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Abstract

High-resolution digital terrain models (DEM) are crucial for Mars scientific exploration and engineering demands, such as mission
route planning, landing site selection, and topography research. However, DEMs generated based on photogrammetry or photo-
metry suffer from limited stereo coverage and complex generative processes. Therefore, we propose a GAN-based monocular 3D
reconstruction method, which utilizes high-resolution monocular orbital images to achieve pixel-level Martian terrain reconstruc-
tion. We preprocess the image data and then invert the elevation using the trained generative model. Finally, we recover the absolute
scale through post-processing. In this work, we use HiRISE orthorectified images and DEMs with a resolution of 2 m and 0.25 m
to validate the effectiveness of our method. We evaluated our method in four areas with different landforms and found that the
predicted DEM and HiRISE DEM have height consistency with the root mean square error of about 2 m. This indicates that the
proposed GAN-based method has certain effectiveness and generalization and great potential in high-resolution monocular Martian

DEM reconstruction.

1. Introduction

High-resolution digital elevation models (DEMs) can reveal the
detailed topography and geomorphological features on the sur-
faces of Mars (Douté and Jiang, 2019), playing an important
role in Mars exploration missions and scientific research. They
provide crucial support for selecting landing sites (Hedrick et
al., 2020) and planning exploration routes (Wu et al., 2021, Wu
et al., 2022), and lay a solid foundation for studying the ter-
restrial planet’s evolution and exploring potential life indicat-
ors on Mars (Sutton et al., 2022, Qin et al., 2023). Generally,
the methods for generating DEMs can be categorized into two
major groups: range measurement-based (i.e., laser altimeter)
(Abramov and McEwen, 2004), and image-based, including
photogrammetry (Hepburn et al., 2019) and photoclinometry
(Liu and Wu, 2023). DEMs based on the former method have
limited spatial resolution due to the interpolation of a limited
number of tracks (e.g. Mars Orbiter Laser Altimeter (MOLA)
DEM has a spatial resolution of 463 m /pizel (Neumann et al.,
2001)), which is insufficient to satisfy the demands of local fine
Martian terrain research.

Image-based methods generate DEMs from high-resolution
Mars orbiter images, such as High Resolution Imaging Science
Experiment (HiRISE) images (McEwen et al., 2010). Photo-
grammetric methods recover elevation from the geometric rela-
tionship of multi-view remote sensing image data (Shean et al.,
2016). However, the coverage of stereo pairs is restricted by the
conditions under which the observations are made (McEwen et
al., 2023), leading to the limited application of this method (Li
et al., 2021). Photometric methods can reconstruct topographic
models from single-view images where stereo information is
extracted from image intensity variations (Hess et al., 2022).
However, due to the presence of an atmosphere on Mars, photo-
clinometry also has limitations such as complex model building
and high production time costs (Jiang et al., 2017). Therefore,
it is essential to develop a new method to fully utilize high-
resolution monocular orbital images for pixel-level reconstruc-
tion of Martian terrain.

In contrast to traditional approaches, deep learning-based meth-
ods convert the unconstrained monocular 3D reconstruction
problem into a regression problem (Eigen et al., 2014). Ac-
cording to the established network model, deep learning-based
methods are mainly categorized into Convolutional Neural
Network(CNN)-based approaches and Generative Adversarial
Network(GAN)-based approaches (Ming et al., 2021). CNN-
based approaches implicitly establish end-to-end mapping re-
lationships between image and depth from a large dataset with
sufficient samples (Chen et al., 2021, Chen et al., 2022). Deep
neural networks can extract the feature from input monocular
images and produce high-resolution reconstruction using depth
cues contained in features. GAN-based approaches incorpor-
ate adversarial loss to monitor the reconstruction process and
improve the accuracy of the reconstructed terrain (Tao et al.,
2021b, Liu et al., 2022). Compared to the CNN-based ap-
proach, the introduction of the discriminator gives the model
a stronger generative capability to represent local details and
maintain global consistency (Chen et al., 2018).

Therefore, we propose a GAN-based approach, which trans-
forms the terrain reconstruction problem into the image gen-
eration problem and uses the powerful generation capabilities
of the well-trained network model to recover height from mon-
ocular images. In this study, we select four regions with dif-
ferent surface conditions to test the proposed generative 3D re-
construction strategy and verify the reconstruction results with
DEMs (2 m/pizel) generated from HiRISE images. In partic-
ular, we used higher resolution images (0.25 m /pizel) than the
training data for experimentation and generated detailed terrain
models similar to the resolution of the input images.

