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Abstract 

 

Positioning techniques are fundamental in many automation tasks with several applications. In GNSS-denied environments like in 

dense forests, other alternatives are required, such as inertial and visual navigation. However, Inertial Measurement Units (IMUs) data, 

mainly those from microelectromechanical-system (MEMS), are noisy, which affects the orientation estimation. MEMS IMUs have 

been employed in mobile laser scanning systems due to their compact design and low-cost solutions for short-term navigation. In this 

paper, we have compared three IMU processing techniques freely available: MAH (Mahony et al., 2009), MAD (Madgwick et al., 

2011) and DCM (Hyyti and Visala, 2015). These techniques implemented different approaches to estimate the attitude. They were 

experimentally assessed with data from a backpack mobile laser scanning system, which is composed of an OS0-128 Ouster LiDAR 

equipped with an internal IMU. We have used data from a 5-second trajectory segment aiming to evaluate the attitude and position 

estimation for a local path. The results showed that the DCM algorithm maintained a consistent velocity for 5 seconds, achieving a 

positional error of 1.4 m, 0.06 m, and 1.05 m along the X-, Y- and Z-axis, respectively. In contrast, MAD and MAH showed a position 

error over 20 m, 7 m and 3 m along the X-, Y- and Z-axis, respectively, which was affected by the velocity drift. 

 

 

1. Introduction 

Accurate positioning is critical in many automation technologies, 

including robotics, autonomous vehicles, and precision 

agriculture (Aguiar et al., 2020). However, achieving suitable 

positioning in challenging environments, such as forestry, 

remains an issue. Traditional positioning systems, such as the 

Global Navigation Satellite System (GNSS) offer reliable 

georeferenced data, but in situations where there are multipath 

effects and signal blocking, their accuracy is frequently reduced. 

Kaartinen et al. (2015) showed that GNSS sensors achieved an 

accuracy of approximately 0.7 meters under the canopy, which is 

unsuitable for most tasks in smart agriculture and forest 

management. 

 

Inertial Measurement Units (IMUs) have emerged as an 

alternative for positioning in such challenging scenarios. IMUs 

provide acceleration and angular velocity measurements, which 

can be used to estimate the platform’s attitude and position. One 

advantage of IMUs is that they do not rely on external signals, 

making them a better option in GNSS outage environments. In 

addition, IMUs have a high update rate, which is beneficial for 

dynamic applications. Therefore, the integration of IMUs with 

Simultaneous Localization and Mapping (SLAM) algorithms has 

become a focus of research and development (Tagliabue et al., 

2021, Júnior et al., 2022, Kim et al., 2023, Faitli et al., 2023, 

Zhang et al., 2024).  

 

SLAM algorithms are designed to incrementally generate a map 

of the environment while determining the pose of a mobile 

system (Cadena et al., 2016). The mobile system acquires data 

from sensors, such as digital cameras or LiDAR, mounted on the 

platform and the position and attitude are estimated by matching 

the detected features in the sensor data (e.g. images, point clouds) 

while moving the platform (Durrant-Whyte and Bailey, 2006). 

SLAM methods can be divided according to the sensor type. 

Visual SLAM (vSLAM) is based on sequential optical images 

while LiDAR SLAM uses point clouds to estimate the platform 

pose. 

 

When combined with IMU data, SLAM algorithms, whether 

visual or LiDAR-based, benefit from high-frequency and 

continuous inertial measurements, which provide an initial 

trajectory estimation, thus improving the accuracy of localisation 

and mapping, mainly in GNSS-denied environments (Gao et al., 

2024). This initial trajectory estimation can significantly improve 

SLAM performance in the matching step by eliminating incorrect 

correspondences and providing initial state estimation. The 

benefits of using IMU are still more evident for LiDAR data since 

the point clouds suffer from motion distortions and trajectory 

errors gradually accumulated, mainly in high-speed or complex 

motion, requiring complementary sensors to provide initial 

values of the platform’s attitude and positions or closed-loop 

correction in SLAM methods (Zhang et al., 2024). 

 

However, estimating attitude and position through IMU 

measurements poses some challenges (Hyyti and Visala, 2015). 

