
A fast multi-temporal optical data cloud removal method based on isophote constraint  
 

Xiaoyu Yu 1, Jun Pan 1, Jiangong Xu 1, Junli Li 2 

 
1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, 

China – (yuxiaoyu72, panjun1215, dd_xjg)@whu.edu.cn 
2 National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Xinjiang Institute of Ecology and 

Geography, Chinese Academy of Sciences, Urumqi 830011, China – lijl@ms.xjb.ac.cn 

 

 

Keywords: Optical satellite, Multi-temporal data reconstruction, Cloud removal, Isophote constraint. 

 

 

Abstract: 

 

The problem of cloud cover significantly affects the quality and utility of optical satellite imagery, posing challenges for image 

analysis and interpretation. In response, this research presents a fast and efficient image reconstruction method by exploiting the 

strength of isophote in linear structure propagation of ground features, providing users with a practical option for cloud removal task. 

In addition, this research solves the inapplicability problem when the cloud-contaminated regions overlap between different temporal 

images, and then extends the application to the field of multi-temporal data cloud removal. Through several experiments, the 

proposed method outperforms other comparative methods for both dual-temporal data reconstruction and multi-temporal data 

reconstruction task. Furthermore, the method proves to be efficient and robust even with limited auxiliary information. The proposed 

multi-temporal image reconstruction framework is available at: https://github.com/YuXiaoyu221/ICMIR. 

 

 

1. Introduction 

Research based on MODIS data indicates that clouds cover 

approximately 67% of the Earth's surface (King et al., 2013). As 

a result, missing pixels in optical remote sensing imagery due to 

cloud covering have become a significant issue, severely 

reducing data quality and availability (Yu et al., 2024a). To 

address this challenge, various approaches have been explored 

to mitigate the adverse effects and recover pixels contaminated 

by clouds in optical data. According to the sources of auxiliary 

information, these methods can be categorized into two groups: 

single image-based methods, and reference image-based 

methods (Shen et al., 2015; Tao et al., 2022).  

 

Single image-based reconstruction methods utilize the 

remaining information from the unaffected areas (spatial-

domain) or the unaffected bands (spectral-domain). It is 

assumed that the missing areas have similar statistical or 

geometric structures with the remaining areas within the same 

image (Guillemot and Meur, 2014). Hence, interpolation 

methods, such as nearest neighbor interpolation and bilinear 

interpolation (Atkinson et al., 1990), as well as geostatistical 

interpolation methods (Rossi et al., 1994; Yu et al., 2011), can 

be employed to predict the missing pixels using auxiliary 

information from the clean areas. The exemplar-based image 

inpainting method, which relies on the structure propagation 

(Criminisi et al., 2004), also demonstrates its effectiveness in 

filling missing pixels. In the case of multispectral and 

hyperspectral optical data, the abundant spectral information 

also aids in the recovery of thin clouds. This is because longer 

wavelength bands generally have a greater ability to penetrate 

clouds (Kulkarni and Rege, 2020). Spectral correlation forms 

the basis for filling pixels in affected bands using clean pixels 

from unimpacted bands (Kulkarni and Rege, 2020; Li et al., 

2014). Accordingly, approaches such as the haze-optimized 

transformation model, homomorphic filtering algorithm, and 

principal components transform method have been proposed to 

improve data quality under various atmospheric conditions 

(Feng et al., 2004; Hong and Zhang, 2018; Xu et al., 2019; 

Zhang et al., 2002). Since the complementary information from 

the spatial and spectral domains within the same image is 

limited, these methods are not suitable for reconstructing 

complex scenes with extensive coverage or thick cloud layers 

(Guillemot et al., 2014; Xu et al., 2022b).  

 

Reference image-based methods use additional information 

from a reference image that covers the same geographic region 

to assist in image reconstruction (Fang et al., 2021; Kang et al., 

2016). Both SAR and optical images from other time periods 

can serve as references to provide compensating information 

(Duan et al., 2024; Ebel et al., 2022; Mao et al., 2023; Xu et al., 

2022a). However, achieving high-fidelity, cloud-free optical 

imagery through SAR data, that is, mapping cross-domain 

images, remains a challenging due to the distinct imaging 

mechanisms of active and passive sensors (Denaro and Lin, 

2020). Reference information from temporal optical images can 

be more direct and effective, and is extensively used in cloud 

removal task (Zhang et al., 2020; Zheng et al., 2023; Zou et al., 

2023). For example, regression model is studied to estimate 

missing pixels based on clean pixels of reference image (Cao et 

al., 2020; Zeng et al., 2013). In addition to pixel-based recovery, 

global optimization framework is also employed in image 

reconstruction. On the basis of Poisson editing algorithm in 

image inpainting (Perez et al., 2003), some methods use the 

gradient information of reference image as guidance field to 

minimize the gradient difference between the target image and 

the reference image (Hu et al., 2019; Lin et al., 2013; Yang et 

al., 2009; Yu et al., 2024b).  

