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Abstract 

 

 

The positioning capability of a rover is a critical factor that determines the efficiency of a planetary exploration missions. Most rovers 
primarily rely on visual odometry for trajectory estimation and relative pose determination. However, the distinctive characteristics of 

planetary environment, particularly limited visibility, can significantly compromise the accuracy of positioning. To address the 
limitations of visual localization techniques, this study introduces a novel LiDAR-Inertial SLAM framework integrating satellite 
Digital Elevation Model (DEM) data. A prior map is developed using DEM data through surface fitting after an offline process, 
followed by three online operational subparts: LiDAR odometry for estimate pose, 3D-Monte Carlo Localization (3D-MCL) adjust the 
estimate pose using the prior map, and graph optimization for final pose estimation. Experimental results indicate an average absolute 
trajectory error of approximately 0.6 meters, demonstrating the framework's effectiveness for long-distance navigation.
 
 

1. Introduction 

Rovers play a pivotal role in planetary exploration. To ensure 
effective exploration, precise mapping and real-time positioning 
are critical. Existing positioning methods for rovers primarily 

include image matching (Di et al., 2011), celestial navigation (Ma 
et al., 2015), Very Long Baseline Interferometry (VLBI) 
(Brisken et al., 2002), and dead reckoning (Nister et al., 2004). 
Among these, dead reckoning offers real-time and relatively 
precise pose estimates that meet the demands of effective 
exploration. The rapidly advancing Simultaneous Localization 
and Mapping (SLAM) technology, which evolves from dead 
reckoning, enables the construction of high-precision 
environmental maps while simultaneously obtaining real-time 

pose estimates, thus presenting a novel approach for rover 
positioning and mapping. 
 
However, due to the sparse features and significant lighting 
variations on planetary surfaces, the robustness of existing 
SLAM frameworks is often inadequate (Lambert et al., 2012). 
For instance, in lunar south pole exploration, numerous 
permanently shadowed regions hinder the effectiveness of 

vision-based SLAM frameworks (Carle et al., 2010). LiDAR-
based SLAM frameworks also encounter challenges in these 
areas due to a lack of robust feature points, resulting in error 
accumulation over prolonged operations without conditions for 
loop closure (Lin et al., 2021). Currently, mainstream LiDAR 
SLAM solutions such as LOAM (Zhang et al., 2014), FAST-LIO 
(Xu et al., 2021), and LIO-SAM (Shan et al., 2020) primarily 
utilize relative positioning frameworks. Absolute positioning can 

only be achieved if the rover's initial pose is accurately provided. 
 
Recently, positioning methods that leverage prior information 
(such as High Definition (HD) map or high-precision point cloud 
maps) have been developed. These methods can be categorized 
into feature matching and particle filtering techniques. Feature 
matching involves extracting features from both prior and 
currently acquired information, such as utility poles (Chen et al., 

2021), curbs (Wang et al., 2017), corners of buildings and lane 
markings (Im et al., 2016; Kim et al., 2020). These current featu- 
res are then matched with those from the prior information using 

 
Figure 1. DEM-driven LiDAR-Inertial SLAM. The background 
features a point cloud interpolated from DEM data. The current 
frame point cloud is matched in real-time with the prior map to 
obtain accurate poses and trajectories, enabling the construction 

of a detailed local point cloud map. 
 

registration techniques to calculate global localization 
(Magnusson et al., 2007). Another method, known as particle 
filtering, is a recursive state estimation algorithm based on 
Bayesian filtering, often referred to as Monte Carlo Localization 
(MCL) in the positioning field (Dellaert et al., 1999). This 
technique uses a set of random particles to represent and estimate 
the state distribution of a dynamic system, which is typically 
employed in 2D environments, especially indoors (Hess et al., 
2016). For outdoor environments, sufficient features like lane 

markings, poles, curbs, and walls are required to project onto a 
2D plane to construct a prior raster map for global localization 
(Chalvatzaras et al., 2022; Sefati et al., 2017). While some 
researchers have extended MCL-based methods to 3D, these 
frameworks assume the availability of high-precision point cloud 
data obtained using the same sensors as the prior map. Notable 
frameworks in this domain include HDL-Localization (Koide et 
al., 2019) , where the global positioning algorithm employs 

Normal Distributions Transform (NDT) or Iterative Closest Point 
(ICP) to match the current frame's point cloud with the prior point 
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cloud map in real time. Additionally, NDT-MCL (Saarinen et al., 

2013), initially proposed for precise indoor robot localization, 
constructs an NDT prior map by scanning the indoor 
environment to create a detailed 3D representation, thereby 
matching the current frame's point cloud with the NDT prior map 
for localization in real time. 
 