One significant issue is the accumulation of errors over time, 

known as drift. Estimating heading angles in dynamic 

environments, where motion direction frequently changes, adds 

further complexity. In addition, abrupt acceleration and rapid 

changes in orientation can affect the IMU solution. Another 

challenge is the sensitivity of IMUs to external factors such as 

temperature variations and magnetic interference, which can 

introduce errors in acceleration and angular velocity 

measurements, requiring calibration procedures. Several 

approaches and techniques have been proposed to address and 

mitigate these limitations of IMUs. 

 

This paper experimentally assesses the techniques presented by 

Mahony et al. (2009), Madgwick et al. (2011), and Hyyti and 

Visala (2015) for attitude and position estimation using IMU 
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measurements. These techniques, whose codes are freely 

available, are evaluated for their potential integration into SLAM 

algorithms. The assessment focuses on the accuracy of attitude 

and position estimation based solely on IMU data, highlighting 

both their potential benefits and limitations in mobile mapping 

systems. 

 

 

2. IMU data processing 

An IMU is composed of a triaxial accelerometer and a triaxial 

gyroscope. The accelerometers measure linear acceleration along 

the three orthogonal directions (X, Y, Z) while the gyroscopes 

provide angular velocity around the three axes (X, Y, Z), which 

are proportional to the platform’s rotation movements (Shan and 

Toth, 2008). By integrating these measurements, the IMU can be 

used to estimate position and attitude, which is the 3D orientation 

of the platform concerning the Earth coordinate system.  

 

The orientation space can be parameterised by Euler angles, 

quaternions, and rotation matrices (Dam et al., 1998). Euler 

angles provide an intuitive representation of the rotations by 

specifying successive rotations around the X, Y, and Z axes and 

requiring only three values for representation (for instance, yaw, 

pitch and roll angles). Nevertheless, Euler angles can suffer from 

the gimbal lock problem, which is a loss of one degree of freedom 

caused by the alignment of two rotation axes. Furthermore, 

different axis conventions can cause ambiguity and uniqueness 

in representations of the same orientation. Quaternions offer 

several significant advantages for estimating and representing 

attitude (Dam et al., 1998). First, rotations defined by quaternions 

are independent of the coordinate system, making them more 

robust for a navigation system. Second, a critical issue in Euler 

angle rotations, the gimbal lock, is avoided with the four-

dimensional representation of quaternions. Therefore, there are 

no singularities in rotating when using quaternions. Finally, 

quaternions are simpler to interpolate, enabling smooth 

transitions between rotations and efficient computations, which 

are important for real-time applications in navigation systems. 

Another option is the use of rotation matrices that provide a direct 

transformation in the 3D space, maintaining orthogonality. 

However, rotation matrices need more memory to store their nine 

values with a 3x3 matrix. In practical applications, the choice 

among Euler angles, quaternions, and rotation matrices depends 

on the requirements. Usually, IMU processing algorithms 

employ quaternions more frequently due to their robustness and 

efficiency, but Euler angles are also used in certain contexts 

(Dam et al., 1998). 

 

Besides the choice of the rotation representation, one significant 

challenge concerning IMU measurements processing is the 

heading angle estimation, which is typically solved using an extra 

sensor such as a triaxial magnetometer or satellite navigation. 

Although magnetometers and GNSS can offer a good solution, 

they also present some challenges. For instance, the LiDAR 

system induces a magnetic field due to the electronics affecting 

magnetometer measurements, and thus the earth’s magnetic field 

cannot be easily separated. Moreover, as previously discussed, 

GNSS signals can be blocked or weakened when traversing 

through indoor and vegetated areas. These problems are more 

challenging with microelectromechanical-system (MEMS) 

IMUs, which are noisy, and the results from their measurements 

often drift for long-term navigation, posing challenges compared 

to high-precision IMUs. Nevertheless, MEMS IMUs have been 

widely used in navigation systems since they are small, 

lightweight, and low-cost solutions for short-term navigation. 

Consequently, methods have been proposed to estimate the 

attitude and position of a mobile platform using only linear 

accelerations and angular velocities. In this paper, we present and 

assess three approaches (Mahony et al., 2009; Madgwick et al., 

2011; and Hyyti and Visala, 2015). 

