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Abstract

Forests play an important role in the Earth systems for carbon sequestration and climate change mitigation, yet they have been
increasingly disturbed by deforestation and forest degradation at an unprecedented pace. The Brazilian Amazon, for instance,
experienced a 140% rise in deforestation from 2012 to 2020, with a record loss of 13,200 km² between August 2020 and July
2021. Alarmingly, 87% of 2019 deforestation alerts occurred on private properties, with 61% in legally restricted areas. Existing
deforestation monitoring systems, such as PRODES and the Global Forest Change dataset, use about 30m resolution satellite
imagery, which is insufficient for operational validation at fine scales. The Deforestation Alert System by Imazon leverages high-
resolution PlanetScope data (3-4m) but faces challenges due to fewer spectral bands and variations in reflectance values across
different satellite sensors and dates. As a result, current validation is based mainly on manual inspection which is highly time-
consuming. To address the challenges and automate the validation process, this work develops a system based on deep learning –
known for its ability to capture complex texture patterns in high-resolution images – to inspect and confirm new deforestation sites.
Specifically, the system takes inputs from potential deforestation sites suggested by coarse-resolution products and uses a pair of
PlanetScope images before and after the change at each site to determine new deforestation (excluding existing deforestation). Our
results demonstrate that the new system achieves robust and high-quality accuracy under various test conditions.

1. Introduction

Forest plays an important role in the Earth systems for carbon
sequestration and climate change mitigation. However, forests
have been increasingly disturbed by deforestation and forest
degradation at an unprecedented pace. Taking the Brazilian
Amazon as an example, deforestation has been rapidly growing
by 140% from 2012 to 2020, and between August 2020 and July
2021 alone, this region experienced a huge forest loss of 13,200
km², marking the highest deforestation rate in the past 15 years
(Coelho-Junior et al., 2022). Moreover, a recent study indicates
that 87% of the deforestation alerts in 2019 occurred on private
properties, with 61% overlapping with legal restricted areas for
forest removal, and only 0.1% were licensed forest suppres-
sion (MapBiomas, 2020). Altogether, these figures reveal the
ongoing critical issue of illegal deforestation in the Brazilian
Amazon, leading to the urgent need for automatically identify-
ing deforestation to support effective environmental governance
and restore regulatory control.

Past studies have made significant efforts to generate deforest-
ation products. PRODES, the widely-used product of defor-
estation monitoring from the National Institute of Space Re-
search of Brazil, generates clear-cut deforestation maps based
on visual interpretation of satellite imagery and manual map-
ping (de Almeida et al., 2021). Similarly, the Global Forest
Change dataset, the first global forest map at 30m resolution
from the University of Maryland, provides consistent annual de-
forestation loss and gain since 2000 using data-driven decision
tree classification methods (Hansen et al., 2013). However,
both datasets are based on about 30m resolution satellite im-
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Figure 1. Results of AI-based deforestation validation.

agery, which is suitable for mapping the coarse-scale extent of
deforestation and aggregated analysis but is insufficient to val-
idate and confirm deforestation sites for operational use at high
resolutions. Recently, MapBiomas Deforestation Alert, a well-
established deforestation alert system for the Amazon Forest,
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utilizes the high-resolution PlanetScope data at about 3-4m res-
olution to validate deforestation sites (Mapbiomas, 2022). How-
ever, compared to conventional multispectral satellite imagery
at moderate resolution, PlanetScope images have fewer bands,
significantly more texture details from higher resolution, and
variation in reflectance values across different satellite sensors
and dates (Wagner et al., 2023; Pandey et al., 2021). These
challenging characteristics suggest that conventional machine
learning methods, which primarily depend on spectral features,
may not be effective. As a result, current validation is based
mainly on manual inspection, which is highly time-consuming.

To address the challenges and automate the validation process,
this work develops a system based on deep learning – which
has shown promising abilities in capturing complex texture pat-
terns in high-resolution images (Persello et al., 2022; John and
Zhang, 2022; Kattenborn et al., 2021) – to inspect and confirm
new deforestation sites. Specifically, the system takes inputs
from potential deforestation sites and uses a pair of PlanetScope
images before and after the change at each site to determine if
it is a new deforestation site (excluding existing deforestation).
Our contributions are summarized as follows:

• We introduce a novel deep learning model to automate the
validation of deforestation sites, leveraging the high spatial
resolution of PlanetScope imagery to enhance detection ac-
curacy.

