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Abstract

Deep Learning (DL) models, such as Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have become pop-
ular for change detection tasks, including the deforestation mapping application. However, not enough attention has been paid to
the domain shift issue, which affects classification performance when pre-trained models are used in areas with different forest
covers and deforestation practices. This study compares DL methods for deforestation detection, focusing on assessing how well
CNNs and ViTs can adapt to the domain shift. Two different models, namely, DeepLabv3+ and UNETR, were trained using remote
sensing images and references from a specific location and then tested in other sites to simulate real-world scenarios. The results
showed that the ViT-based architecture achieved better performance when trained and tested in the same region but showed lower
generalization capacity in cross-domain scenarios. We consider this a work in progress that needs further research to confirm its
findings, with the evaluation of additional architectures on a wider range of domains.

1. Introduction

Deforestation is a critical environmental issue, contributing sig-
nificantly to greenhouse gas emissions and impacting carbon
storage and biodiversity. The ability to accurately monitor chan-
ges in natural forests is crucial for public and private organiza-
tions aiming to mitigate these effects.

With the technological advancements in Earth observation tech-
nologies in the last couple of decades, remote sensing (RS) data
availability has increased substantially, enabling the develop-
ment of sophisticated automatic change detection techniques
(Soto Vega et al., 2022; Andrade et al., 2022).

Among the variety of methods proposed recently, deep learning
(DL) models, especially convolutional neural networks (CNNs),
have gained prominence in image analysis tasks, including chan-
ge detection in RS data. Techniques utilizing Siamese CNNs for
urban area change detection and Early Fusion (EF) schemes for
deforestation detection have shown promising results, demon-
strating the effectiveness of CNNs in change detection applic-
ations (Daudt et al., 2018; Ortega Adarme et al., 2020). More-
over, exploiting different deep network architectures across vari-
ous sensors has underscored the adaptability of DL methods to
the challenges of deforestation detection (De Bem et al., 2020;
Torres et al., 2021).

Vision Transformers (ViTs) have recently emerged as a novel
paradigm in computer vision, demonstrating superior perform-
ance over traditional CNNs by effectively capturing global im-
age features. Their employment in change detection tasks, in-
cluding deforestation mapping, has revealed their potential to
revolutionize this application field (Bandara and Patel, 2022;
Ferrari and Feitosa, 2023).

However, an important problem that remains inadequately ad-
dressed in change detection is domain shift, as the performance
of DL-based models degrades when tested in areas with data
distributions different in relation to the data they were trained
with. This issue is particularly pertinent in deforestation de-
tection, where the diversity of forest types and deforestation
practices can vary widely across different geographical regions
(Vega et al., 2021; Tuia et al., 2016).

This study aims to address this gap by comparing the generaliz-
ation capacity of CNNs and ViTs in the context of deforestation
detection, with a specific focus on their resilience to domain
shift. By training models on RS data from distinct Brazilian
regions and evaluating their performance across different do-
mains, we intend to assess the robustness and adaptability of
these models to the variations in forests and deforestation pat-
terns.

The main contributions of this work are the following:

• A comprehensive examination of the impact of domain
shift on the generalization abilities of CNNs and ViTs in
deforestation detection, addressing a critical gap in current
research.

• A comparative analysis considering two representative DL
models (i.e., DeepLabv3+, and UNETR) in the deforesta-
tion detection task, evaluating their performances and gen-
eralization capacity across different domains.

The remainder of this paper is organized as follows. Section
2 presents the DL-based architectures evaluated in this work.
Section 3 describes the datasets, the experimental setup, the
network implementations and the adopted performance metrics.
Section 4 presents the obtained results, and finally, Section 5
presents conclusions and directions for future research.
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2. Methods

In the next sections, we will briefly describe the neural network
models evaluated in this work namely DeepLabv3+ (Chen et
al., 2018) and UNETR (Hatamizadeh et al., 2022).

2.1 DeepLabv3+

The DeepLab series includes fully convolutional CNN architec-
tures that have advanced semantic image segmentation through
a number of innovations. Version 1 introduced atrous convo-
lution, which expanded the filters’ receptive fields to capture a
broader context. Version 2 featured Atrous Spatial Pyramidal
Pooling (ASPP) to capture multi-scale information. Version 3
incorporated image pooling to include global context.