 

Mahony’s (Mahony et al., 2009) and Madgwick’s (Madgwick et 

al., 2011) methods are non-Kalman filter techniques based on 

quaternion representation for attitude angles avoiding the 

complexities and singularities associated with Euler angles. 

Mahony’s algorithm calculates the quaternion derivative by 

integrating the gyroscope angular rate data and updates the 

orientation estimation over time. The accelerometer data provide 

the direction of gravity, which is used to compensate for the drift 

from gyroscope measurements. The solution is based on the 

Special Orthogonal group SO(3), which is the underlying Lie 

group structure for the space of rotation matrices (Hall, 2015). 

 

Madgwick’s algorithm is designed for a wearable inertial motion 

system that can be composed of a tri-axis gyroscope and 

accelerometers (IMU sensors), and Magnetic Angular Rate and 

Gravity (MARG) sensors. The MARG implementation combines 

gyroscope, accelerometer, and magnetometer data. This is done 

by adjusting the orientation estimate from the gyroscope data 

with corrections derived from the accelerometer and 

magnetometer data. In this work, we focused on Madgwick’s 

IMU-only implementation since our IMU is composed of only a 

gyroscope and accelerometer. Madgwick’s IMU algorithm 

allows accelerometer data to be used in an analytically derived 

and optimised gradient descent algorithm to compute the 

direction of the gyroscope measurement error as a quaternion 

derivative. First, the angular rate data from the gyroscopes are 

used to determine the quaternion derivative, which is the rate of 

change of the earth frame relative to the sensor frame. Then, the 

orientation is obtained by integrating this derivative over time. 

The accelerometer data are used to estimate the orientation 

relative to the direction of gravity. In the end, a gradient descent 

algorithm is employed to minimize the error between the 

measured and estimated orientations. This filter is better for high 

measurement frequencies (over 50Hz).  

 

Hyyti and Visala (2015) presented an approach based on the 

extended Kalman filter (EKF) using Euler angles in the directions 

cosines matrix (DCM). EKF is the most common approach for 

attitude estimation, adapting the Kalman Filter (KF) for nonlinear 

systems. System dynamic is linearised using the first order of the 

Taylor series. The first-order linearisation can introduce 

significant errors in the mean and covariance of the state vector, 

especially in low-cost IMU that commonly include noises in the 

measurements leading to instability in the solution. However, it 

can provide an accurate attitude for local trajectory. 

 

The technique presented by Hyyti and Visala (2015) was 

developed for low-cost MEMS IMUs, avoiding the need for 

additional sensors, such as magnetometers. The algorithm 

focuses on estimating roll and pitch angles and a minimal drift 

relative to the yaw angle. The direction of gravity is calculated 

by integrating the measured angular velocities using a partial 

DCM. The adaptative EKF adjusts measurement covariances 

dynamically, reducing errors caused by rapid nongravitational 

accelerations, which is common in mobile applications. Their 

approach also includes temperature calibration and an online bias 

estimator of gyroscope biases to handle large temporary 

accelerations and changes in sampling rate. Under challenging 

conditions, Hyyti’s and Visala’s approach was evaluated using 

two low-cost IMUs (MicroStrain Inertia-Link and a Spark-Fun 

6DOF Digital IMU). The performance was compared to 

Mahony’s and Madgwick’s methods (Mahony et al., 2009, 
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Madgwick et al., 2011). Moreover, accurate reference 

measurements were obtained with the KUKA LWR 4 robot arm. 

The results showed that their method outperforms the others 

across different conditions, such as temperature changes and 

dynamic movements. The DCM achieved an RMSE of 1.57°, 

0.56°, and 0.61° for yaw, pitch and roll angles. 

 

Several methods for estimating attitude based on IMU data have 

been proposed in the literature and it is clear the challenges to 

maintain a consistent solution over time without additional 

sensors. For instance, the DCM algorithm does not provide an 

absolute heading (yaw angle) but rather a relative one, which may 

drift over time without external corrections. Hence, this solution 

can be used for local trajectory compensation in SLAM. 

 

 

3. Experiments with a backpack mobile laser scanning 

system 

3.1 Data acquisition 

The experimental dataset was collected with a backpack mobile 

laser scanning system (MLS) (Figure 1). This backpack platform 

(Figure 1.a) is composed of an Ouster OS0-128 laser scanning 

system (Figure 1.b), equipped with an internal IMU (Figure 1.c). 