 

The isophote-based information method has recently been 

presented, which has demonstrated the strength of isophote in 

the cloud removal task of optical satellite imagery (Yu et al., 

2024c). However, the high time cost remains a challenge, which 

limits its application in many fields. Furthermore, this method is 

mainly introduced for single image reconstruction, and the 

cloud coverage areas between the target image and the reference 

image should not overlap, otherwise it will lead to unstable 

results with abnormal color transitions. To address these issues, 

this research introduces a new fast image reconstruction method 

with both high efficiency and good results, which is also 

applicable to multi-temporal images with overlapping cloud-

contaminated areas. Moreover, several comparative experiments 

are conducted, and the experimental results further demonstrate 

the method effectiveness in multi-temporal data reconstruction. 
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2. Methodology  

2.1 Background  

Isophote constraint is first introduced in image reconstruction to 

avoided the unstable outcomes of the gradient-guided image 

inpainting framework. The Poisson editing algorithm, which 

uses gradient information as constraint, is widely recognized as 

a foundational framework in image composition, inspiring many 

image reconstruction methods (Hu et al., 2019; Lin et al., 2013; 

Perez et al., 2003; Yang et al., 2009). The method presented by 

Hu et al. (2019) is used as example for subsequent discussion. 

 

Using the gradient of reference data as constraint can well 

preserve image details. However, when the color differences 

between original image and reference image are non-linear, the 

result may be unstable. Figure 1 shows three groups of data to 

analyse the limitations of the gradient operator in image 

reconstruction. Figure 1(a) shows simulated non-natural images. 

Figure 1 (b) and (c) are cropped from satellite data. Five 

columns in each figure from left to right are respectively the 

original clean data, simulated data with missing area (denoted in 

white), reference data, the reconstruction result using gradient 

constraint (Hu et al., 2019), and the reconstruction result based 

on isophote constraint (Yu et al., 2024c).  

 

 
(a) 

   
(b) 

 
(c) 

Figure 1. Limitation of gradient constraint. (a) simulated non-

natural images. (b) and (c) are cropped from satellite data. 

In the case of Figure 1 (a)-(b), the reconstruction results exhibit 

anomalous color transitions, where the color should be smooth 

and uniform. In Figure 1(c), the bridge in the gradient-based 

result is incorrectly filled with a mismatched color, inconsistent 

with the surrounding area. The isophote-based method achieves 

more accurate result and better preserves the original data 

characteristics. Taking Figure 1(c) as an example, the row 

containing point P is sampled to illustrate the profile more 

intuitively. Figure 2(a)-(e) are respectively the horizontal profile 

derived from the five images in Figure 1(c). The horizontal 

coordinate represents the row-coordinate, while the vertical 

coordinate corresponds to the grey value of each pixel. The red 

section between two dotted lines corresponds to the missing 

area, while the blue section represents the clean area. The arrow 

indicates the location of the bridge. In Figure 2(a), the bridge 

exhibits a lower grey value compared to the surrounding river, 

while in Figure 2(c), the bridge shows a higher grey value than 

the river. Figure 2(d) illustrates the result when the gradient 

from Figure 2(c) is used as a constraint to fill the missing area 

in Figure 2(b). Although the method preserves the details of 

Figure 2(c), it results in incorrect color variation. In contrast, 

Figure 2(e) exhibits a curve trend that more closely matches 

Figure 2(a) compared to Figure 2(d). Corresponding to the last 

column of Figure 1(c), the entire bridge maintains a uniform 

color, ensuring consistency across the image.  

 

 
       (a)                                          (b) 

    
       (c)                                          (d) 

 
        (e) 

Figure 2. The horizontal profiles derived from Figure 1(c). (a) 

Original image. (b) Simulated image. (c) Reference image. (d) 

Result of gradient constraint. (e) Result of isophote constraint. 

 

2.2 Motivation 

It is shown that isophote can effectively capture the linear 

structure of ground features in an image. On this basis, the 

approach is verified in the cloud removal task of optical satellite 

imagery (Yu et al., 2024c). However, the unavoidable high time 

cost of the entire reconstruction process remains an obstacle, 

limiting its applicability in various real-world scenes. In 

addition, this approach is mainly used for single image 

reconstruction and does not take into account the overlap of 

cloud-contaminated areas between different images, which is 

very common especially in multi-temporal image reconstruction. 

Therefore, in view of these limitations, the main objectives of 

this research are as follows: 

 

(1) Introduce a fast and efficient image reconstruction method 

by exploiting the strength of isophote in linear structure 

propagation of ground features, thus providing users with a 

more practical option for cloud removal task. 

