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Abstract 

 

Climate change is threatening forest ecosystems worldwide by inducing various abiotic and biotic disturbances. In Europe, the 

European spruce bark beetle (Ips typographus L.) poses a significant threat, causing serious mortality in mature Norway spruce (Picea 

abies H. Karst.) stands. Rapidly evolving remote sensing technologies offer valuable tools for monitoring forest health, enabling timely 

management operations. This study presents a novel approach for large-area forest health monitoring using Uncrewed Aircraft Systems 

(UAS) and multispectral imaging. The research focuses on a hydrogen-powered Beyond Visual Line of Sight (BVLOS) airship for 

efficient monitoring of disturbances caused by I. typographus. A specific challenge is training machine learning models capable of 

covering wide areas. Our objective was to study the potential of deep learning models, including transfer learning and fine-tuning 

techniques, in developing the scalability and accuracy of UAS-based monitoring for detecting individual spruce trees and classifying 

their health. The approach was empirically evaluated in a study site in North Karelia, Finland. A multispectral image dataset was 

collected over a 1.3 km2 test area in May 2023 in a BVLOS setting operated from a command centre 75 km away. The results indicated 

that employing transfer learning significantly improved classification accuracy compared to training models from scratch, showing 

potential for implementing scalable machine learning methods for large-area UAS surveys. The best model yielded F1-scores of 0.936 

for healthy, 0.955 for dead, and 0.817 for non-spruce classes. Furthermore, the results indicated that BVLOS airships offered high 

accuracy while reducing emissions and labour associated with UAS monitoring. 

 

1. Introduction 

Climate change is causing various abiotic and biotic disturbances 

that threaten forest ecosystems worldwide. In Europe, the 

European spruce bark beetle (Ips typographus L.) is notably 

impacting Norway spruce (Picea abies H. Karst.) forests, 

resulting in significant tree mortality (Patacca et al., 2023; 

Barrere et al., 2023). Effective monitoring strategies and forest 

health assessment methods are essential to mitigate the economic 

and ecological damages caused. 

Uncrewed Aircraft Systems (UAS) technologies offer a highly 

effective approach for monitoring forest health by providing the 

means to collect detailed data on demand. In the case of 

monitoring bark beetle induced disturbances, they can provide 

information about the spread of bark beetle infestations and 

support early detection of new outbreak areas to facilitate 

sanitary cuttings (Ecke et al., 2022). However, the suitability and 

commercial viability of UAS have been significantly limited by 

the necessity for operation primarily within visual line of sight 

(VLOS), making them expensive and challenging to scale across 

large areas. Efforts are currently ongoing to establish frameworks 

for beyond visual line of sight (BVLOS) UAS operation, which 

is expected to soon take over and enable efficient monitoring 

solutions for different applications. BVLOS UAS operations 

have been demonstrated to provide significantly more hourly 

endurance compared to traditional VLOS operations, with 

reduced fuel consumption (Slujis et al., 2023), making them 

suitable for large-scale monitoring operations. 

Tree health assessment methods often employ machine learning 

methods such as Random Forest (RF) and Deep Neural Networks 

(DNNs), with deep learning models generally outperforming 

traditional machine learning approaches (Safonova et al., 2022; 

Kanerva et al., 2022, Minarik et al., 2022; Junttila et al., 2022; 

Turkulainen et al., 2023). However, a significant challenge with 

deep learning models is their reliance on large amounts of 

labelled data. This issue is particularly pronounced in remote 

sensing, where changing environmental conditions can greatly 

increase data variability. Consequently, new reference data 

collection and model training are often necessary for different 

study areas, limiting the scalability of deep learning models. 

Transfer learning can mitigate this issue by utilizing models 

pretrained on a distinct source domain and then fine-tuning them 

with additional data from a new target domain (Pan & Yang, 

2010), thereby reducing the need for extensive new training data. 

Despite its promise, the effectiveness of transfer learning for bark 

beetle disturbance detection, especially using source domains 

closely related to the target, has not been extensively 

investigated.  