The internal IMU records data from three-axis gyroscopes and 

three-axis accelerometers providing the acceleration (in g units) 

and the angular velocity (in degrees per second) in the X, Y and 

Z axes at a frequency of 100 Hz. Additionally, the backpack 

platform includes a Dell OptiPlex 3070 computer placed inside 

the backpack for data recording and storing. More details about 

the backpack MLS and Ouster OS0-128 sensor can be found in 

Castanheiro et al. (2022) and Castanheiro et al. (2023). 

 

The experimental dataset took place in an orange orchard, where 

the platform was carried by an operator while walking in a 

trajectory with a length of approximately 400 m (Figure 1.d). 

Aiming to evaluate the IMU processing algorithms for generating 

local trajectories as initial values, five (5) seconds of data were 

used in this study. Figure 1 shows (a) the developed backpack 

MLS, (b) an Ouster OS0-128 laser scanner, (c) its internal IMU, 

and (d) the test area. 

 

 
Figure 1. (a) the developed backpack platform, (b) the Ouster 

OS0-128 laser scanning system, (c) the internal IMU 

InvenSense, (d) the test area and the trajectory in yellow. 

 

The Ouster sensor uses two coordinate systems: the sensor 

coordinate (depicted in green in Figure 2), and the laser 

coordinate (depicted in blue in Figure 2) systems. Both 

coordinate systems follow the right-hand convention (OUSTER, 

2024). The sensor coordinate system is defined at the centre of 

the sensor on the bottom of the unit with XS pointing opposite to 

the external connector, YS pointing to the left and ZS pointing to 

the top of the sensor. The origin of the laser coordinate system is 

in the laser unit. The X-axis (XL) is positive to the external 

connector, Y-axis (YL) turns the right-hand system, and Z-axis 

(ZL) points to the top of the sensor (OUSTER, 2024).  

 

 
Figure 2. Both OS0-128 sensor (green) and laser (blue) 

coordinate systems in (a) the top view, and (b) the lateral view. 

 

The transformation from the laser coordinate system to the sensor 

coordinate system is given by the homogeneous matrix (𝑅𝐿𝑈
𝑆 ) 

presented in Equation (1). The origin is translated in the Z-axis 

and the X and Y axis are rotated 180° about the Z-axis, which 

corresponds to applying reflections to the X and Y axis (Figure 

2). The Z translation is the height of the laser unit and the origin 

of the sensor coordinate system, which is 36.18 mm for the OS0-

128 sensor.  

 

   𝑅𝐿𝑈
𝑆 = [

−1 0 0 0
0 −1 0 0
0
0

0
0

1
0

36.18
1

] (1) 

 

The internal IMU is slightly displaced concerning the sensor 

coordinate system. Equation 2 presents the homogeneous 

transformation matrix from IMU to the sensor coordinate system, 

in which there are translations in the X, Y and Z-axis with the 

values 6.253 mm, -11.775 mm, and 7.645 mm, respectively 

(OUSTER, 2024). 

 

   𝑅𝐼𝑀𝑈
𝑆 = [

1 0 0 6.253
0 1 0 −11.775
0
0

0
0

1
0

7.645
1

] (2) 

 

3.2 Accelerometer IMU calibration 

MEMS accelerometers usually show some bias and gain errors. 

Therefore, it is important to calibrate the system before using the 

data in any attitude estimation algorithm to reduce the effects of 

these errors and achieve the best possible IMU performance. We 

used the approach for accelerometer calibration proposed by 

Won and Golnaraghi (2010). The IMU sensor was placed in six 

positions and held stationary. Figure 3 depicts the six (6) 

positions that the Ouster OS0-128 laser scanner was placed 

stationary to collect IMU data for the accelerometer calibration. 

 

Measurements from these six positions were then used in the 

algorithm to iteratively optimize gains and biases for each axis of 

the accelerometer sensor (Won and Golnaraghi, 2010). Equation 

3 shows the relation between the accelerometer outputs in each 

axis (𝑆𝑎𝑥𝑖𝑠) and the true acceleration in each axis (𝐴𝑎𝑥𝑖𝑠), where 

𝐺𝑎𝑥𝑖𝑠 and 𝐵𝑎𝑥𝑖𝑠 are the true gain factor and bais, respectively, of 
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each axis. The estimated bias and gain factor were applied to the 

accelerometer data before processing in the IMU codes. 