 

(2) Resolve the inapplicability problem when the cloud-

contaminated regions overlap between different temporal 

images, and then extend the method application to the field of 

multi-temporal image reconstruction. 

 

2.3 A fast multi-temporal data reconstruction method 

2.3.1 Isophote calculation 

The isophote represents the line connecting neighboring pixels 

with the same illumination intensity, i.e. similar grey values, 

P 
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and has been used in various image painting approaches to fill 

small holes (Ballester et al., 2001; Criminisi et al., 2004). In 

discrete images, the isophote of a pixel can be inferred from its 

local neighbors, which are aligned with the direction of the 

smallest gradient. To speed up the computation and make the 

equation system used to solve for missing pixels sparser, the 

isophote is determined by the local four-connected neighbors. 

As shown in Figure 3, the red arrow indicates the direction of 

the isophote at the central point P. 

 

35

17 1723

29

P

 

Figure 3. Isophote within the four-connected neighbors. 

 

Assuming that q  is a pixel in image I , qN represents the four-

connected neighboring pixels of q , and qG  is the gradient in 

each direction of the four neighbors, that is: 
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= =   
   
   

 

(1) 

 

where 
( , )i jg  is the variation of q  and 

( , )i jq : 
( , ) ( , )i j i jg q q= − . 

To highlight the direction of minimum gradient, the weight of 

the gradient in every direction is defined as: 

 

( , ) 2

( , )

1
i j

i j

w
g 

=
+

 (2) 

 

Here, 0.01 = , which used to avoid unstable result when 

( , ) 0i jg = . Then, isophote ( )I q⊥  can be calculated by adaptive 

gradient weighting: 

 

( )( , ) ( , )( ) q q i j i j q qI q W G w q q W N⊥ =  =  − = 
 

(3) 

 

Consequently, greater weight is assigned to the direction of the 

smallest gradient, making the isophote heavily dependent on the 

minimum gradient.  

 

2.3.2 Isophote-based missing region reconstruction 

With the aim of minimizing the isophote differences between 

images during the reconstruction process, the isophote-

constrained reconstruction algorithm can be expressed as: 

 

( ) ( )
*

2 2
* *min ( ) ( ) ( ) ( )r t

I
q p

I q I q I p I p




⊥ ⊥

 

 
 − + −  

 
   (4) 

 

Here, I ⊥  is the isophote calculated by Equation (3). 
*

t r, ,I I I  

are the target data, the reference data, and the recovered data, 

respectively.   is the missing area to be restored, and 
  is 

the outer boundary of  . 

 

According to Equation (3), the isophote of   in 
rI  and *I  in 

Equation (4) can be represented as: 

*

* *

( ) ( ')

( ) ( ')

r rI W I

I W I

⊥



⊥



  =  

  =  

 
(5) 

 

Since the isophote of a pixel involves its four-connected 

neighbors, '  also includes the outer neighboring area of  , 

that is: '  = . W
 denotes the isophote weight of the 

missing area  . Since the isophote differences between 
rI  and 

*I  are minimized, it can be approximated as: 

 
*( ) ( ')rI W I⊥

  =  
 

(6) 
 

Assuming that there are n  pixels in  , m pixels in the 

boundary area 
 , that is, 1

n

i iq =   , 1

n m

i i nq +

= +  . Then, the 

terms in Equation (6) are represented as: 

 

1 2
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1 2

T

* * * * T

1 2

( ) [ ( ) ( ) ( ) ]

[ ]

( ') [ ( ) ( ) ( ) ]

n

r r r r n

q q q

n m

I I q I q I q

W W W W

I I q I q I q

⊥ ⊥ ⊥ ⊥



+

  =   


=


 =

 

(7) 

 

W
 is the weight matrix of size ( )n n m + . 

iqW  involves the 

weights related to 
iq , and the size 1 ( )n m + : 

 

( ) ( ) ( )1 2, , ,i n mi i i
q q q q q q q

W w w w
+

 =
  

 
(8) 

 

where
( ), ji
q q

w  represents the weight of pixel 
iq  and jq . 

( ), ji
q q

w  

needs to be computed only when jq  is located within the four-

connected neighbourhood of 
iq ; otherwise, 

( ),
0

ji
q q

w = . 

 

The restored result should also maintain color consistency with 

the original data and achieve a seamless transition in the 

boundary. Therefore, incorporating the boundary condition 
*( ) ( )t pI p I p

= , Equation (4) can be formulated as: 

 

*( )
( ')

( )

r

ot

WI
I

WI
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=     

   

 
(9) 

 

 1 2( ) ( ) ( ) ( )
T

t t n t n t n mI I q I q I q + + + =
 

(10) 

 

Here, 
oW  is a matrix of size ( )m n m + . Only when i j= , 

( ),
1

ji
o q q

W = ; otherwise, 
( ),

0
ji

o q q
W = . In this way, Equation (9) 

forms a system of linear equations with a sparse and 

symmetrical coefficient matrix, so that *( ')I   can be computed 

efficiently.  