• We conduct comprehensive experiments comparing traditional
machine learning and popular deep learning methods for de-
forestation mapping, using various evaluation metrics to bench-
mark performance.

• We demonstrate the robustness and generalizability of our
model by validating its performance on extensive datasets
collected from the Amazon rainforest, highlighting its ap-
plicability in real-world deforestation monitoring.

2. Related Work

Deforestation monitoring has been a significant area of research,
with various methods and products developed to track forest
loss. Traditional machine learning methods, such as Decision
Tree or Random Forest, have been widely used to generate de-
forestation maps using coarse- and moderate-resolution satellite
imagery (Hansen et al., 2013; Grinand et al., 2013; Healey et
al., 2018; Lesiv et al., 2022). Taking the Global Forest Change
dataset as an example, a decision tree method is used to cap-
ture spectral patterns of forest and non-forest pixels, producing
robust global deforestation loss and gain at a 30m resolution
(Hansen et al., 2013). While these products offer valuable in-
sights into large-scale deforestation patterns, their spatial resol-
ution is limited, hindering the ability to detect smaller deforest-
ation events and validate changes at finer scales.

Recent studies have incorporated higher-resolution imagery into
deforestation monitoring using the Planet NICFI dataset which
provides satellite imagery with approximately 3-4m resolution
(Dalagnol et al., 2023; Wagner et al., 2023; Debus et al., 2024).
However, traditional machine learning methods, primarily re-
lying on spectral features, face challenges in extracting useful
patterns from high-resolution pixels with fewer bands, variation
of reflectance values, and more contexture details from neigh-
bouring pixels (Wagner et al., 2023; Pandey et al., 2021). One
promising solution is the application of deep learning models,

which have shown state-of-the-art performance in semantic seg-
mentation, particularly convolutional neural networks (CNNs)
that can learn complex contextual patterns (LeCun et al., 2015;
Chen et al., 2022; Wagner et al., 2023; Dalagnol et al., 2023).
For example, Dalagnol et al. (2023) use the U-Net model to
extract comprehensive contextual features through a symmet-
ric encoder and decoder architecture, enabling high-quality de-
forestation mapping. However, these studies mainly focus on
deforestation mapping using single-image inputs. Few stud-
ies address change detection, where only deforested regions are
identified from a pair of images taken before and after a defor-
estation event. Detecting changes between images is important,
as it allows for the identification of newly deforested regions
based on a baseline of high-quality annual deforestation maps
after extensive manual validation, thereby reducing redundant
labour checks and enhancing environmental monitoring efforts.

3. Methods

3.1 Model Architecture

We use the U-Net architecture to identify deforestation changes
between a pair of images at two different time steps. Fig. 2
shows the U-Net model, which consists of two parts, an en-
coder and a decoder, allowing the capture of contextual inform-
ation at various scales (Ronneberger et al., 2015). The encoder
passes input features through several blocks of convolutional
layers, with the resolution gradually reduced using strides to
learn multi-scale features. The decoder then up-samples coarse-
resolution features through blocks of deconvolutional layers. To
accurately recover fine details, the up-sampled features are con-
catenated with corresponding features from the encoder layers.
At the final stage, we add a projection layer to output pixel-level
classifications of deforestation changes.

In our setup, both the encoder and the decoder are comprised of
4 blocks each. For the encoder, each block includes two con-
secutive 3× 3 convolutions, with the second convolution using
a stride of 2 to halve the image size. Each convolutional layer
is followed by a ReLU activation function. The decoder blocks
consist of a 3 × 3 deconvolutional layer, followed by a 3 × 3
convolutional layer. After each deconvolutional layer, the fea-
ture map is concatenated with the corresponding encoder fea-
ture map of the same size, then followed by a 3× 3 convolution
layer. The final layer linearly projects the U-Net outputs into
a probability map that indicates the ”confidence” level in the
deforested and non-deforested classes.