 

𝑆𝑎𝑥𝑖𝑠 = 𝐺𝑎𝑥𝑖𝑠 ∙ 𝐴𝑎𝑥𝑖𝑠 + 𝐵𝑎𝑥𝑖𝑠                           (3) 

 

 
Figure 3. The six positions in which the Ouster laser scanner 

with the internal IMU was held stationary for calibration 

measurements. 

 

3.3 Attitude and position estimation with IMU data 

Three algorithms for attitude and position estimation based only 

on IMU data were compared. This algorithms are referred here 

as DCM (Hyyti and Visala, 2015), MAD (Madgwick et al., 

2011), and MAH (Mahony et al., 2009). These techniques were 

implemented in MATLAB and C++. The source codes are 

available on GitHub, enabling further developments. Besides the 

attitude estimation, the DCM approach integrates temperature 

calibration and an online bias estimator, which was not employed 

in this work. 

 

Each technique employs different approaches to estimate the 

attitude, as discussed in Section 2. In the end, the MAD and MAH 

algorithms deliver a list of quaternions, while the DCM method 

results in a list of roll, pitch and yaw (rpy) angles. Quaternions 

are easier to calculate and more efficient for inertial navigation 

systems, avoiding singularities. However, they are difficult to 

interpret physically compared to rpy angles. Therefore, the 

rotation matrix was firstly calculated using quaternions then rpy 

angles were extracted from the matrix. After orientation 

estimation, the positions were calculated in three steps. First, the 

translational accelerations were obtained using the previously 

computed rpy angles for each method. Then, these accelerations 

were integrated to obtain velocities and, finally, a subsequent 

integration was done to estimate the position.  

 

The analyses were conducted by examining both the estimated 

velocities and positions aiming to obtain a short-term trajectory. 

The estimated velocities were evaluated considering the velocity 

acquisition, which was approximately 1.5 m/s. The positions 

were evaluated by comparing them with reference values 

obtained through the point cloud registration tool in 

CloudCompare (2016). This tool aligns and registers 3D point 

clouds with manual picking points, which was performed with 

five homologous points between the point clouds. To perform the 

comparison of the positions, the results obtained with the IMU-

based algorithms were converted to the laser coordinate system, 

following Equation 2 and Equation 1, and then compared with 

the positions estimated with the CloudCompare tool. 

 

3.4 Results and Discussions 

The accelerometer calibration resulted in biases of 0.419, - 0.064, 

and -0.005 for the X, Y, and Z-axes, respectively, indicating a 

slight systematic error, mainly in the X-axis accelerometer. The 

gain factor for each axis was approximately 1, as expected. The 

accelerometer measurements were corrected from these biases 

and gains before estimating the attitude. 

 

Figure 4 shows the computed translational velocities obtained 

with DCM, MAD, and MAH algorithms in (a) X, (b) Y, and (c) 

Z axes. The results for DCM are depicted using dash-dotted red 

lines, MAD results are shown with green lines and MAH results 

are represented by dashed blue lines. 

 

 
Figure 4. Computed translational velocities in (a) X-, (b) Y-, 

and (c) Z-axis for DCM, MAD, and MAH techniques. 

 

The platform was maintained stationary in the first second, 

expecting a velocity of approximately zero. After that, the 

platform was carried at a velocity of approximately 1.5 m/s. 

Considering this situation, the DCM algorithm had a better 

performance maintaining more constant velocity across all axes 

while MAD and MAH algorithms drifted (Figure 4). The velocity 

along the X-axis, the main data acquisition direction, reached 

around 13 m/s with MAD and MAH methods (Figure 4.a). In 

contrast, the DCM algorithm resulted in a velocity of 

approximately 1.3 m/s on the X-axis, which is consistent with the 

expected acquisition velocity. The velocities in the Y- and Z-axis 

for the DCM method remained relatively stable, ranging from 0 

to 0.5 m/s (Figure 4.b and Figure 4.c). Figure 5 shows, in more 

detail, the translational velocities calculated through the DCM 

solution. In Figure 5, red, green and blue lines represent the 

translational velocities obtained through the DCM algorithm in 

the X, Y, and Z axes respectively. 

