perfectly known, commonly referred to as ground truth in
remote sensing.

For simulated data to be effective, it must be generated reflect-
ing real-world conditions as closely as possible. It should be
designed to test specific properties of the algorithm under in-
vestigation that mirror those expected in real data. Therefore,
the generation of simulated data must be done with critical at-
tention to detail. In the context of training machine learning
estimation algorithms, the authors in (Sica et al., 2020) intro-
duced a methodology to simulate the main realistic scenarios
that can be found in real data. The main aspects to consider in
generating realistic simulated data are:

• Creation of a good image prior, i.e., the characteristics of
the noise-free images for the three parameters.

• Generation of synthetic noise based on the InSAR statist-
ical distribution (Sica et al., 2018).

Following this criteria, we provide in the following an ex-
ample of simulated InSAR data priors generated by consider-
ing the variation of single parameters (amplitude, coherence,
and phase) and their interdependence, together with the corres-
ponding generated noisy data. Specifically, the amplitude and
coherence may exhibit slow-varying trends or spatial patterns,
while the phase may have smooth or abrupt variations, such as
fringe patterns.

In Figure 1 and Figure 2, we show all possible combinations
among noise-free parameters and the resulting noisy data for
cases of slow and high phase spatial variation, respectively.
In these figures, the first three columns show the noise-free
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Figure 2. The six considered cases show all the possible combinations of noise-free parameters and the corresponding noisy data for
high phase spatial variations.

amplitude, coherence, and phase, respectively. The last two
columns show the corresponding noisy amplitude and noisy
phase. Each row represents different combinations of these
noise-free parameters. These controlled variations of the noise-
free parameters allow to evaluate the ability of the algorithm to
accurately estimate the InSAR parameters under different ac-
quisition scenarios.

4.2 Real data

Today, an increasing amount of real data is available, mak-
ing it valuable to evaluate algorithms on practical applications.
However, the main limitation of using real data is the lack of
a reference or ground truth, and therefore different evaluation
strategies should be used.

Figure 3 shows an example of real data over a mountainous re-
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Figure 3. Example of real data of coherence, phase and DEM over a mountainous region.

gion. From left to right, the figure shows the coherence and
phase estimated from the real data and the corresponding Di-
gital Elevation Model (DEM). This challenging scenario con-
tains areas of extremely dense fringe that were not included in
the simulated data. Thus, it serves as an excellent test bed to
provide additional challenging data for the evaluation of InSAR
algorithms.

Possible benchmarking scenarios include comparing the estim-
ated phase with the synthetic phase generated by an external
DEM. Alternatively, the estimated phase can be unwrapped and
correlated with the DEM. Finally, the unwrapped phase can be
used to generate an elevation map that can be compared to an
existing DEM.

5. Performance metrics

To evaluate the quality of the estimation algorithms, the sub-
sequent performance metrics, as partially listed in (Vitale et al.,
2022), were employed to ensure a reliable assessment across
various applications. Starting with the mean squared error
(MSE) and root mean squared error (RMSE) which are defined
as

MSE =
1

m× n

m∑
i=1

n∑
j=1

(
Φ(i, j)− Φ̂(i, j)

)2

(1)

RMSE =
√

MSE (2)

where, Φ(i, j) represents the value of the pixel at position (i, j)
in the original interferogram, while Φ̂(i, j) denotes the value
of the corresponding pixel in the noisy interferogram. The vari-
ables m and n indicate the number of rows and columns (pixels)
in the interferograms, respectively. The formula calculates the
average of the squared differences between the corresponding
pixel values in the original and noisy interferograms, thus quan-
tifying the mean square error.

The structural similarity index (SSIM) is a metric used to meas-
ure the similarity between two images. As defined in (Wang
et al., 2004), it evaluates changes in structural information, lu-
minance, and contrast, providing a more perceptually relevant
assessment compared to traditional metrics like MSE. Despite
the fact that this metric is based mainly on a perceptual assess-
ment, it can still provide information about the preservation of
relevant structures in the data and can complement pixel-wise
difference metrics, such as the MSE.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where x and y represent the two images being compared, with

µx =
1

N

N∑
i=1

xi (4)

and analogously µy denoting their respective mean values, and
N representing the number of pixels. The variables

σx =

√√√√ 1

N − 1

N∑
i=1

(xi − µx)2 (5)

and analogously σy being the standard deviation of the images
x and y, while

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (6)

is the covariance between them. The constants c1 and c2 are
used to stabilize the division with weak denominator values.