 

2.3.3 Framework of multi-temporal data reconstruction 

Based on the reconstruction procedure presented in the previous 

section, a framework for multi-temporal imagery reconstruction 

is built. The workflow is shown in Figure 4. The cloud areas in 

the multi-temporal data need to be pre-marked first using the 

cloud detection method in (Dong et al., 2019). The multi-

temporal images are then processed temporal-by-temporal until 

the reconstructed images are generated. 
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Figure 4. Workflow of the proposed method 

 

Taking the image I in the multi-temporal data as an example, 

the reconstruction process can be concluded in two primary 

steps: the reference temporal sequence determination, and the 

area-based information reconstruction. The reference temporal 

sequence {Ji} records which images are needed to minimize the 

cloud-contaminated areas in image I in a certain priority order. 

Subsequently, in the area-based reconstruction step, if the 

current region  can be fully restored using a single temporal 

in {Ji}, the isophote-based information reconstruction algorithm 

in Equation (4) is applied directly; otherwise, the region   is 

partitioned and restored separately. The two main steps are 

described in detail below. 

 

(1) The reference temporal sequence determination 

 

The reference temporals for the reconstruction of image I can be 

determined by considering the overlap of cloud cover between 

different images. If more than one temporal is available, that is, 

the cloud cover in image does not overlap with that of I, the 

temporal with the highest correlation is taken as the final 

reference temporal. In this case, image I can be restored directly 

according to Equation (4). 

 

However, in some cases, image I cannot be restored using only 

one temporal. Then, the temporal that has the least cloud cover 

overlap with I is added to the reference sequence {Ji} until the 

contaminated areas in I can be completely restored or all 

temporals are in the sequence. 

 

(2) The area-based information reconstruction 

 

For the current cloud region  , if it can be fully reconstructed 

using a single temporal in {Ji}, the isophote-based information 

reconstruction procedure is employed. Otherwise, the temporal 

sequence {Ji} is reordered according to the proportion of the 

overlapping clouds with  . Therefore, the image with the least 

overlapping clouds is preferentially used to provide auxiliary 

information for partitional reconstruction, until the whole  is 

completed. 

 

This process is illustrated in Figure 5. Figure 5(a) is a section of 

the target image I, and Figure 5(b) is the reference sequence for 

the region   consisting of {J1, J2}. J1 is utilized first for 

reconstruction as it has the least overlapping clouds with  , 

and the partitional reconstructed result is shown in Figure 5(c), 

where the region 2  remains cloud-contaminated. Figure 5(d) 

displays the final result by employing the reference information 

in J2. 

 

 
Figure 5. Area-based information reconstruction 

 

 
(a)             (b) 

Figure 6. The reconstruction of 1 .  

 

A further explanation of the reconstruction process of 1  is 

shown in Figure 6. In Figure 6(a), the point q lies on both the 

inner boundary of 1 and the outer boundary of 2 . The local 

neighbourhood of q is illustrated in Figure 6(b). In this case, the 

isophote and the weight of q involved in Equation (7) are 

determined by the mean gradient, that is:  

 

( )
5

1

( ) q q i

i

I q W G q q⊥

=

 =  = −
 

(11) 

 

3. Experiments and analysis 

Three sets of experiments were performed. First, a dual-

temporal data experiment was conducted to evaluate the 

performance of the presented method compared to the popular 

reference image-based reconstruction methods. Second, a multi-

temporal experiment was conducted to verify the effectiveness 

of the method in the multi-temporal image reconstruction task. 

Finally, images with varying cloud cover were simulated to 

analyze the sensitivity to the size of the missing areas. All the 

following experiments were performed using Matlab R2016b 

with the Caffe framework on a Windows 11 system. 

 

3.1 Dual-temporal data experiment  

The dual-temporal experiment was conducted on Sentinel-2 

data at 20 m resolution. The results of the presented method 

were compared with those of four baseline methods. Besides the 

gradient-based method (GBCR) (Hu et al., 2019), the 

comparison methods include the weighted linear regression 

method (WLR) (Zeng et al., 2013), the deep learning method 

(PSTCR) (Zhang et al., 2020), and the method integrating 

isophote and color-structure control (ICCSC) (Yu et al., 2024c). 

 

Figure 7 shows the experimental data in true color composition.  

