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Abstract

The Harmonized LandSat-Sentinel (HLS) dataset has significantly advanced Earth Observation by integrating data from Landsat
and Sentinel satellites. However, challenges persist in achieving spectral band parity between LandSat and Sentinel-derived HLS
products. This paper presents an extended investigation aimed at enhancing spatial reconstruction accuracy to enable spectral band
parity within HLS products. Building upon our previous work, which utilized generative neural networks to address partial fea-
ture mismatches between S30 and L30 products, we introduce a refined approach that fully integrates a Self-Supervised Learning
(SSL)-pretrained encoder into a U-Net architecture. This method aims to access multi-scale features and improve spatial recon-
struction accuracy, addressing the limitations in spatial resolution observed in our earlier study. Our methodology incorporates a
comprehensive ablation study to assess various SSL-pretrained backbone architectures. Preliminary results demonstrate signific-
ant improvements in spatial reconstruction accuracy compared to our previous work. The adapted U-Net architecture, leveraging
SSL-pretrained encoders, shows enhanced capability in capturing intricate spatial features within the HLS dataset. Our experiments
demonstrate a substantial improvement in spatial resolution and feature reconstruction for L30 products, particularly in bands not
natively present in Landsat data, paving the way for more accurate multi-sensor analyses.

1. Introduction

Earth Observation (EO) has been revolutionized by the integ-
ration of data from multiple satellite platforms, particularly the
Landsat and Sentinel missions. The Harmonized Landsat - Sen-
tinel (HLS) dataset (Claverie et al., 2018), developed by NASA,
stands as a landmark achievement in this field, offering a uni-
fied resource for mid-resolution multispectral optical imagery.
However, despite the significant strides made in harmonizing
these datasets, there are still some persisting challenges, par-
ticularly in achieving spectral band parity between Landsat and
Sentinel-derived HLS products.

The Harmonized Landsat and Sentinel-2 (HLS) initiative provi-
des two key products: L30 (Landsat 8/9-based) and S30 (Senti-
nel-2-based). While these products are spatially and spectrally
harmonized, they exhibit notable differences. S30 includes ad-
ditional bands absent in L30, such as ’Red Edge’ wavelengths,
which are crucial for applications like vegetation monitoring
(Xie et al., 2018), crop disease detection and health assessment
(Stamford et al., 2023), and precision agriculture (Segarra et
al., 2020). These disparities highlight the need for platform-
agnostic models that can utilize all available information across
datasets (Kganyago et al., 2022).

Predicting spectral band images with arbitrary characteristics
from diverse spectral inputs remains an under-explored EO task.
Recent advancements in optical image simulation, such as con-
ditional GANs for generating Sentinel-2 images from SAR data
(He and Yokoya, 2018), show promising results. For such tasks,
Encoder-decoder architectures like pix2pix (Isola et al., 2017)
are common in image-to-image approaches. In addition the rise
of Self-Supervised Learning (SSL) techniques, including MO-
COv2 (Chen et al., 2020b) and SimCLR (Chen et al., 2020a),
have demonstrated high-quality feature extraction without ex-
plicit supervision. In EO, large-scale datasets suitable for SSL
pre-training have emerged, such as the Functional Map of the
World (FMoW) (Christie et al., 2018), SSL4EO-L (Stewart et

al., 2023) and SeeFar (Lowman et al., 2024), enabling further
advancements in this field.

In our previous work (Tsironis et al., 2024), we addressed the
partial feature mismatch between S30 and L30 products within
the HLS dataset via introducing a novel approach utilizing gen-
erative neural networks, specifically an Encoder-Decoder ar-
chitecture that leveraged advanced SSL-pretrained backbones
alongside a versatile Fully Convolutional Network (FCN) ar-
chitecture. This method demonstrated promising results in in-
ferring missing bands in the L30 product, namely S30-exclusive
bands RedEdge-1, RedEdge-2, RedEdge-3 and NIR-Broad, par-
tially bridging the gap between S30 and L30 products.

However, our initial approach revealed limitations, particularly
in spatial resolution. While radiometrically satisfying, the de-
rived bands exhibited a notable loss in spatial resolution. This
was attributed to the FCN architecture decoding SSL-pretrained
features that were spatially compressed by a factor of 8. These
findings motivated us to further refine our methodology, with a
specific focus on enhancing spatial reconstruction accuracy.