2. Method

Our proposed method recovers the pixel-level terrain model
with the same resolution as the input monocular high-resolution
orbiter imagery through the well-trained generative model. As
shown in Fig. 1, the workflow of the proposed generative mon-
ocular height reconstruction method consists of three steps.
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Figure 1. Pipeline of generative monocular height reconstruction
method.

First, the HiRISE high-resolution orbiter images are tiled and
normalized to preprocess them to meet the input requirements
of the network. The preprocessed images are then fed into a
trained generator model to reconstruct the relative heights of
the images. Finally, the predicted normalized relative heights
are stretched to the absolute height scale to obtain a reconstruc-
ted high-resolution 3D terrain model.

2.1 Dataset and Pre-processing

The experimental data in this paper are derived from HiR-
ISE Ortho-Rectified Images (ORIs) and DEMs, which have the
highest spatial resolution on the surface of Mars at present.
Training and validation datasets are based on the publicly ac-
cessible image-height dataset generated from 350 pairs of me-
ticulously chosen high-quality HiRISE ORIs and their corres-
ponding DEMs (Tao et al., 2021a). The training dataset com-
prises 10,000 pairs of HiRISE data, while the validation dataset
consists of the other 900 pairs. Each sample within the data-
sets is standardized to a size of 256x256 pixels, with a spa-
tial resolution of 2 m/pizel, so that the influence of the mag-
nitude between different data on the model training impact dur-
ing training can be eliminated, and the effectiveness of model
training can be improved. Considering the machine’s memory
capacity, the test data must be preprocessed in the same way
as the training dataset. First, the geometric disparities between
the optical images and the terrain models are rectified through
the affine transformation to unify the input data under the same
datum. Subsequently, subject to the constraints of machine
memory, the input data are uniformly cropped into 256x256
pixel slices. Lastly, the data are normalized using the max-min
value to ensure consistency between the test and train datasets,
thus enhancing the accuracy of the derived relative elevations.
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Figure 2. Overview of the generative reconstruction network
architecture.

2.2 GAN-based height inference

2.2.1 Network Architecture The GAN-based monocular
height reconstruction network is the core component of the en-
tire method. The generative reconstruction network model is
shown in Fig. 2. According to the principle of the GAN network
(Goodfellow et al., 2020), our network architecture consists of
a generator network and a discriminator network.

The generator network adopts a U-Net architecture with sym-
metric encoder and decoder components (Ronneberger et al.,
2015), learning the mapping between optical images and elev-
ation models to generate high-resolution DEMs from input im-
ages. The encoder utilizes a series of down-sampling blocks
consisting of convolution layers instead of the pooling layers
to extract the image’s features layer by layer. While the de-
coder uses a series of up-sampling blocks composed of decon-
volution layers and activation functions to decode these high-
dimensional features to the size of the input image. Addition-
ally, through skip connections, the features outputted by down-
sampling blocks are progressively added to the input of up-
sampling blocks, allowing output to contain more fine details
from input, providing effective assurance for generating more
accurate 3D models.

The discriminator network adopts the principle of PatchGAN
(Li and Wand, 2016) to identify the source of the input model
and outputs the probability value of the input model from the
real dataset. The process is similar to a magnifying glass, which
involves dividing the input model into fixed-size blocks, assess-
ing the probability value of each block independently, and then
averaging all blocks as the entire image’s result. It helps the
model capture more precise detailed features while reducing
the computational load of the network, effectively improving
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the training efficiency of the network.

2.2.2 Loss function In this study, the generator is used to
produce predictive terrain models that closely resemble the ref-
erence real model to the extent that it can “deceive” the dis-
criminator. At the same time, the discriminator is designed to
accurately identify the source of the input model. To make the
reconstructed results as close as possible to the real model, the
pixel-level height loss and gradient loss are introduced on the
basis of the original generation of the adversarial loss. The
height loss constrains the differences between the predicted and
real models, while the gradient loss maintains the localized ter-
rain features at the pixel level. The basic adversarial losses of
the generator and the discriminator are represented as follows:

Lgen - 7EHp"‘P.q [lOg (1 - D(G(Hp)))} ) (1)

Lais = — EHgtNPdata[lOgD(Hgt)]

= By, log — DG(H))], O

where H), is predicted model, H; is ground truth, and Py, 1S
the training dataset distribution. E denotes expectation, G(x)
and D(x) denote the generator and discriminator, respectively.
The stricter Berhu loss is used as the pixel-level elevation loss
to better preserve local detail features in the image (Zwald and
Lambert-Lacroix, 2012). The formula for Berhu loss is shown
below:

% Zl |Hp - Hgt| ) |Hp - Hgt' S §
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where § is the threshold value, which is calculated as § =
Lmawz,(|Hy, — Hge|). Gradient loss is introduced to maintain
the relationship between pixels and neighboring pixels. The
formula for gradient loss is shown below:
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where ¢, (H)) and g, (H,) represent the gradient values of the
predicted DTM model in the x and y-directions, and g, (Hg:)
and g,(Hg:) represent the gradient values of the real DTM
model in the x- and y-directions.