Although BVLOS operations have been successful in other 

fields, current scientific literature lacks studies on its application 

in forest health monitoring. This study presents the first results of 

using novel groundbreaking hydrogen-powered BVLOS airship 

UAS technology for monitoring forest disturbances caused by I. 

typographus. Our objective was to validate the performance of 

the novel technology in bark beetle damage monitoring and to 

explore the applicability of transfer learning techniques to 

enhance the scalability of deep learning models in this context.  
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2. Materials and Methods                    

2.1 Remote sensing data acquisition 

Remote sensing data was collected using BVLOS operated 

hydrogen-powered airship technology by Kelluu Ltd. (Joensuu, 

Finland) (Figure 1). The airship uses hydrogen as both the lifting 

gas and power source, resulting in emission-free flying and data 

capture. The sensors for data capture are mounted on a gimbal 

located underneath the ship. 

 

 
 

Figure 1. Kelluu airship on a bark beetle monitoring mission. 

 

The study area covered 1.3 km2 conserved forest area in Koli 

National Park, North Karelia, Finland, seriously affected by bark 

beetles, snow damage and drought. The UAS campaign was 

carried out on 13.5.2023. The flight was operated from the 

command centre at the Kelluu factory premises in Joensuu, 

approximately 75 km away from the test area, using 4G/5G 

communications. The mission duration was 10 hours, with 

transfer flights lasting 3 hours at a flight speed of 7 m/s each and 

the remote sensing data capture taking 4 hours at a flight speed 

of 5 m/s.  

 

The Kelluu airship collected multispectral (MS) images using a 

Micasense RedEdge-P camera (AGEagle Aerial Systems Inc., 

Wichita, Kansas, USA). It comprises five bands in the blue, 

green, red, red-edge, and near-infrared spectral range, as well as 

one panchromatic band. The dataset included a total of 98928 

individual images, collected with nominal forward and side 

overlaps of 80%. Furthermore, the airship was equipped with a 

Basler Ace2 RGB camera (Basler AG, Ahrensburg, Germany) 

that captured a total of 9309 images. The flight altitude was 105 

m giving a ground sample distance (GSD) of 7 cm for the 

multispectral imagery and a GSD of 2 cm for the RGB 

imagery.   Images were pre-processed into point-clouds and 

multispectral orthomosaics using Agisoft Metashape software 

(Agisoft LLC, St. Petersburg, Russia). For the MS images, the 

pansharpening option was not used and the radiometric 

calibration into reflectance values was performed using the DLS2 

sensor data provided by Micasense. 

 

2.2 Field references 

 

In situ references were collected by forest experts. A total of 28 

circular sampling plots with 10 m radius were established. 22 of 

the plots were damage plots established in spots of spruces 

showing bark beetle infestation symptoms and the remaining 6 

plots were control plots with no visible symptoms of bark beetle 

infestation (Figure 2).  

 

For each tree over 5 cm in diameter at breast height (dbh) within 

a sampling plot, tree species, dbh, height and location were 

recorded. Additionally, for spruce trees, trunk and crown 

symptoms indicating bark beetle attack were recorded and 

classified. The evaluated bark beetle symptoms included resin 

flow, entrance and exit holes, bark damage, crown discoloration 

and defoliation (Blomqvist et al. 2018).  

 

 
Figure 2. Field monitoring area. Brown circles show the bark 

beetle damage plots (n=22) and the green circles (n=6) show the 

control plots without bark beetle infestation. Dashed line shows 

division into training and testing areas (19+9 sample plots). 

 

The recorded trees were classified into four categories based on 

their species and observed discoloration symptoms. Green 

spruces were labelled as healthy, yellowish and reddish spruces 

as infested and grey spruces as dead. All other trees were 

classified as non-spruce.  

 

The number of trees in each class after the labelling process is 

shown in Table 1. The number of recorded infested trees was very 

low due to the timing of the data collection. Since the data was 

collected in spring, crown symptoms of bark beetle infestations 

were not yet visible. These symptoms typically become apparent 

later in the season (Junttila et al., 2022). 
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 Healthy Infested Dead Non-spruce 

N-references 178 4 79 55 

 

Table 1. Number of reference trees in each class. 