In this paper, we present an extended investigation that builds
upon our previous work, introducing significant improvements
to address the spatial resolution limitations. Our refined ap-
proach integrates a fully SSL-pretrained encoder into the U-
Net architecture (Ronneberger et al., 2015), enabling access to
multi-scale features and improving spatial reconstruction accur-
acy. This advancement targets to maintain the spectral fidelity
achieved in our earlier work while significantly enhancing the
spatial resolution of the derived bands. By addressing the spa-
tial resolution limitations of our previous work, this study aims
to further bridge the gap between S30 and L30 products within
the HLS dataset. The resulting improvements have the potential
to enhance a wide range of EO applications, such as land cover
mapping (Karakizi et al., 2023) (Karakizi et al., 2024) and ve-
getation monitoring (Ouzoun et al., 2023), by providing more
spatially accurate and spectrally complete data products.
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Figure 1. Proposed architecture consisting of a SSL-pretrained ResNet50 and a custom FCN U-Net like architecture.

In detail, the main contributions of this work are summarized
as follows:

• Introduction of a novel architecture that fully integrates an
SSL-pretrained encoder into a UNet framework, enabling
multi-scale feature extraction for improved spatial recon-
struction.

• Implementation of a comprehensive ablation study to sys-
tematically evaluate the performance of different SSL -
pretrained backbone architectures in the context of HLS
band prediction.

• Demonstration of substantial improvements in spatial res-
olution and feature reconstruction for L30 products, par-
ticularly in bands not natively present in Landsat data, en-
hancing the overall utility of the HLS dataset for Earth Ob-
servation applications.

2. Methodology

Our methodology builds upon our previous work (Tsironis et
al., 2024), addressing the spatial resolution limitations by in-
tegrating a fully SSL-pretrained encoder into a U-Net archi-
tecture. This approach enables access to multi-scale features,
significantly improving spatial reconstruction accuracy while
maintaining spectral fidelity. The following subsections detail
our enhanced model architecture, training pipeline and infer-
ence configuration.

2.1 SSL-pretrained Encoder

Similar to our previous work, we employ a SSL-pretrained Res-
Net50 model as our encoder, leveraging its superior feature rep-
resentation capabilities. The model is pretrained using MO-
COv2 (Chen et al., 2020b) on the SSL4EO-L dataset (Stewart et
al., 2023), which is particularly suitable for Landsat data infer-
ence. Slight radiometric discrepancies between typical Landsat
SR products and L30 products due to NBAR adjustment are
negligible for the quality of the extracted SSL representations,
as shown in our previous work.

A key improvement in our current work is the access to multiple
feature maps at various downsampling factors. Specifically, we
extract features from five different levels of the ResNet50 ar-
chitecture, corresponding to spatial downsampling factors of 2,
4, 8, 16 and 32. This multi-scale approach allows our model to
capture both fine-grained details and broader contextual inform-
ation, addressing the spatial resolution limitations observed in
our previous work. The feature extraction process can be form-
alized as follows:

Fi = Ei(x), i ∈ {2, 4, 8, 16, 32} (1)

where Ei represents the encoder function up to the i-th down-
sampling level, x is the input image, and Fi is the resulting
feature map at the corresponding downsampling factor.

As in our previous work, the encoder’s weights remain frozen
during training to preserve the rich features learned through
SSL pretraining and avoid overfitting to the image generation
task.

2.2 U-Net Decoder

To fully utilize the multi-scale features extracted by our en-
coder, we implement a U-Net-based decoder to directly pre-
dic missing bands RedEdge-1, RedEdge-2, RedEdge-3 and NIR-
Broad for the L30 product. This architecture allows for effect-
ive integration of features at different spatial resolutions, en-
abling more accurate spatial reconstruction.

Our U-Net decoder consists of multiple upsampling blocks,
each corresponding to a feature map from the encoder. Each
block includes the following components:

1. Upsampling operation (bilinear) to match the spatial di-
mensions of the next level

2. Skip connection from the corresponding encoder level

3. Concatenation of upsampled features and skip connection
features

4. Two 3x3 convolutional layers followed by batch normaliz-
ation and ReLU activation

At the end of the Decoder, a convolutional regression head is at-
tached using two 3x3 xonvolutional layers with ReLU interme-
diate activations and a final sigmoid activation layer to output
reflectances ([0, 1] range).