Figure 7 (a) and (b) are the simulated data with clouds and the 

original clean data, respectively. Since the cloud areas in two 

images do not overlap, the images can be reconstructed using 

temporal complementary information. Figure 7 (c)-(g) display 

the outcomes of WLR, PBCR, PSTCR, ICCSC, and the 
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proposed method, respectively. Apparently that all methods 

fully restore the missing areas. However, in the magnified areas 

of the orange rectangles, Figure 7 (c) exhibits inconsistent color 

and unclear ground features. Some details in Figure 7 (e) also 

appear blurred. The results in Figure 7 (d) exhibit darker colors 

compared to Figure 7 (b). Overall, Figure 7(f)-(g) shows both 

uniform color and clear details. In the area marked by the red 

circle, Figure 7(f) is more consistent with the corresponding 

area in Figure 7(b), while the other areas of Figure 7(f)-(g) 

remain very similar. 

 

  SSIM PSNR RMSE Time/m 

WLR 
I1 

I2 

0.9783 

0.9641 

32.10 

30.53 

0.0237 

0.0298 
19.25 

PBCR 
I1 

I2 

0.8738 

0.9660 

26.13 

29.34 

0.0642 

0.0342 
4.49 

PSTCR 
I1 

I2 

0.9797 

0.9654 

32.16 

30.67 

0.0246 

0.0303 
21.23 

ICCSC 
I1 

I2 
0.9857 

0.9720 

33.85 

31.72 

0.0209 

0.0261 
38.66 

Ours 
I1 

I2 

0.9825 

0.9691 

33.09 

31.39 

0.0223 

0.0267 
1.16 

Table 1. Quantitative analysis. 'Time/m' denotes that the time 

unit is minutes, and bold indicates the best values. 

 

Quantitative evaluation was also performed, with the results 

presented in Table 1. Structural Similarity Index Metric (SSIM), 

Peak Signal-to-Noise Ratio (PSNR), and Root Mean Square 

Error (RMSE) were used to assess the accuracy of the 

reconstruction. In general, higher SSIM and PSNR values and 

lower RMSE indicate a better result, i.e. the reconstructed 

image is more similar to the original cloud-free image with less 

distortion. The time cost reflects the efficiency of the algorithm. 

The quantitative statistics in Table 1 further demonstrate the 

strength of the proposed method over WLR, PBCR and PSTCR. 

Compared to ICCSC, the method can achieve similar results in 

much less time. 

 

3.2 Multi-temporal data experiment  

Four temporal Sentinel-2 data were used in the multi-temporal 

data experiment. In addition to PSTCR, a tensor-completion-

based multi-temporal data reconstruction algorithm (RCTVCR) 

is used for comparison (Xu et al., 2024). Figure 8 shows the 

experimental data with a size of 1801×1801. Figure 8(a) is the 

simulated cloud-contaminated multi-temporal images, and 

Figure 8(b) is the original clean data. The four rows in each 

figure correspond to the four temporals. The multi-temporal 

data reconstruction results of PSTCR, RCTVCR and the 

proposed method are shown in Figure 8(c)-(e), respectively.  

 

From a global perspective, the proposed method performs 

effectively for each temporal of the multi-temporal data. In 

contrast, PSTCR works well for temporal-1 and temporal-4, 

while RCTVCR performs better for temporal-1, temporal-3 and 

temporal-4. In the temporal-2 result of PSTCR, i.e. the second 

row in Figure 8(c), the area marked by the red circle was 

incorrectly reconstructed with an abnormal color. And in the 

temporal-3 result of PSTCR, i.e. the third row in Figure 8(c), 

the area marked with red circle was filled with a noticeable 

black color. In the temporal-2 result of RCTVCR, i.e. the 

second row in Figure 8(d), there are obvious color 

inconsistencies and discontinuities, mainly due to radiometric 

variations between different temporal images. This problem is 

resolved in the results of the proposed method. In addition, the 

quantitative evaluation results are shown in Table 2. The best 

values for each temporal image are indicated in bold. In Table 2, 

the proposed method achieves good reconstruction results for 

the multi-temporal data with a low time cost. 

 

  SSIM PSNR RMSE Time/m 

PSTCR 

I1 

I2 

I3 

I4 

0.9811 

0.9608 

0.9837 

0.9856  

32.88 

31.04 

33.81

32.23  

0.0228 

0.0358 

0.0205 

0.0245  

36.23 

RCTVCR 

I1 

I2 

I3 

I4 

0.9801 

0.9270 

0.9875 

0.9898 

33.56 

23.27 

34.76 

33.69 

0.0210 

0.0695 

0.0190 

0.0208 

0.58 

Ours 

I1 

I2 

I3 

I4 

0.9864 

0.9626 

0.9887 

0.9882 

36.07 

31.66 

35.50 

33.71 

0.0157 

0.0262 

0.0139 

0.0225 

0.64 

Table 2. Quantitative analysis. 'Time/m' denotes that the time 

unit is minutes, and bold indicates the best values. 