DeepLabv3+ (Chen et al., 2018) builds upon DeepLabv3 (Gao,
2023) by adding a decoder to improve segmentation quality, es-
pecially at object boundaries. It upsamples the encoder output,
i.e., high-level features, and combines it with low-level features
from the backbone network to preserve spatial details, as shown
in figure 1. The model allows using different architectures as
encoders, such as Xception (Chollet, 2017). In this work, we
used the ResNet (He et al., 2016) as the model’s backbone.

2.2 UNETR

The UNETR(Hatamizadeh et al., 2022) is a hybrid network ini-
tially proposed for medical image applications. It adopts a U-
Net (Ronneberger et al., 2015) style architecture for segmenting
3D images. The network uses ViT blocks as an encoder and has
a CNN as a decoder. The encoder is designed to learn features
from input image patches, allowing it to capture global inform-
ation and long-range spatial dependencies. Additionally, the
encoder communicates directly with the decoder through skip
connections to extract multi-scale information and integrate it
for pixel-wise predictions.

The input of the encoding architecture encompasses a linear
layer for patch embeddings. This layer is responsible for pro-
jecting the patches and their corresponding position embed-
dings to yield 1D flattened patches. Additionally, a 1D learn-
able positional embedding is appended to the end of the feature
vector to retain spatial information. Subsequently, the patches
undergo multiple multi-head self-attention blocks before pro-
gressing to the decoding stage. The transition to the segment-
ation mask space is accomplished through CNN up-sampling
combined with multi-level feature aggregation. Figure 2 provi-
des comprehensive details about the architecture components.

3. Experimental Analysis

3.1 Datasets

The selected sites represent different forest types and are af-
fected by various deforestation practices. Two sites are loc-
ated in the Brazilian Amazon and correspond to Dense Ombro-
phyll and Open Ombrophyll forest areas. The third site is loc-
ated in the transition zone between the Brazilian Cerrado and
the Amazon Rainforest and contains Seasonal Deciduous and
Semi-Deciduous forest cover.

Detailed information about the geographical location, dates, ve-
getation types, and class distribution can be found in Table 1.
In this study, each site is considered a separate domain.

To address the generalization capacity of the DL models within
a domain shift context, six different domain combinations were
evaluated, considering each of the three areas as training and
evaluating domains in turn. In each experiment, the models
were trained with data from one site/domain and evaluated on
the other sites/domains.

The RS images used in the experiments were acquired by the
Landsat 8-OLI sensor, with 30m resolution and seven spectral
bands, covering regions within the Brazilian states of Rondônia
(RO), Pará (PA) and Maranhão (MA). The images have the
following dimensions: 2550×5120 pixels for RO; 1100×2600
pixels for PA; and 1700×1440 pixels for MA. All images un-
derwent Level-1 data processing and were downloaded from the
Earth Explorer web service, from the United States Geological
Survey (USGS)1. The deforestation ground truth was produced
by the PRODES Deforestation Monitoring Project (Almeida et
al., 2021), operated by the Brazilian National Institute for Space
Research (INPE). The data is freely available at the Terrabra-
silis website 2. Figure 3 shows the location of the study areas,
as well as RGB composites of the most recent images of the
corresponding image pairs.

We observe that the RS images used in this study were the same
used in PRODES for deforestation mapping for the respective
sites and epochs. As shown in Table 1, all images were ac-
quired in July and August, in which the acquisition conditions
are optimum concerning cloud coverage.

Figure 4 shows the deforestation reference for the respective
image pairs (dark orange), representing the deforestation bet-
ween the acquisition dates of the two images. The figure also
shows the total deforestation, which occurred between 1988 and
the acquisition year of the first image of the pair.

3.2 Classifiers Training Setup

We used the Early Fusion (EF) strategy proposed in (Daudt et
al., 2018; Ortega Adarme et al., 2020) for the deforestation de-
tection task. Additionally, following (Ortega Adarme et al.,
2020; Noa et al., 2021; Vega et al., 2021; Soto Vega et al., 2022;
Soto et al., 2022; Vega et al., 2023), the image space was di-
vided into 100 tiles for RO and 15 for PA and PA. Approxim-
ately 20% of the tiles were used to extract training patches, 5%
to extract validation patches, and the remaining 75% to extract
the patches used for the evaluation of the classifier. Figure 4
depicts the deforestation reference as well as the training, val-
idation, and testing tiles.