 

 
Figure 5. Translational velocities obtained with the DCM 

algorithm in the X (in red), Y (green), and Z (blue) axes. 
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Figure 6 shows the positional errors (in meters) across the X, Y, 

and Z axes over the 5 seconds. The DCM positional errors are 

depicted using dash-dotted red lines. The MAD errors are 

represented by a solid green line, while the MAH algorithm’s 

errors are shown with dashed blue lines. 

 

Table 1 shows the displacements in X, Y and Z obtained after 5 

seconds for DCM, MAD and MAH’s algorithm solutions 

compared with the trajectory calculated from point cloud 

registration (PCR). 

 

 DCM MAD MAH PCR 

X (m) -3.10 -29.45 -27.59 -4.5 

Y (m) -0.08 -12.01 -7.73 -0.14 

Z (m) 1.15 -4.33 -3.16 0.10 

Table 1. Computed translational position for DCM, MAD and 

MAH’s solutions and point cloud registration (PCR) after 5 

seconds. 

 

Regarding the data acquisition, the large displacement in the X-

axis for all methods was expected, since it is the main trajectory 

direction. However, MAD and MAH methods showed greater 

discrepancies in the position after 5 seconds when compared to 

PCR (Figure 6). This is consistent with the observed drift in their 

velocities (Figure 4). The DCM algorithm presented better 

performance, with displacement values close to those obtained 

with the PCR. This indicates that the DCM method better handles 

the drift over time. This is highlighted in Figure 6, which shows 

the positional error in (a) X, (b) Y and (c) Z axes, calculated for 

attitude angles (rpy) estimated with DCM, MAD and MAH 

algorithms.  

 

The comparison in Table 1 and Figure 6 shows the lower 

positional errors provided by the DCM method. After 5 seconds, 

errors larger than 20 m along the X-axis were obtained with the 

MAD and MAH techniques, while an error of 1.4 m along the X-

axis was achieved with the DCM method. The errors were less 

magnitude along the Y- and Z-axis for all methods, but still DCM 

presented lower discrepancies. The errors obtained with DCM 

are feasible for initial trajectory values in SLAM processing. 

Moreover, a shorter trajectory can be used to decrease positional 

errors. 

 

The results suggest that the MAD and MAH algorithms may be 

useful for a short time trajectory, but their solutions drift more 

over time. The DCM method maintained the velocity more 

consistently along the 5-second trajectory, showing to be an 

attractive option for mobile applications. 

 

4. Conclusion 

There is a recognised benefit to using IMU measurements in 

LiDAR-SLAM algorithms. However, attitude estimation from 

IMU measurements is not straightforward due to the challenges 

posed by noisy IMU data. Therefore, our study presented three 

IMU measurement processing approaches (Mahony et al., 2009; 

Madgwick et al., 2011; Hyyti and Visala, 2015) and evaluated 

their performance in attitude and position estimation for local 

trajectory (5 seconds). The analysis showed the DCM (Hyyti and 

Visala, 2015) algorithm outperformed the MAD (Madgwick et 

al., 2011) and MAH (Mahony et al., 2009) algorithms in 

maintaining a consistent velocity during 5 seconds and, as a 

consequence, better position. Positional error analysis showed 

the consistency of the DCM algorithm, with acceptable error after 

5 seconds, when compared to the position estimated with point 

cloud registration. In contrast, MAD and MAH showed a position 

error over 20 m, which was affected by the velocity drift. For 

shorter-term paths probably the position error will be smaller, 

which can be assessed in future. 

 

While MEMS IMUs are known for their noise and drift over 

long-term navigation, our study showed that the DCM approach 

can still provide acceptable results for a local trajectory. Future 

works should focus on coupling the IMU measurements and 

refining these results in SLAM algorithms. The matching step 

can also be enhanced by using local trajectory to reduce space 

search and improve the feature correspondences. Additionally, 

this comparison can be extended to more complex navigation 

scenarios including turns and varying velocities. 
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