 

3.3 Sensitivity to the size of missing areas 

Data with different cloud cover percentages were simulated to 

assess the sensitivity of the image reconstruction method to the 

size of missing regions. The original data, as shown in Figure 

9(a), were cropped from Landsat 8 imagery of 30 m resolution. 

The simulated cloud cover percentages ranged from 10% to 

90%. Figure 9 display the simulated images and the 

corresponding restored results.  

 

The top of Figure 9(a) shows the original target image without 

simulated clouds, while the bottom displays the reference image 

that provides complementary information. Despite the obvious 

radiometric differences between the target image and the 

reference image in Figure 9(a), the restored results of different 

sizes of missing regions always show a high consistency with 

the original clean image, even when the size of missing regions 

reaches 90%. According to the zoomed details of the marked 

orange rectangles, the restoration results did not appear 

degradation in quality as the size of the cloud area increased. 

Furthermore, Figure 9(b)-(e) maintain a smooth transition at the 

boundary of the missing region, and Figure 9(f)-(g) keep a 

consistent color with the original data in Figure 9(a). The values 

of the evaluation metrics are also calculated for quantitative 

analysis, and the results are shown in Table 3. SSIM, PSNR, 

and RMSE values exhibit a minimal fluctuation as the 

proportion of missing regions varies from 10% to 90%, but 

remain relatively stable and satisfactory. This indicates that the 

isophote-based method is robust to changes in the size of 

missing areas. In terms of time cost, the method demonstrates 

generally good efficiency. However, as the proportion of 

missing pixels increases, the computational cost rises 

accordingly, leading to longer running time. 

 

 SSIM PSNR RMSE Time/m 

10% 0.9607 30.15 0.0497 0.06 

20% 0.9554 30.06 0.0502 0.11 

40% 0.9482 29.99 0.0506 0.37 

60% 0.9581 30.16 0.0496 1.40 

80% 0.9467 29.97 0.0507 2.52 

90% 0.9436 29.60 0.0531 2.95 

Table 3. Quantitative statistics of Figure 9. 'Time/m' denotes 

that the time unit is minutes. 
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(a) (b) (c) (d) (e) (f) (g) 

Figure 7. Dual-temporal experiment. (a) Simulated data. (b) Original data. (c) WLR. (d) PBCR. (e) PSTCR. (f) ICCSC. (g) Ours.  

 
(a) (b) (c) (d) (e) 

Figure 8. Multi-temporal experiment. (a) Simulated data. (b) Original data. (c) PSTCR. (d) RCTVCR. (e) Ours.  

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 9. Experiment on different sizes of missing regions. (a) Original images. The percentages of cloud areas in (b)-(g) are 
approximately 10%, 20%, 40%, 60%, 80%, 90%, respectively. 
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3.4 Discussion  

According to Figure 8 and Table 2, the proposed method 

demonstrates its effectiveness in cloud removal for multi-

temporal data. However, when comparing the four temporal 

results of the method, Temporal-2 shows both lower SSIM and 

PSNR values compared to other temporals. Although the 

Temporal-2 result of the proposed method in Figure 8 exhibits 

visually satisfactory effects and achieves higher reconstruction 

accuracy than the other methods, the radiometric variations 

between the temporal-2 image and the other temporal images 

still negatively impact the method's overall performance. 

Therefore, the method is more suitable when radiometric 

differences and temporal changes between multi-temporal data 

are minimal not significant. 

 

4. Conclusions 

To address the challenges posed by unavoidable cloud cover in 

multi-temporal optical satellite data and to improve data 

usability, this research explores an efficient multi-temporal data 

reconstruction method that introduces isophote information as a 

constraint during the process. Through several experiments, the 

proposed method outperforms other comparative methods for 

both dual-temporal and multi-temporal data reconstruction. In 

the experiment with varying cloud cover, the proposed method 

produces high quality images with superior reconstruction 

accuracy even with limited auxiliary information. In conclusion, 

the isophote constraint shows significant potential in the multi-

temporal image reconstruction task. 

 

Acknowledgements  

This work was supported by the National Natural Science 

Foundation of China under Grant 41971422 and Grant 

42090011, and the Tianshan Talent-Science and Technology 

Innovation Team (2022TSYCTD0006). 

 

References 

Atkinson, P.M., Curran, P.J., Webster, R., 1990. Sampling 

Remotely Sensed Imagery for Storage, Retrieval, and 

Reconstruction. The Professional Geographer, 42(3), 345-353. 

 

Ballester, C., Caselles, V., Verdera, J., Bertalmio, M., Sapiro, 

G., 2001. A variational model for filling-in gray level and color 

images, Proceedings Eighth IEEE International Conference on 

Computer Vision. ICCV 2001, pp. 10-16 vol.11. 