The patches forwarded through to the networks were tensors of
size 64×64×14. The respective patches were extracted follow-
ing a sliding windows procedure with an overlap of 90%, as
in Vega et al. (2023). Additionally, to be selected for training
and validation, at least 2% of the total number of pixel pos-
itions in a patch had to be labeled as deforestation. Follow-
ing Ortega Adarme et al. (2020); Vega et al. (2021); Noa et al.
(2021); Soto Vega et al. (2022); Soto et al. (2022), and Vega et
al. (2023), during training and testing, the pixels covering im-
age areas with the following characteristics were masked out
(therefore not considered in loss or accuracy computation): (i)
belonging to regions that were subjected to deforestation before
the date of the first image in the pair; (ii) situated within a buffer
of a width of two pixels outside the deforestation polygons; (iii)

1 https://earthexplorer.usgs.gov/
2 http://terrabrasilis.dpi.inpe.br/map/deforestation
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Figure 1. Overview of DeepLabv3+ architecture. In the figure, ASPP stands for Atrous Spatial Pyramidal Pooling.

Figure 2. Overview of UNETR architecture (Hatamizadeh et al., 2022)

Domains RO PA MA
Coordinates 09◦36’51” S - 10◦18’35” S

62◦56’41” W - 64◦20’51” W
03◦08’21” S - 03◦26’16” S

50◦34’04” W - 51◦16’12” W
04◦44’52” S - 05◦12’48” S

043◦37’58” W - 044◦01’23” W

Vegetation Open Ombrophyll Forest Dense Ombrophyll Forest Seasonal Deciduous
and Semi-Decidous Forest

Date 1 July 18, 2016 August 2, 2016 August 18, 2017
Date 2 July 21, 2017 July 20, 2017 August 21, 2018

deforestation pixels 225 635 (3%) 82 970 (3%) 71 265 (3%)
no-deforestation pixels 3 816 981 (29%) 1 867 929 (65%) 1 389 844 (57%)

previous deforestation pixels 9 013 384 (69%) 903 901 (32%) 986 891 (40%)

Table 1. Detailed domain information: image acquisition dates, coordinates, class distribution, and vegetation typology. Data taken
from (Vega et al., 2021; Soto Vega et al., 2022)

inside deforestation polygons smaller than 6.25 ha (equivalent
to 69 pixels) in the Amazon sites and deforestation polygons
smaller than 1 ha (equivalent to 11 pixels) for the Cerrado site.
The first restriction is due to the absence of data in the refer-
ence dataset regarding changes in regions that were deforested

in previous years; once PRODES identifies deforestation, the
corresponding areas remain classified as deforested, irrespect-
ive of any future changes. The second condition is designed to
mitigate the impact of minor inaccuracies in the deforestation
reference polygons resulting from the rasterization process. In
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(a) (b)

(c) (d)

Figure 3. Visual representation and localization of each study area used in the experiments carried out in this work. (a) Geographical
localization of the respective sites. True color composites of the images covering the sites, corresponding to the acquisition date 2017

(b) Rondônia (RO), (c) Pará (PA), and (d) Maranhão (MA). Figure taken from Vega et al. (2021).

regard to the third constraint, we have adopted the same criteria
as PRODES, considering its minimum mapping units (Vega et
al., 2021).

The data augmentation transformations were a 90◦ rotation and
vertical and horizontal flips. To alleviate the imbalance in the
dataset, we adopted focal loss as a cost function with γ equal to
2, which was minimized using the Adam optimizer with learn-
ing rate decay. We set the initial learning rate µ0 and mo-
mentum β1 to 0.01 and 0.9, respectively. The batch size was
32, and the early stopping procedure was used to avoid over-
fitting. The patience parameter, which controls the number of
epochs without improvements in the validation loss, was set to
20. For each evaluated architecture, the training and testing pro-
cedures were executed three times, each time with a different
(random) initialization of the trainable parameters. Regarding
the network architectures, figures 1 and 2 provide detailed in-
formation about the structure and composition of each model.