However, planetary scenes often lack HD maps and high-
precision point cloud maps. Given the weak environmental 

conditions and the scarcity of man-made landmarks, achieving 
real-time positioning and mapping in planetary environments 
necessitates more effective informational resources. Currently, 
many satellites used for planetary exploration have collected vast 
amounts of data. Among these, DEM data derived from laser 
altimetry, although low in resolution, provides wide coverage and 
extensive topographical features that are beneficial for rover 
positioning. Therefore, this paper proposes using DEM data as a 
global constraint for real-time positioning and mapping of rovers. 

Additionally, considering that visual sensors may be limited by 
lighting conditions in certain planetary environments, and with 
deep-space missions increasingly focusing on establishing long-
term planetary bases (Pei et al., 2020), this paper assumes that, 
provided there is sufficient energy from these bases, Light 
Detection and Ranging (LiDAR) will be selected as the primary 
sensor for data collection. The working effect of the proposed 
framework is shown in Figure 1. 

 
The remainder of this paper is organized as follows: The next 
section provides an overview of the proposed framework. Section 
3 describes the application of MCL, the creation of prior maps, 
and the construction of the laser odometry. Section 4 details the 
factor graph construction. Section 5 introduces the dataset, 
experimental process, and results. Finally, Section 6 presents the 
conclusion. 

 
2. System Overview 

In this work, a tailored SLAM framework specifically designed 
for planetary rovers. It integrates 3D-MCL using LiDAR, IMU, 

and DEM data. The pipeline of the proposed framework is 
illustrated in Figure 2.  
 
The overall process is divided into two parts: the offline 
component and the online component. The primary purpose of 
the offline part is to produce a prior map. Although there are no 
HD maps or high-precision point cloud maps available for 
planetary scenes, DEM data can provide essential topographic 
information. Therefore, this paper focuses on generating a prior 

map utilizing DEM data. Rather than simply converting the DEM 
data into a point cloud, we first interpolate the DEM data into a 
point cloud format. Next, voxelization is been performed on the 
interpolated point cloud. Finally, surface fitting is conducted on 
the voxels containing points to generate the prior map. 
 
The online part mainly consists of three subparts. In the first 
subpart, a curvature-based method is used to extract feature 

points of the current LiDAR frame. These points are then 
matched between consecutive frames to derive the rover's 
odometry information, providing a reliable initial estimate of 
rover’s motion continuously. In the second subpart, the MCL 
subscribes point cloud of current frame, the estimate poses from 
odometry, and the prior map with its range. At start-up, the MCL 
generates an initial particle set based on the range and predefined 
bias values in four dimensions (x, y, z, yaw). As rover moves, the 

MCL uses odometry information to update the particle set, with 
the centre of the new particle set indicates the rover's pose 
currently, this phase is called prediction. Following this, the point 

 
Figure 2. Workflow of the proposed framework. Offline part is 

in blue box, while yellow box contains the online part of the 
framework, pink box circles the MCL process. 

 
cloud from the current frame is aligned with the pose of each 
particle and compared against the prior map. This comparison 
assesses the quality of alignment, particles are then weighted 

based on this quality, with those particles with higher weights are 
retained and replicated, while those with lower weights are 
discarded. This update phase is crucial for refining the particle 
set for subsequent prediction. The outputted poses from the MCL 
consistently incorporate adjustments based on the global 
constraint provide by DEM. Finally, the third step integrates the 
results from the previous two subparts, and produce the final pose 
estimation of the rover using graph optimization. Concurrently, a 
local map is constructed using these optimized poses. 

 
3. Monte Carlo Localization 

3.1 Prior Map 

DEM data is typically represented in a geographic coordinate 
system, which must first be projected to an appropriate 
coordinate system for general utilization. Additionally, due to the 
significant storage requirements associated with DEM data 
stored in TIFF format, this paper employs bicubic interpolation 

to derive point clouds from DEM data. This approach reduces 
storage needs while maintaining efficiency in data processing and 
analysis. 
 