3.2 Loss Function

We train the network using the Dice loss, which is a widely used
loss function for imbalanced datasets. In deforestation map-
ping, Dice loss helps the model focus on detecting the bound-
aries and extents of deforested areas, which can be sparser than
no-change regions. Specifically, Dice loss measures the over-
lap between the predicted regions and the ground truth out of
the union of both regions. The Dice loss is defined as:

Dice Loss = 1−
2
∑

i pigi∑
i pi +

∑
i gi

(1)

where pi is the predicted deforestation region for pixel i, and gi
is the ground truth region for pixel i.
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Figure 2. U-Net Architecture for deforestation validation.

3.3 Evaluation Metrics

To evaluate the performance of our deep learning model in de-
forestation mapping, we utilize four standard evaluation met-
rics in image segmentation tasks, including precision, recall,
F1 score, and accuracy.

3.3.1 Precision Precision reflects the proportion of true pos-
itive predictions among all positive predictions. It is defined as:

Precision =
TP

TP + FP
(2)

where TP is the number of true positives, and FP is the num-
ber of false positives. A higher precision means a lower false
positive rate.

3.3.2 Recall Recall shows the proportion of true positive
predictions among all actual positives in the dataset. It is defined
as:

Recall =
TP

TP + FN
(3)

where FN is the number of false negatives. A higher recall
means the model can classify a larger number of actual posit-
ives.

3.3.3 F1 Score The F1 score is the harmonic mean of pre-
cision and recall, showing a combined metric balancing both
metrics. It is defined as:

F1 Score = 2 · Precision · Recall
Precision + Recall

(4)

The F1 score is useful in imbalanced datasets by considering
both false positives and false negatives and balancing the trade-
off between over-segmentation and under-segmentation.

3.3.4 Accuracy Accuracy measures the proportion of all cor-
rect predictions (both true positives and true negatives) among
the total number of predictions. It is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TN is the number of true negatives. Accuracy demon-
strates the overall performance of a model but might be mis-
leading in cases of imbalanced class distribution.

4. Experiments

4.1 Data

In the experiment, we use the ground truth from the deforesta-
tion alerts dataset from MapBiomas (Mapbiomas, 2022), which
is based on different forest monitoring systems (e.g., DETER,
SAD, GLAD, SIRAD-X) to select PlanetScope imagery before
and after deforestation and generate a more detailed deforest-
ation polygon necessary to support law enforcement. Based
on the identified deforestation sites from MapBiomas, we col-
lected the corresponding high-resolution Planet NICFI imagery
through Google Earth Engine (Team, 2017; Pandey et al., 2021).
Specifically, we collected a pair of images representing before
and after each deforestation site, each image having four bands
including red, green, blue, and near-infrared.

Fig. 3 shows the study area ranging from 55° to 52.5°W and -
2.5°S to 0°, near the Amazon River, where deforestation is more
likely to occur and be transported across the river. After data
collection, we have a total of 1,912 images in the study area.
We randomly split the dataset for training our models with 80%
as training, 10% as validation, and 10% as testing.

4.2 Candidate Methods

We use the following candidate methods to demonstrate the per-
formance of popular machine learning models in deforestation
mapping.

• Random Forest (RF): A Random Forest classifier with 50
trees. We use all the other default parameters from the scikit-
learn package.

• Fully Connected Network (FCN): A fully connected neural
network with 5 hidden layers, each having 512 neurons fol-
lowed by the ReLU activation function, and a linear output
layer.

• U-Net: A convolutional encoder-decoder model for image
segmentation (Ronneberger et al., 2015), and the architecture
details are introduced in Sec. 3.1.

In the training stage, both deep learning models take images
as inputs, while the Random Forest model uses single-pixel in-
puts. We trained deep learning models using the Adam optim-
izer with a learning rate of 0.0001. Dice loss was employed to
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Figure 3. Deforestation sites collected in the study area (left), and the overall location within the Amazon Forest region (right).
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Figure 4. Visualizations of model’s performance in detecting deforestation given a pair of Planet NICFI images taken before and after
a deforestation event. Three candidate models are Random Forest (RF), Fully Connected Neural Network (FCN), and U-Net Model.
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Figure 5. Changes of Dice loss and F1 score over 50 epochs for deep learning models.

handle class imbalance and improve the segmentation quality,
particularly, in the case where the minority class (i.e. defores-
ted region) significantly affects overall performance. To aug-
ment the training data, we applied various techniques such as
random image rotations and random image flips horizontally or
vertically. These augmentations not only increased the diversity
of the training data but also potentially helped the models gen-
eralize better to unseen data by simulating different real-world
conditions.