 

2.3 Deep learning -based image analysis 

  

2.3.1 Overview: The process includes two phases: (1) individual 

tree detection using the YOLOv7 network and RGB images 

(Wang et al., 2023), and (2) tree health analysis using MS images 

and a 2D-CNN classifier model as described by Turkulainen et 

al. (2023). The 2D-CNN model was selected for this study 

because it demonstrated strong performance in the investigation 

by Turkulainen et al. (2023), which involved multispectral 

images and a limited dataset. In this study, the models trained in 

the study by Turkulainen et al. (2023) were used as so-called base 

models. They were trained using datasets from the southern and 

southeastern Finland, 200–400 km away from the Koli test area 

used in this study.  

 

Deep learning models were applied to study tree health in the 

disturbance area, with the special focus on examining the 

scalability of machine learning. Several options were studied: 1) 

the initial deep learning models trained in another test area, 

referred as base models; 2) deep learning models trained from 

scratch using in situ field data as reference; 3) transfer learning 

and fine-tuning of base models using different amounts of field 

reference data.  

 

2.3.2 Data preparation: The data preparation process involved 

extracting individual tree crowns from the image orthomosaic 

and annotating datasets for object detection networks. The 

orthophoto captured in the research area was cropped to smaller 

sections, each containing a single ground sampling plot. The 

dimensions of the resulting images varied, with widths and 

heights ranging from approximately 300 to 800 pixels. Since the 

cropped sections were rectangular, the edges and corners often 

included unlabelled trees. These unlabelled trees were manually 

removed from the images through visual inspection. The 

bounding boxes for each labelled tree were manually delineated 

to create tree location annotations for the YOLOv7 detection 

network. Figure 3 shows an example of an image prepared for the 

YOLOv7 network. The bounding boxes are drawn on the image 

for visualization purposes, however, they are given to the 

network in text format.  

 

To prepare the input images for the classifier networks, each 

reference tree crown was cropped based on its bounding box 

coordinates. The tree crown images were subsequently 

resampled into square shapes of 150 × 150 pixels to standardize 

the input dimensions. Smaller images were adjusted through 

padding to achieve this standard size, while larger images 

underwent resampling utilizing bilinear interpolation. 

  

The reference dataset was divided into separate areas for 

independent training and testing sets. The study area was divided 

such that one half contained 19 sampling plots and the other half 

contained 9 sampling plots (Figure 2).  The split was chosen such 

that each half of the research area contained an appropriate 

number of samples from all classes. This division ensured that 

the training and test sets were independent and allowed for robust 

evaluation of the detection and classification models. 

 
  

Figure 3. Example of a prepared input image for YOLOv7.  

 

2.3.3 Training: The base models were originally trained to only 

classify spruce trees into healthy, infested and dead spruce trees 

but in the current study a new class of non-spruce trees was 

introduced to enable the analysis of large forest areas with 

multiple tree species. In addition, in the current study the infested 

class was excluded due to the low or non-existent number of 

infested tree samples in the reference dataset. 

 

In the transfer learning approach, the 2D-CNN model was 

pretrained with tree health data as described by Turkulainen et al. 

(2023). The model was then subjected to training with new data 

from the Koli region. The first layer of the network was frozen 

during training (Table 2).  The training process consisted of 50 

epochs. When training the models from scratch, all network 

layers were initialized randomly and trained with new data. The 

training was performed over 100 epochs. The hyperparameters 

associated with model training were optimized using the Optuna 

framework (Akiba et al., 2019) as described in Turkulainen et al. 

(2023). 

 

2.3.4 Evaluation: The performance of the models was evaluated 

using various metrics, including class-wise precision, recall, and 

their harmonic mean, the F1-score. Additionally, overall 

accuracy across all classes was computed (Padilla et al., 2021; 

Turkulainen et al., 2023). 

 

These metrics were calculated for the classification results 

obtained from the models on independent test data. Two different 

data splits were employed for the training and test sets. In one 

configuration, 19 sampling plots were used for training and 

validation, and 9 sampling plots were used for testing (TL fi19). 