In conclusion, The final loss function of the generator consists
of a weighted sum of the above three loss terms. Such a loss
design helps to improve the performance in terms of genera-
tion, making the predicted model as close as possible to the real
image, the terrain detail features contained in the input image
are increased to generate a more accurate prediction model. The
formula for the network losses is given as:

Lossg = pLossgen + ¢Lverhu + wWhgrad, 5
where p, o, and w are the weight factors of different losses.

2.2.3 Implementation details We implemented this ad-
versarial deep estimation network based on the Pytorch plat-
form (version 1.9.0) and the training process was carried out on
the NVIDIA GeForce RTX 3090 GPU. During the training pro-
cess, we obtain the optimal generator model by alternating the
training of the generator and discriminator. The discriminator

needs to be fixed when training the generator, while the gen-
erator needs to be fixed when training the discriminator. The
network is trained for 100 epochs, with a batch size of 10 and
an initial learning rate of 2x10~%. The model is optimized by
the standard Adam optimizer, with the hyperparameters set to
B1 =0.5 and B2 = 0.999. The generative network’s weights of
the loss function were setto p = 1, ¢ = 10, and w = 100, and
the hyperparameter values were determined based on empirical
values provided in the literature and experimental test results.

2.3 Post-processing

After reconstructing the terrain using GAN-based well-trained
models, the relative elevation in the standard scale needs to be
stretched to the absolute elevation in the ground scale using the
maximum and minimum values provided by the low-resolution
reference DEMs. The absolute elevation recovery process can
be displayed as follows:

H= (Hma:c - Hml'n)H + Humin (6)
Where H represents the absolute elevation value of the 3D ter-
rain model at the ground scale and H represents the relative
elevation value at the standard scale, H,,q. and H,,;, are the
maximum and minimum values of the absolute height derived
from the corresponding reference terrain models, respectively.
Using the aligned low-resolution reference DEMs as the refer-
ence for scale recovery, the height range of the predicted DEM
is rescaled from [0,1] to [Hmin, Hmaz], to obtain the well-
reconstructed fine 3D terrain model final.

3. Experiments and results
3.1 Reconstruction results for different landforms

We evaluated the generative terrain reconstruction network
model in various regions containing different topographic fea-
tures. Fig. 3 shows the results of the terrain reconstruction of
four typical areas with different landforms, including the crater,
the crater field, the ridge, and the flat terrain. When the color-
ized display and hill-shading rendering of the estimated DEM
are compared with the HIRISE DEM, the terrain reconstruc-
ted using the proposed method is consistent with the reference
HiRISE DEM and displays fewer artifacts.

Regions with craters are reconstructed in Fig. 3(a) and Fig. 3(b),
with a complete reconstruction of a crater with a diameter of
about 200 m and a depth of about 50 m in Fig. 3(a), and the
recovery of various craters in different size in Fig. 3(b). Also,
Fig. 3(b) indicates that there is no CCD seam in our predicted
result, in contrast to the HiRISE DEM. Fig. 3(c) and Fig. 3(d)
display the terrain reconstruction results in areas with sharp and
gentle terrain relief, respectively, where the edge of the terrain
change shown in Fig. 3(c) is the same as the area shown by
HiRISE DEM. Overall, the reconstructed terrain is consistent
with the HiRISE dem, indicating the reliability of the proposed
method.

Flat Terrain
1.976

Crater
1.433

surface conditions
RMSE(m)

Carter Field Ridge
1.315 1.994

Table 1. Reconstruction error of test areas.

Based on the experiments described above, difference maps are
produced to assess the accuracy of our methods. The results are
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Figure 3. Reconstruction results with different surface oo D, D,
conditions, colorized and hill-shaded (azimuth: 315°; altitude: B HiRISE DEM 1 predicated DEM
45°; no vertical exaggeration). The first column shows the input
HiRISE ORTI; the second column shows the HiRISE DEM as a Figure 5. Reconstructed topographic elevation profiles of
reference; the third column shows our reconstruction results. cratered terrain areas.
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presented in Fig. 4 and Table 1. The comparison between the
predicted DEMs and the HiRISE DEMs revealed that the elev-
ation differences were generally minor, with an accuracy range
of within 2 meters. The discrepancies between the predicted
and actual models are not substantial. The accuracy of re-
constructing flat areas was slightly lower compared to cratered
areas, mainly due to the absence of texture information.