After 50 epochs of training, the best models were selected based
on the highest F1 scores on the validation dataset, ensuring they
achieved a balance between precision and recall. For the final
evaluation, we used a hold-out test dataset, which the models
did not see during the training and validation phases. This en-
sures an unbiased assessment of the models’ performance on
completely unseen data, providing a realistic measure of their
generalization capabilities. The best models were evaluated on
this test dataset using performance metrics including precision,
recall, F1 score, and accuracy, implying how well the models
can perform in practical applications.

4.3 Results

Table 1 shows the results of candidate methods on the test data-
set across all the evaluation metrics. The U-Net model achieves
the highest performance across all evaluation metrics. Its best
performance can be attributed to its ability to effectively capture
contexture patterns from high-resolution satellite imagery, mak-
ing it more robust for identifying deforestation sites. In con-
trast, both RF and FCN demonstrate suboptimal performance
as they primarily rely on the spectral features from single-pixel
inputs, which can make it hard to capture the texture patterns in
deforestation sites and are further limited by the fewer bands in
PlanetScope images.

Figure 4 shows the deforestation masks produced by differ-
ent methods in the test dataset, as well as the RGB and NDVI
bands of images before and after deforestation. It can be seen
that the removal of trees usually leads to lower NDVI values

Model F1 Precision Recall Accuracy

RF 0.5505 0.6712 0.4665 0.9456

FCN 0.5833 0.4729 0.7608 0.9223

U-Net 0.8251 0.7462 0.9226 0.9720

Table 1. Overall performance of candidate methods in F1 score,
precision, recall, and accuracy, where Bold fonts indicate best

models and underline refers to runner-ups.

in deforestation sites. However, it is difficult to set a global
threshold to differentiate the areas with and without deforest-
ation. Moreover, the deforestation sites still have sparse trees
in the middle, making it challenging to map the entire area.
Comparing the results generated by different methods, U-Net
shows the highest accuracy in delineating deforestation bound-
aries and provides a more continuous and complete mapping
of the deforestation areas. FCN and RF, however, struggle to
delineate clear deforestation boundaries and obtain a complete
and continuous mapping of deforestation sites. This is mainly
because they are based on single-pixel inputs, and thus cannot
capture the context information necessary to remove the sparse
trees in the deforestation sites. Furthermore, it is clear to ob-
serve the salt-and-pepper noise in the RF classification results,
implying its limited ability to accurately classify satellite im-
ages at higher resolution.

In figure 5, we demonstrate how dice loss and F1-score of dif-
ferent methods change on the training and validation datasets
during the training process. It can be seen that both FCN and U-
Net exhibit similar dice loss at the beginning, but as the training
process goes on, the training and validation dice loss of U-Net
decreases rapidly and finally arrives at lower values than FCN.
On the F1-score, U-Net shows an obvious improvement on both
training and validation datasets, while FCN shows a slow in-
crease and quick hit to a performance plateau. This suggests
that U-Net learns more efficiently than FCN on the deforesta-
tion mapping task.
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5. Conclusions

Deforestation in the Brazilian Amazon has been increasing at
an alarming rate, necessitating more efficient and accurate sys-
tems for monitoring and validation. Traditional deforestation
monitoring systems often rely on coarse-resolution imagery that
is insufficient to detect fine-scale deforestation events. Manual
validation of high-resolution imagery, while more accurate, is
highly time-consuming and labor-intensive. To address the chal-
lenges, we have developed a deep learning-based system that
automates the validation process by leveraging Planet NICFI
satellite imagery at a high resolution of 3-4m. Through ex-
periments, we demonstrate that our system effectively captures
complex texture patterns in the imagery, significantly improv-
ing the performance of deforestation detection. Our work rep-
resents an important step towards more efficient and effective
environmental governance using high-resolution imagery, pav-
ing the way for better management and conservation of forest
resources. Future work will focus on refining the model with
more samples and extending its application to other forested re-
gions worldwide.
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