2.3 Training Pipeline

Our training pipeline remains similar to our previous work, util-
izing the S30 product of the HLS dataset. The 7 spectral bands
equivalent to L8/9 OLI bands serve as input, while the remain-
ing 4 bands are used as ground-truth labels. We train our model
for 16 epochs using the AdamW optimizer with a learning rate
of 1e-4. We do not employ any feature precomputing steps as
no notable performance improvements were noticed. We em-
ploy a typical Mean Squared Error (MSE) loss to train our band
prediction network:

LMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

where n is the total number of pixels across all bands in the im-
age, yi is the true value of the i-th pixel, and ŷi is the predicted
value of the i-th pixel.
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(a) (b) (c)

Figure 2. Comparison of methods. (a) Previous work (FCN decoder, ResNet50 MoCo v2), (b) Ours (UNet decoder, ResNet50 MoCo
v2), (c) Ground Truth (coincident S30) for two different scenes (top and bottom row respectively).

2.4 Inference Configuration

Inference is performed directly on the L30 product of HLS,
producing 4 synthetic images corresponding to the extra bands
found in the S30 product. The final result is an augmented
L30 product that is spectrally equivalent to the S30 product
while maintaining high spatial resolution. Using our method,
HLS products can be used intercheangeably in a wide variety
of downstream tasks without any further processing.

3. Experimental Evaluation

This section presents a comprehensive evaluation of our pro-
posed method, comparing it with our previous work. We de-
scribe the dataset, evaluation criteria, and present both quant-
itative and qualitative results. Finally, we conduct an ablation
study to analyze the impact of different SSL-pretrained back-
bones on our model’s performance.

3.1 Dataset

We utilize the Harmonized Landsat and Sentinel-2 (HLS) data-
set (Claverie et al., 2018), maintaining consistency with our
previous work. Our dataset comprises S30 and L30 products
collected from several tiles spanning the central and northern
parts of Greece for one month (July 2023). This configuration
ensures diverse landscapes, including mountainous and flat ter-
rains, various flora, and water surfaces, while minimizing cloud
cover.

For training, we use the S30 data, divided into training and val-
idation subsets with an 80%/20% ratio. The L30 data are used
exclusively for evaluation. In all cases, we preprocess the data
to mask out clouds, cloud shadows, and ice/snow.

3.2 Evaluation Criteria

Unlike our previous work, which used both coincident correla-
tion and time-series interpolation, we now focus solely on coin-
cident L30-S30 pairs for a more direct and accurate assessment.
We employ the following standard image generation metrics:

• Peak Signal-to-Noise Ratio (PSNR): Measures the ra-
tio between the maximum possible signal power and the
power of distorting noise. For a 16-bit unsigned integer
(uint16) image:

PSNR = 20 · log10
(

65535√
MSE

)
(3)

where MSE is the Mean Squared Error between the ori-
ginal and the generated image.

• Structural Similarity Index Measure (SSIM): Assesses
the perceived quality of digital images. It is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4)

where µx and µy are the average of x and y, σ2
x and σ2

y

are the variance of x and y, σxy is the covariance of x and
y, and c1 and c2 are variables to stabilize the division with
weak denominator.

• Mean Absolute Error (MAE): Quantifies the average
magnitude of the errors in a set of predictions, expressed
as a percentage of reflectance:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-553-2024 | © Author(s) 2024. CC BY 4.0 License.

 
555



MAE =
1

n

n∑
i=1

|yi − ŷi| (5)

where yi is the true value, ŷi is the predicted value, and n
is the number of samples.

These metrics provide a comprehensive evaluation of both the
overall radiometric accuracy and the structural fidelity of our
generated bands.

3.3 Quantitative Evaluation

Our new approach demonstrates significant improvements over
our previous work across all evaluation metrics. In Table 1 a
comparison of the performance between our current and previ-
ous methods is presented.

Method Band PSNR(dB) SSIM(%) MAE(%)

Previous
Work

RE-1 33.06 87.77 6.2
RE-2 33.93 89.32 6.8
RE-3 33.96 89.02 7.3

NIR-B 33.91 88.65 7.3

Current
Work

RE-1 33.13 88.65 5.8
RE-2 34.13 90.33 6.0
RE-3 34.24 90.48 6.2

NIR-B 34.16 90.14 6.3

Table 1. Comparison with previous results.