Common forms of prior maps include occupancy grid maps and 
NDT maps. An occupancy grid map is a raster map used for 
environmental modelling and representation. The entire mapped 
area is divided into uniform grids, with each cell representing a 

small region of the environment. The value of each cell typically 
indicates occupancy; a value of 0 signifies that the region is 
empty, while a value of 1 indicates that it is completely occupied 
by an obstacle. However, the high resolution of DEM data often 
results in large grid cells, which can lead to reduced precision 
when utilizing occupancy grids. Similarly, NDT-based prior 
maps face limitations due to the insufficient density and low 
resolution of DEM point clouds. It is sensitive to the quality and 

quantity of point clouds, and its effectiveness may be 
compromised when applied to the low-resolution point clouds 
generated by DEM. 
 
To address these challenges, a virtual surface is constructed as a 
prior map based on second-order surface fitting, leveraging the 
characteristics of DEM data. This method aims to provide a more 
accurate and efficient representation for prior mapping purposes, 
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thereby enhancing both storage efficiency and analytical 

capabilities. This paper constructs prior maps using NDT and 
second-order surface fitting for subsequent experimental 
comparisons. 
 
3.1.1 NDT Prior Map. The NDT is a method used for map 
representation and matching, initially introduced by Biber and 
Strasser (Biber et al., 2003) for 2D scan matching and later 
extended to 3D applications. NDT effectively transforms 

measurement data into parameters of a normal distribution, 
allowing for accurate modelling and representation of the 
environment. 
 
The core concept of NDT involves partitioning space into fixed-
size grid cells and employing normal distributions to characterize 
the point cloud data within each cell. The process begins by 
subdividing the space into a regular grid. For each cell containing 

at least three points, the mean vector 𝑞 of the points is calculated 
using the formula (1): 

 

𝑞 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1                                 (1) 

 

where 𝑛 represents the number of points in the grid cell, and 𝑥𝑖 

is the coordinate of the ⅈ-th point. Following this, the covariance 

matrix 𝛴 for the points within the cell is computed using formula 
(2): 
 

𝛴 =
1

𝑛
∑ (𝑥𝑖 − 𝑞)(𝑥𝑖 − 𝑞)𝑇𝑛

𝑖=1
                 (2) 

 
The point cloud data within each grid cell is then represented by 

a normal distribution 𝑁(𝑞, 𝛴), where 𝑞 is the mean vector and 𝛴 

is the covariance matrix. The probability density of any point 𝑥 
within the grid cell is described by the normal distribution as 

shown in formular (3)： 

 

𝑝(𝑥)~𝑒𝑥𝑝(−
1

2
(𝑥 − 𝑞)𝑇𝛴−1(𝑥 − 𝑞))             (3) 

 

In this context, 𝑥 denotes the coordinate of the point, the normal 

distribution 𝑁(𝑞, 𝛴)  characterizes the distribution of points 
within the cell. 
 
3.1.2 Surface Fitting. Given the differences from urban and 
indoor scene point cloud data, the point cloud generated from 
DEM data has a lower resolution and lacks distinct features, with 
only noticeable terrain undulations. Therefore, this paper first 

constructs a voxel grid based on the range of the point cloud and 
counts the number of points within each voxel. A surface fitting 
method is then used to obtain a virtual surface within each voxel. 
In this paper, a second-order surface is used for the construction, 
as described by the following formula (4): 
 

[
𝑥1

1 𝑦1
2 𝑥1𝑦1 

⋮ ⋮ ⋮
𝑥𝑚

2 𝑦𝑚
2 𝑥𝑚𝑦𝑚

    
𝑥1 𝑦1 1
⋮ ⋮ ⋮

𝑥𝑚 𝑦𝑚 1
]

[
 
 
 
 
 
𝑎20

𝑎02

𝑎11

𝑎10

𝑎01

𝑎00]
 
 
 
 
 

=[
𝑓(𝑥1 , 𝑦1)

⋮
𝑓(𝑥𝑚, 𝑦𝑚)

 ]     (4) 

 

The left matrix is an 𝑚 × 6 matrix, where each row corresponds 

to a data point (𝑥𝑖 , 𝑦𝑖) with the elements ⅈ2
𝑥 , ⅈ2

𝑦 , 𝑥𝑖𝑦𝑖 , 𝑥𝑖 , 𝑦𝑖 , and 1. 