 

Cao, R., Chen, Y., Chen, J., Zhu, X., Shen, M., 2020. Thick 

cloud removal in Landsat images based on autoregression of 

Landsat time-series data. Remote Sensing of Environment, 249, 

112001. 

 

Criminisi, A., Perez, P., Toyama, K., 2004. Region filling and 

object removal by exemplar-based image inpainting. IEEE 

Transactions on Image Processing, 13(9), 1200-1212. 

 

Denaro, L.G., Lin, C.H., 2020. Hybrid Canonical Correlation 

Analysis and Regression for Radiometric Normalization of 

Cross-Sensor Satellite Imagery. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 13, 

976-986. 

 

Dong, Z., Wang, M., Li, D., Wang, Y., Zhang, Z., 2019. Cloud 

Detection Method for High Resolution Remote Sensing 

Imagery Based on the Spectrum and Texture of Superpixels. 

Photogrammetric Engineering and Remote Sensing, 85(4), 257-

268. 

 

Duan, C., Belgiu, M., Stein, A., 2024. Efficient Cloud Removal 

Network for Satellite Images Using SAR-Optical Image Fusion. 

IEEE Geoscience and Remote Sensing Letters, 21, 1-5. 

 

Ebel, P., Xu, Y., Schmitt, M., Zhu, X.X., 2022. SEN12MS-CR-

TS: A Remote-Sensing Data Set for Multimodal Multitemporal 

Cloud Removal. IEEE Trans. Geosci. Remote Sensing, 60, 1-14. 

 

Fang, Z., Yu, X., Pan, J., Fan, N., Wang, H., Qi, J., 2021. A Fast 

Image Mosaicking Method Based on Iteratively Minimizing 

Cloud Coverage Areas. IEEE Geoscience and Remote Sensing 

Letters, 18(8), 1371-1375. 

 

Feng, C., Ma, J.W., Dai, Q., Chen, X., 2004. An improved 

method for cloud removal in ASTER data change detection, 

IEEE International Geoscience & Remote Sensing Symposium, 

pp. 3387-3389. 

 

Guillemot, C., Le, Meur, O., 2014. Image Inpainting : Overview 

and Recent Advances. Signal Processing Magazine, 31(1), 127-

144. 

 

Guillemot, C., Meur, O.L., 2014. Image Inpainting : Overview 

and Recent Advances. IEEE Signal Processing Magazine, 31(1), 

127-144. 

 

Hong, G., Zhang, Y., 2018. Haze removal for new generation 

optical sensors. International Journal of Remote Sensing, 39(5), 

1491-1509. 

 

Hu, C., Huo, L., Zhang, Z., Tang, P., 2019. Automatic Cloud 

Removal from Multi-Temporal Landsat Collection 1 Data 

Using Poisson Blending, IGARSS 2019 - 2019 IEEE 

International Geoscience and Remote Sensing Symposium, pp. 

1661-1664. 

 

Kang, Y., Pan, L., Chen, Q., Zhang, T., Zhang, S., Liu, Z., 2016. 

Automatic mosaicking of satellite imagery considering the 

clouds. ISPRS Annals of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences, III-3, 415-421. 

 

King, M., Platnick, S., Menzel, W.P., Ackerman, S.A., Hubanks, 

P.A., 2013. Spatial and Temporal Distribution of Clouds 

Observed by MODIS Onboard the Terra and Aqua Satellites. 

IEEE Transactions on Geoscience & Remote Sensing, 51(7), 

3826-3852. 

 

Kulkarni, S.C., Rege, P.P., 2020. Pixel level fusion techniques 

for SAR and optical images: A review - ScienceDirect. 

Information Fusion, 59, 13-29. 

 

Li, X., Shen, H., Zhang, L., Zhang, H., Yuan, Q., 2014. Dead 

Pixel Completion of Aqua MODIS Band 6 Using a Robust M-

Estimator Multiregression. IEEE Geoscience and Remote 

Sensing Letters, 11(4), 768-772. 

 

Lin, C.-H., Tsai, P.-H., Lai, K.-H., Chen, J.-Y., 2013. Cloud 

Removal From Multitemporal Satellite Images Using 

Information Cloning. IEEE Trans. Geosci. Remote Sensing, 

51(1), 232-241. 

 

Mao, Y., Van Niel, T.G., McVicar, T.R., 2023. Reconstructing 

cloud-contaminated NDVI images with SAR-Optical fusion 

using spatio-temporal partitioning and multiple linear regression. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-601-2024 | © Author(s) 2024. CC BY 4.0 License.

 
607



 

ISPRS Journal of Photogrammetry and Remote Sensing, 198, 

115-139. 