As evident from the results, our new approach achieves higher
PSNR and SSIM values, indicating better overall quality and
structural similarity to the target Sentinel-2 bands. The lower
MAE further confirms the improved accuracy of our synthes-
ized bands.

3.4 Qualitative Evaluation

Visual inspection of our results reveals a massive improvement
over our previous work, particularly regarding spatial resolution
preservation. Figure 2 showcases a side-by-side comparison of
the target Sentinel-2 band, our previous result, and our current
result for a representative scene.

Our new approach preserves fine spatial details that were lost in
our previous work, resulting in synthesized bands that closely
resemble the target Sentinel-2 data. While there is still some
minor scale loss, the improvement is substantial and signific-
antly enhances the utility of our augmented L30 product for
various Earth Observation applications.

3.5 Ablation Study

To understand the impact of different SSL-pretrained backbones
on our model’s performance, we conducted an ablation study
comparing two backbone architectures (ResNet50 and ResNet18)
and two SSL algorithms (SimCLR and MOCOv2). Table 2
presents the quantitative results of this study.

Quantitatively, the performance across all configurations is re-
latively close. However, qualitative analysis reveals significant
differences:

• MOCOv2-based models consistently produce higher qual-
ity results compared to SimCLR-based models.

Backbone SSL PSNR(dB) SSIM MAE (%)

RedEdge-1 Band

ResNet50
MOCOv2 33.13 88.65 5.8
SimCLR 32.96 88.02 6.0

ResNet18
MOCOv2 33.01 88.58 5.8
SimCLR 32.91 87.95 6.2

RedEdge-2 Band

ResNet50
MOCOv2 34.13 90.33 6.0
SimCLR 33.78 89.71 6.8

ResNet18
MOCOv2 33.98 90.17 6.4
SimCLR 34.09 90.00 6.5

RedEdge-3 Band

ResNet50
MOCOv2 34.24 90.48 6.2
SimCLR 33.89 89.84 7.1

ResNet18
MOCOv2 34.10 90.33 6.7
SimCLR 34.23 89.99 6.7

NIR-Broad Band

ResNet50
MOCOv2 34.16 90.14 6.3
SimCLR 33.96 89.71 6.8

ResNet18
MOCOv2 34.09 90.03 6.5
SimCLR 34.11 89.52 6.9

Table 2. Ablation study results.

• SimCLR-based models occasionally generate minor arti-
facts such as double edges and fuzzy boundaries, not pre-
sent in MoCov2 - based results.

• ResNet50 versions generate slightly higher resolution res-
ults, closer to the target resolution, compared to their Res-
Net18 counterparts.

Figure 3 illustrates these qualitative differences for a sample
scene. Based on these results, we conclude that the MoCov2
pretrained ResNet50 backbone provides the best balance of qua-
ntitative performance and qualitative output quality for our task.

4. Conclusions

This work presents a significant advancement in the harmoniza-
tion of Landsat and Sentinel-2 data, building upon our previous
efforts to create a more unified and versatile EO dataset. Our
improved approach, which integrates a fully SSL-pretrained en-
coder into a U-Net architecture, demonstrates substantial en-
hancements in both spectral fidelity and spatial resolution pre-
servation. Our new method significantly reduces the scale loss
observed in our previous work, preserving fine spatial details
crucial for various EO applications. The quantitative results
show improvements across all evaluation metrics, indicating
better alignment with the target Sentinel-2 bands. Our ablation
study reveals the effectiveness of MOCOv2-pretrained models,
particularly when combined with the ResNet50 architecture.

While our results show significant progress, there remain op-
portunities for further improvement. Future work could explore
the integration of additional contextual information, such as
seasonal variations or geographical metadata, to further refine
the band synthesis process. Additionally, investigating the ap-
plicability of this method to other satellite sensors could further
expand its utility in the EO community.
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(a) (b) (c) (d)

Figure 3. Ablation study. (a) ResNet50 SimCLR, (b) ResNet50 MoCo v2, (c) ResNet18 SimCLR, (d) ResNet18 MoCo v2. for two
different scenes (top and bottom row respectively).

In conclusion, this work represents a meaningful step towards
creating a more unified and versatile Earth Observation data-
set. By bridging the gap between Landsat and Sentinel-2 data
products, we contribute to the development of more robust, con-
sistent, and long-term Earth Observation analyses, ultimately
supporting better-informed decision-making in critical areas
like climate change monitoring, land use management, and
environmental conservation.
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