At test time, the trained DNN assigns probability values for all
pixels of patches extracted from the test regions using a slid-
ing window procedure with a 25% overlap. A heat map mosaic
is created by stitching together only the center portions of the
patches’ predictions. Following Soto et al. (2022), such a pro-
cedure aims at reducing artifacts by removing weak predictions
close to the borders of the patches.

3.3 Metrics

The performance of the classifications in all scenarios is ex-
pressed in terms of the average F1-score (F1) considering the

positive class (deforestation). Specifically, the F1-score is the
harmonic mean between Precision and Recall, as follows:

F1− score =
2× Precision×Recall

Precision+Recall
, (1)

where,
Precision =

tp
tp + fp

, (2)

Recall =
tp

tp + fn
(3)

In equations 2 and 3, tp is the number of pixels correctly as-
signed to the deforestation class (true positives), fp represents
the number of pixels erroneously classified as deforestation (fal-
se positives). Similarly, fn corresponds to the number of pixels
incorrectly classified as non-deforestation (false negatives).

4. Results and Discussion

Tables 2, 3, and 4 show the average F1 scores, precision, and re-
call of the models delivered after three training and testing runs.
Scores on the table’s diagonal represent the accuracies observed
when the models are trained and tested on data from the same
domain. The scores off-diagonal indicate the accuracies when
the models were trained on data from one domain and tested
on a different domain. In all tables, values highlighted in bold
represent the higher accuracies achieved when the models were
trained and tested with data from the same domain. The val-
ues in italics correspond to the best results in the cross-domain
scenarios.
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(a)

(b) (c)

Deforestation in past years Deforestation in target year No deforestation

Training Validation

Figure 4. Distribution of image tiles for training, validation and testing in the respective study areas: (a) Rondônia (RO); (b) Pará
(PA); and (c) Maranhão (MA). Please note that the tiles that are not shaded correspond to the ones selected for testing. The figure also
shows the polygons associated with the deforestation that occurred during the image acquisition dates of the respective domains, the

polygons associated with the deforestation that occurred prior to the date of the first image of the respective image pairs, and the areas
labeled as not deforested. Figure taken from Vega et al. (2021).

Figure 5 shows the ground truth and deforestation detection
results (in red) overlaid on an RGB composition of the input
Landsat-8 image. The first line represents the deforestation
ground truth (figures 5(a)(b)(c)). Figures 5(d)-(l) represent the
result obtained with DeepLabv3+, and figures 5(m)-(u) repres-
ent the result obtained with UNETR.

The results show that in all but one case the transformer-based
model outperformed the convolutional one when trained and
tested with data from the same domain. Moreover, training
and testing the models on the same domains produced higher
accuracies for both models, as expected. Conversely, the F1
scores associated with the cross-domain combinations were sig-
nificantly lower. In those cases, however, the DeepLabv3+ fully
convolutional model obtained higher accuracies in terms of F1
score in all but two cases (when models were evaluated on the
PA site).

By carefully inspecting Table 2 it can be observed that the highest
absolute accuracies in the cross-domain evaluations were ob-
tained when the models were trained on MA and tested in PA.
Moreover, the results reveal that the classifiers trained on the
RO domain generalize worse when tested on the PA or MA do-

mains. The reason for such behavior was suggested in Vega et
al. (2021), where the authors analyzed the complexity of the de-
forestation and non-deforestation classes in each domain aim-
ing at explaining the behavior of a U-Net classifier in the same
task and over the same datasets.

Succinctly, Vega et al. (2021) used the number of clusters in
difference images to indicate class complexity. They found that
forest complexity is lowest in PA and highest in MA, while the
opposite is true for deforested areas. In RO, the complexity falls
between that of the PA and MA sites.

Based on those findings, we believe that the classifiers trained
on MA are better at recognizing changes not linked to deforest-
ation. As seen in tables 3 and 4, in general, both architectures
achieved higher precision and recall when trained in MA com-
pared to other domains (in the cross-domain scenarios). In other
words, such a higher variability in MA forested regions leads to
a classifier with a lower false positive rate.