Pratt’s figure of merit (Pratt, 2001) abbreviated as FOM, is a
measure used to evaluate the accuracy of edge detection al-
gorithms by comparing detected edges to actual edges

FOM =
1

max(NA, ND)

ND∑
i=1

1

1 + α · d2i
(7)

with NA being the number of actual edge points, and ND rep-
resents the number of detected edge points. The variable di
denotes the Euclidean distance between the i-th detected edge
point and the nearest actual edge point. The parameter α is a
scaling factor that controls the sensitivity of the FOM to the
distance di. The maximum function, max(NA, ND), ensures
normalization by the greater number of actual or detected edge
points. The summation accounts for all detected edge points,
adjusting the contribution of each point based on its proximity
to the nearest actual edge point.

The Kullback-Leibler divergence, as defined in (Kullback,
1978), computes the distance between the statistical distribu-
tion of the simulated noise and that of the filtered one

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
(8)
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where Q represents the probability density function (pdf) of the
predicted noise, and P represents the pdf of the simulated noise.
An ideal filter will produce a DKL = 0, indicating no diver-
gence between the distributions of the simulated and filtered
noise.

Finally, we also consider the residues evaluation metric, which
doesn’t require a ground truth reference and is therefore a good
alternative to the performance metrics previously presented.
Local phase jumps greater than π will lead to local errors that
will affect the unwrapping procedure after phase estimation.
Therefore, this measure provides information about the regular-
ity of the signal and hence the quality of the estimation. These
errors can be caused by steep terrain slopes or phase noise.
These local errors can be detected by calculating the sum of
the gradients in closed loops between four neighbouring pixels
(Bamler and Hartl, 1998)

r(i, k) = ∇×∇φ̂(i, k) = ∇× n∇(i, k) (9)

where:

• r(i, k) represents the residue at the position (i, k).

• φ̂(i, k) is the estimated phase at position (i, k).

• ∇ × ∇φ̂(i, k) indicates the curl of the gradient of the es-
timated phase at (i, k).

• n∇(i, k) represents the solenoidal part of the phase gradi-
ent estimate field.

• ∇×n∇(i, k) denotes the curl of the solenoidal part of the
phase gradient estimate field.

A solenoidal vector field, also known as a divergence-free vec-
tor field, is one where the divergence of the field is zero at every
point. This means that the field lines are closed loops or ex-
tend infinitely without converging or diverging. Therefore the
residue field can be expressed as

r(i, k) = ∆{∂iφ(i, k)}+∆{∂kφ(i+ 1, k)}
−∆{∂iφ(i, k + 1)} −∆{∂kφ(i, k)} (10)

where:

• φ(i, k) is the phase at position (i, k),

• ∆{∂iφ(i, k)} is the difference operator (gradient) of the
phase in the i-direction at position (i, k),

• ∆{∂kφ(i, k)} is the difference operator (gradient) of the
phase in the k-direction at position (i, k),

Summing up all four difference operators of (10) results in the
mentioned curl, which, if not zero, represents the detection of
the residue at the given position.

6. Conclusions

In this paper, we have addressed several issues that arise in the
evaluation of InSAR parameter estimation methods. We have
considered factors such as the type of data (real or simulated),
the processing stage, the signal properties being tested, and the
type of metrics (quantitative and qualitative). By examining
these aspects, we have emphasized the importance of a com-
prehensive evaluation that combines different metrics to simul-
taneously assess different properties of the interferometric data
under test. We also provided examples of simulated and real
data that can be used for performance evaluation, and described
usable metrics and evaluation frameworks to facilitate bench-
marking in the context of InSAR parameter estimation.
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