In another configuration, 9 sampling plots were used for training 

and validation, and 19 sampling plots were used for testing (TL 

fi09).  The data was split into training and validation sets using 

random sampling, with 80% of the data allocated for training and 

20% for validation. 
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Network  Layers  Number of 

kernels and 

kernel sizes  

Layer status 

in transfer 

learning  

Number of trainable 

parameters  

2D-CNN  
Conv2D – BN – MaxPool –  

(32) 3x3  Frozen  ~200 000  

  Conv2D – BN – MaxPool –  (64) 3x3  Trained    

  Conv2D – BN – AvgPool –  (64) 3x3  Trained    

  FC – Dropout – FC    Trained    

 

Table 2. 2D-CNN architecture and transfer learning configuration. FC: Fully connected layer; BN: Batch normalization. 

 

 

3. Results and discussion 

The results of the different training options are shown in Table 3 

and Figure 4. The base model exhibited the poorest overall 

performance, with F1-scores of 0.726 and 0.894 for healthy and 

dead trees, respectively. In contrast, the model trained from 

scratch using only data from the new study area achieved 

significantly better overall performance, with F1-scores of 0.914, 

0.857 and 0.647 for healthy, dead and non-spruce trees. 

 

When training the 2D-CNN model using transfer learning and 

fine-tuning techniques and the larger training dataset, the F1-

scores improved significantly across all categories. The model 

achieved F1-scores of 0.936, 0.955, and 0.817 for healthy, dead, 

and non-spruce trees, respectively. Using a smaller training 

dataset, the model achieved F1-scores 0.942, 0.891 and 0.581 for 

healthy, dead and non-spruce trees. 

 

These results indicated that the best approach for tree health 

classification with the 2D-CNN network was to use transfer 

learning and fine-tuning of the pretrained base model with a 

larger field reference dataset for training. Without transfer 

learning, the F1-scores on the same dataset were 2% poorer for 

healthy spruces, 10% poorer for dead spruces, and 21% poorer 

for non-spruce trees. In comparison, using transfer learning with 

a smaller field reference dataset showed no significant change for 

healthy trees but resulted in decreases of 7% and 29% of F1-

scores for dead and non-spruce trees, respectively. Direct testing 

of the base model on new data without additional fine-tuning and 

training resulted in a 22% decrease in F1-scores for healthy trees 

and a 6% decrease for dead trees compared to the transfer 

learning approach using the larger dataset.

 

 

Model OA Class Precision Recall F1-score N-reference 

Tr; Va; Te 

base model 0.665 Healthy 0.803 0.663 0.726 558; 129; 178 

  Dead 0.835 0.962 0.894 374; 93; 79 

noTL fi19 0.824 Healthy 0.885 0.945 0.914 84; 21; 73 

  Dead 0.750 1.00 0.857 46; 12; 21 

  Non-spruce 0.846 0.524 0.647 10; 3; 42 

TL fi19 0.904 Healthy 0.880 1.00 0.936 84; 21; 73 

  Dead 0.913 1.00 0.955 46; 12; 21 

  Non-spruce 1.00 0.690 0.817 10; 3; 42 

TL fi09 0.883 Healthy 0.960 0.924 0.942 58; 15; 105 

  Dead 0.869 0.914 0.891 17; 4; 58 

  Non-spruce 0.500 0.692 0.581 34; 8; 13 

 

Table 3. Classification results of 2DCNN network. Numbers of reference trees in the training (Tr), validation (Va), and test (Te) sets 

are also given. TL: Transfer learning; noTL: No transfer learning used; fi: Field inventory. 

 

 

 
 

Figure 4. Visualisation of the classification results for each 

model. 

 

The classification accuracy for the non-spruce class was 

consistently lower than for the healthy and dead classes. This 

disparity was especially pronounced in the approaches that did 

not employ transfer learning. While the accuracies for healthy 

and dead spruce trees were high with approximately 50 to 60 

training samples, the accuracy for the non-spruce class was 

typically low with the same number of samples. This discrepancy 

can likely be attributed to the high variability within the training 

samples for non-spruce trees. The non-spruce class included both 

Scots pines (Pinus sylvestris L.) and deciduous trees, which 

displayed distinct characteristics in the images. Pines visually 

resembled healthy spruce trees, whereas deciduous trees 

appeared similar to dead trees, as they were leafless during 

springtime. The confusion matrix for the results of the TL fi19 

model (Table 4) demonstrates that, while all healthy and dead 

spruces were correctly classified, the model misclassified many 
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non-spruce samples as healthy spruces and some as dead spruce 

trees. This suggests that robust classification of the non-spruce 

class necessitates more training data. 