However, the higher diversity of deforestation in PA could cause
the classifier trained with data from that site to incorrectly clas-
sify changes that are not related to deforestation in different
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Methods Training on: Evaluating on:

DeepLabv3+ (ResNet)
Domains RO PA MA

RO 64.9 6.1 45.3
PA 38.5 73.3 54.3
MA 50.4 64.7 68.7

UNETR + ViT small
Domains RO PA MA

RO 66.4 6.4 29.3
PA 25.5 80.3 35.8
MA 43.4 71.3 75.9

Table 2. F1 scores (%) of DeepLabv3+ and UNETR semantic
segmentation DL-based architectures.

Methods Training on: Evaluating on:

DeepLabv3+ (ResNet)
Domains RO PA MA

RO 64.1 4.4 43.4
PA 50.8 81.5 38.6
MA 74.1 58.6 55

UNETR + ViT small
Domains RO PA MA

RO 63.6 4.3 22.3
PA 30.8 84.3 22.3
MA 47.8 77.6 62.7

Table 3. Precision (%) of DeepLabv3+ and UNETR semantic
segmentation DL-based architectures.

sites. This could result in more false positives, as indicated by
the lower precision values shown in Table 3. Additionally, both
models delivered low precision and recall when trained in RO
and tested in PA (see also figures 5(e) and (n)). We believe this
is due to the poor representativeness of changes in forested and
deforested regions of RO. The situation in PA is in extremes,
with the highest change variability in deforested regions and
the lowest in forested ones, which we believe leads to poor pre-
cision and recall in the respective domain combinations.

Notwithstanding, the ViT-based architecture showed a lower
generalization capacity compared to its convolutional counter-
part in most cross-domain scenarios. We understand that the
result deserves further investigation, however, it is worth noting
that the lower performance is mainly caused by the lower preci-
sion of UNETR, as shown in Table 3, in the cross-domain scen-
arios. As for the recall metric, Table 4, the UNETR achieved
better results than DeepLabv3+. The former demonstrates a
lack of robustness in avoiding false positives in forested regions
when compared with the performance of DeepLabv3+ in sim-
ilar scenarios, which can also be observed in Figure 5(n)(o)(r)(s),
where several regions predicted as deforested are not actually
deforested, i.e., false positives when compared against the ground
truth.

5. Conclusions

In this research, we examined different deep learning-based mod-
els, namely convolutional and transformer architectures, by as-
sessing their capacity for change detection in the context of
deforestation detection within tropical forests. Our study in-
volved a comparative analysis of the models’ performances in
cross-domain combination scenarios, focusing on the F1-score,
Precision, and Recall metrics.

The results showed that the highest performances were obtained
for the intra-domain classification scenarios, for both models.
In this context, the transformer-based architecture achieved hi-
gher deforestation detection rates, which can be considered evid-
ence of the superiority of transformer approaches for semantic
segmentation and classification tasks.

Methods Training on: Evaluating on:

DeepLabv3+ (ResNet)
Domains RO PA MA

RO 65.8 12.6 48.9
PA 31.4 66.8 91.6
MA 57.8 44.6 92.1

UNETR + ViT small
Domains RO PA MA

RO 72.4 24.3 53.4
PA 21.7 77 96.9
MA 41.7 66.7 97.4

Table 4. Recall (%) of DeepLabv3+ and UNETR semantic
segmentation DL-based architectures.

RO PA MA
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(a) (b) (c)
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(g) (h) (i)

(j) (k) (l)
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(p) (q) (r)

(s) (t) (u)

Figure 5. Deforestation ground truth and semantic segmentation
results (red areas) obtained with DeepLabv3+ and UNETR.
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The performance of both models decreased substantially in the
cross-domain evaluation scenarios. We attribute this behavior
to the previously studied variability in change patterns within
forested and deforested regions. Moreover, in the majority of
cross-domain combinations, the convolutional-based model con-
sistently outperformed the transformer-based model. While we
understand that lower acuracy of the transformer-based model
in these cases may be influenced by various problems, such as
overfitting, further investigation must be done to determine their
causes.

Finally, we consider it is important to conduct further research
to confirm our findings. Such research should involve evaluat-
ing additional architectures transformer, convolutional and hy-
brid architectures, and a wider range of domains and aplica-
tions.
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