3.2 Profile measurements in different directions

To effectively demonstrate whether the predictive model recov-
ers the terrain trend and evaluate whether the model’s accuracy
is affected by the light direction, the cratered terrain on Mars
displaying the obvious changing trend is chosen. Profiles in dif-
ferent directions are plotted to illustrate the trend of the terrain
change of the entire DEM. In Fig. 5, four different directions
passing through the craters, A1 Az, B1 B2, C1C5, and D1 Ds,
are taken respectively. The profile measurements of the anti-
cipated DEM and HiRISE DEM were then plotted for each of
these directions.

To ensure the comparability of the results, the two DEMs need
to be reprojected and aligned in the same geographic space. As
can be observed from the profile lines in Fig. 5, both models
maintain the same elevation trend in four different directions,
especially in the crater floor area showing excellent elevation
consistency, such as the area shown by the blue box in the pro-
file. The main terrain differences between the models are re-
flected in the areas of undulating terrain around the crater, such
as the areas shown by the red boxes in the profiles. The height
difference exists in the areas affected by light shadowing in pro-
files A1 Ap and Dy D,. The statistical results for the errors in

Profile lines A1A2 B1 BQ 0102 D1D2
MAE(m) 1.879 1.567 1.233 1.345
RMSE(m) 2.567 1.961 1.593 1.676

Table 2. Reconstruction height errors in different directions.

different directions are shown in Table 2. It reveals that the
height errors in all four directions are relatively small, and only
the error counted for profile A; As is slightly larger than the
other directions, which is consistent with the results shown in
Fig. 5. The above results indicate that the predicted model es-
sentially fully recovers the topographic trend with an accuracy
of about 2 m. However, the terrain recovery results are still af-
fected by the lighting conditions, especially in the shaded area,
which needs to be further studied in the future.

3.3 The attempt at higher resolution terrain reconstruc-
tion

The above experiments use 2 m/pizel HiRISE images with the
same resolution as the training dataset to recover Martain ter-
rain. To test the adaptability of the model, we attempt to re-
construct the terrain using the HiRISE images with a higher
resolution of 0.25 m/pixel, and the results are shown in Fig. 6.
Compared with the HiRISE DEM generated based on the pho-
togrammetric method, the generative model captures more de-
tailed topographic relief features. The striated texture located at
the crater floor is well visible in the hill-shading rendering im-
age of the predicted model, which the photogrammetric-based
model cannot reconstruct. It indicates that the proposed method
has some generalization capability and a fine terrain model with
a similar resolution to the input image can be recovered using

Input ORI

& -3787m
4
=
=} £
] 4 I -3802m
Shaded relif Predicted DEM HiRISE DEM

Figure 6. Reconstruction results from 0.25 m/pixel
high-resolution image. The first row shows the 0.25 m/pixel
HiRISE image and its local zoom details. The purple box in the
second row shows the high-resolution predicted DEM and the
associated hill-shaded rendering (azimuth: 315°; height: 45°;
vertical zoom: 1), and the image outside the purple box in the
second row shows the reference 2 m/pixel HiRISE DEM.

our model to process higher resolution optical images. This
property can be exploited in the future to generate a larger range
of detailed terrain models of the Martian surface.

4. Conclusion

In this paper, we proposed a GAN-based strategy for monocular
3D reconstruction of Martian surfaces. First, we pre-process the
image data and then use the trained generator model to invert
the elevation. Finally, we recover the absolute scale through
post-processing. The network is well-trained with an improved
loss function and high-quality datasets. Using the generative
power of the GAN model, our approach can generate pixel-level
DEMs through monocular 2 m/pizel high-resolution images.
With the proposed strategy, in areas with typical landforms of
Mars, we can generate the predicted DEM with the RMSE of
about 2 m compared with reference HiRISE DEMs. In par-
ticular, the strategy can also be applied to 0.25 m resolution
HiRISE imagery and obtain more detailed terrain compared to
photogrammetry-based DEM, illustrating the effectiveness and
applicability of the methods for Mars terrain reconstruction. In
the future, we will refine the reconstruction process to obtain
finer Martian terrain and apply the pipeline for large-scale map-

ping.
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