 

  Measured 

  Healthy Dead Non-spruce 

Predicted Healthy 73 0 10 

 Dead 0 21 2 

 Non-spruce 0 0 29 

 

Table 4. Confusion matrix for the model trained using transfer 

learning and large field reference dataset (TL fi19). 

 

A comparison between the large (19 training plots) and small (9 

training plots) training datasets revealed that the classification 

results for the more easily identifiable healthy and dead classes 

were quite similar. However, the smaller training dataset yielded 

significantly poorer results for the non-spruce class. 

Interestingly, the larger training dataset included fewer training 

samples for non-spruce classes than the smaller training dataset 

due to the way the datasets were divided in the field. This further 

suggests that the number of non-spruce samples was insufficient, 

preventing the robust and accurate classification of this class. 

 

The results were comparable to a previous study by Turkulainen 

et al. (2023), where the 2D-CNN model produced F-scores of 

0.911, 0.722 and 0.895 for healthy, infested and dead classes 

respectively, using MS-data captured by drones from study areas 

in southern and southeast Finland. These results indicate that 

Kelluu BVLOS airships offered accuracy comparable to classical 

VLOS UAS technology. Compared to satellites or manned 

aircraft, cloud cover posed less interference, as flights were 

conducted below the clouds. This underscores the effectiveness 

of the approach in reliably capturing remote sensing images and 

supporting applications requiring rapid responses. 

 

The TL fi19 model was employed to detect and classify the health 

of all trees in the study area. The damage map generated for the 

entire research area provided insight into bark beetle damage in 

Koli National Park (Figure 5). Bark beetle damage was most 

prominent at high elevations and mature conifer-dominated 

areas. At the western slope of Koli Hill, where the stands are 

middle-aged and dominated by deciduous species mixed with 

coniferous species, the damage was less prominent despite high 

elevation. 

 

 

 
Figure 5. Number of identified dead spruces in each 10 m by 10 m cell. 

 
The results emphasize the advantages of utilizing transfer 

learning in remote sensing applications. Specifically, in the 

context of tree health analysis, classification accuracy improves 

when a model pretrained with tree health data is employed, 

supplemented with a small number of new training samples. This 

approach outperforms both using a pretrained model to analyse a 

new area without additional training and training a model entirely 

from scratch without leveraging a pretrained model. 

 
4. Conclusions 

This research demonstrates the potential of innovative BVLOS 

UAS operations for large-scale forest health monitoring. The 

study specifically targeted detection and classification of tree 

disturbances caused by I. typographus. Our findings indicate that 

BVLOS UAS technology, such as that developed by Kelluu Ltd., 

can effectively overcome the operational limitations of 

traditional VLOS systems, providing a scalable solution for 

extensive forest monitoring tasks. 

 

The application of advanced deep learning techniques, 

particularly transfer learning, significantly enhanced the 

accuracy of tree health classification. Models fine-tuned with 

extensive field reference data achieved high F1-scores of 0.936 

for healthy trees, 0.955 for dead trees, and 0.817 for non-spruce 

classes, outperforming models trained from scratch. These results 

affirm the advantages of transfer learning in improving model 

performance with less training data, thus addressing one of the 

major challenges in remote sensing applications. 

 

Despite the overall success, the classification accuracy for the 

non-spruce class remained quite low compared to healthy and 
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dead classes, especially without the benefit of transfer learning. 

This highlights the need for more diverse and comprehensive 

training datasets to capture the variability within non-spruce tree 

samples in future studies.  

 

Overall, this study validates the use of hydrogen-powered 

BVLOS airships as a pioneering approach to forest health 

monitoring. The integration of advanced UAS technology with 

deep learning and transfer learning methodologies provides a 

robust framework for the accurate and scalable detection of forest 

disturbances. Future research should focus on improving data 

collection methods for non-spruce trees, further refining transfer 

learning techniques, and expanding studies to include the 

classification of infested trees, which was limited in this study 

due to insufficient reference data caused by the conditions in the 

target area. 
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