 

Perez, P., Gangnet, M., Blake, A., 2003. Poisson image editing. 

Acm Transactions on Graphics, 22(3), 313-318. 

 

Rossi, R.E., Dungan, J.L., Beck, L.R., 1994. Kriging in the 

shadows: Geostatistical interpolation for remote sensing. 

Remote Sensing of Environment, 49(1), 32-40. 

 

Shen, H., Li, X., Cheng, Q., Zeng, C., Yang, G., Li, H., Zhang, 

L., 2015. Missing Information Reconstruction of Remote 

Sensing Data: A Technical Review. IEEE Geoscience and 

Remote Sensing Magazine, 3(3), 61-85. 

 

Tao, C., Fu, S., Qi, J., Li, H., 2022. Thick Cloud Removal in 

Optical Remote Sensing Images Using a Texture Complexity 

Guided Self-Paced Learning Method. IEEE Trans. Geosci. 

Remote Sensing, 60, 1-12. 

 

Xu, F., Shi, Y., Ebel, P., Yu, L., Xia, G.-S., Yang, W., Zhu, 

X.X., 2022a. GLF-CR: SAR-enhanced cloud removal with 

global–local fusion. ISPRS Journal of Photogrammetry and 

Remote Sensing, 192, 268-278. 

 

Xu, M., Jia, X., Pickering, M., Jia, S., 2019. Thin cloud removal 

from optical remote sensing images using the noise-adjusted 

principal components transform. ISPRS Journal of 

Photogrammetry and Remote Sensing, 149, 215-225. 

 

Xu, S., Wang, J., Wang, J., 2024. Fast Thick Cloud Removal for 

Multi-Temporal Remote Sensing Imagery via Representation 

Coefficient Total Variation. Remote Sensing, 16(1), 152. 

 

Xu, Z., Wu, K., Wang, W., Lyu, X., Ren, P., 2022b. Semi-

supervised thin cloud removal with mutually beneficial guides. 

ISPRS Journal of Photogrammetry and Remote Sensing, 192, 

327-343. 

 

Yang, W., Zheng, J., Cai, J., Rahardja, S., Chen, C.W., 2009. 

Natural and Seamless Image Composition With Color Control. 

IEEE Transactions on Image Processing, 18(11), 2584-2592. 

 

Yu, C., Chen, L., Su, L., Fan, M., Li, S., 2011. Kriging 

interpolation method and its application in retrieval of MODIS 

aerosol optical depth, 2011 19th International Conference on 

Geoinformatics, pp. 1-6. 

 

Yu, X., Pan, J., Chen, S., Wang, M., 2024a. A flexible multi-

temporal orthoimage mosaicking method based on dynamic 

variable patches. Information Fusion, 108, 102350. 

 

Yu, X., Pan, J., Wang, M., Xu, J., 2024b. A curvature-driven 

cloud removal method for remote sensing images. Geo-spatial 

Information Science, 27(4), 1326-1347. 

 

Yu, X., Pan, J., Xu, J., Wang, M., 2024c. Missing information 

reconstruction integrating isophote constraint and color-

structure control for remote sensing data. ISPRS Journal of 

Photogrammetry and Remote Sensing, 208, 261-278. 

 

Zeng, C., Shen, H., Zhang, L., 2013. Recovering missing pixels 

for Landsat ETM+ SLC-off imagery using multi-temporal 

regression analysis and a regularization method. Remote 

Sensing of Environment, 131, 182-194. 

 

Zhang, Q., Yuan, Q., Li, J., Li, Z., Shen, H., Zhang, L., 2020. 

Thick cloud and cloud shadow removal in multitemporal 

imagery using progressively spatio-temporal patch group deep 

learning. ISPRS Journal of Photogrammetry and Remote 

Sensing, 162, 148-160. 

 

Zhang, Y., Guindon, B., Cihlar, J., 2002. An image transform to 

characterize and compensate for spatial variations in thin cloud 

contamination of Landsat images. Remote Sensing of 

Environment, 82(2), 173-187. 

 

Zheng, W.J., Zhao, X.L., Zheng, Y.B., Lin, J., Zhuang, L., 

Huang, T.Z., 2023. Spatial-spectral-temporal connective tensor 

network decomposition for thick cloud removal. ISPRS Journal 

of Photogrammetry and Remote Sensing, 199, 182-194. 

 

Zou, X., Li, K., Xing, J., Tao, P., Cui, Y., 2023. PMAA: A 

Progressive Multi-Scale Attention Autoencoder Model for 

High-Performance Cloud Removal from Multi-Temporal 

Satellite Imagery, ECAI 2023: 26th European Conference On 

Artificial Intelligence, pp. 3165-3172. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-601-2024 | © Author(s) 2024. CC BY 4.0 License.

 
608