The middle column vector contains the coefficients 

𝑎20 , 𝑎02 ,𝑎11 , 𝑎10 , 𝑎01 , and 𝑎00   of the second-order surface 
equation. The right column vector contains the function values 

𝑓(𝑥𝑖 , 𝑦𝑖) at each data point. 
 

Due to the need for solving six parameters in second-order 

surface fitting, at least six points must be located within the same 
unit. The coefficients of the second-order polynomial for units 
meeting these conditions are solved and saved as a prior map. 
Essentially, this process preserves the terrain undulation 
characteristics within each unit cell. 
 
3.2 Monte Carlo Localization in Three-Dimension 

MCL is a probabilistic method used for robot localization in an 
unknown environment. It estimates the robot's position and 
orientation using a set of random samples, known as particles. 
MCL employs recursive Bayesian estimation to iteratively refine 
the distribution of these particles based on sensor data and motion 
commands, thereby estimating the robot's true position. Below is 

a detailed description of the MCL approach and its four main 
phases. 
 
Initialization: At the beginning of the localization process, MCL 
initializes a set of particles, each representing a possible initial 
state of the robot, including its position and orientation (x, y, z, 
yaw). These particles are distributed randomly within the 
environment, typically based on prior knowledge or assumptions 

about the robot's initial location and the uncertainty in its starting 
point. 

 
Prediction: MCL predicts the new state of each particle based on 
the robot's motion model. This involves updating the position and 
orientation of each particle according to the distance and yaw 
angle of the robot's movement, which can be modelled as follows: 
 

𝑝𝑘
𝑋 = 𝑝𝑘−1

𝑋 + ⅆ𝑋 + 𝑤                          (5) 

 

Where 𝑝𝑘
𝑋  represents the state (x, y, z, yaw) of the 𝑝-th particle 

at the 𝑘-th time step, ⅆ𝑋 is the distance and yaw angle inferred 

from the LiDAR odometry, and 𝑤  is Gaussian white noise, 
representing the error in the odometry measurement. Thus, the 

new state of particles can be obtained. 
 

Update: The update phase involves incorporating sensor data to 
refine the estimates of the robot's position. This typically includes 
comparing the sensor readings, such as distances or angles to 
environmental features, with the predicted positions of the 
particles. 
 

𝑡𝑖
𝑤 ∝ 𝑝(𝑧𝑡|𝑡𝑖

𝑋)                              (6) 

 

Where 𝑡𝑖
𝑤 denotes the weight of the ⅈ-th particle, and 𝑝(𝑧𝑡|𝑡𝑖

𝑋) 

represents the likelihood of observing the sensor data 𝑧𝑡  given 

the ⅈ-th particle's position 𝑡𝑖
𝑋. 

The weight update can incorporate a calculation based on the 

distance of particles to a hypothetical surface: For a particle 𝑝𝑖  in 

state (𝑥, 𝑦, 𝑧), the distance to the hypothetical surface can be 
represented as follow: 
 

ⅆ𝑗,𝑖 =
|𝑓(𝑥𝑗 ,𝑦𝑗 ,𝑧𝑗)|

‖𝛻𝑓(𝑥𝑗,𝑦𝑗 ,𝑧𝑗)‖
                            (7) 

 
where 𝛻𝑓(𝑥𝑗, 𝑦𝑗 , 𝑧𝑗) is the normal direction of the surface. The 

weight of the particle can then be calculated as the average 
distance using formular (8) as below: 
 

𝑤𝑖 =
1

𝑁
∑ ⅆ𝑗,𝑖

𝑁

𝑗=1
                            (8) 
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Combining the weight update equation, formular (9) can be 

obtained: 
 

𝑤𝑖 =
1

𝑁
∑

|𝑓(𝑥𝑗,𝑦𝑗 ,𝑧𝑗)|

‖𝛻𝑓(𝑥𝑗,𝑦𝑗 ,𝑧𝑗)‖

𝑁

𝑗=1
                   (9) 

 
Through this equation, the particle weights are effectively 
updated, furthermore, the state of current rover can be obtained 
by formular (10) as follow: 
 

𝑥𝑡 = ∑ 𝑡𝑖
𝑥𝑀

𝑖=1
⋅ 𝑡𝑖

𝑤                             (10) 

 

Where 𝑥𝑡 represents the predicted state of the robot, 𝑡𝑖
𝑥 denotes 

the state of the ⅈ-th particle, 𝑡𝑖
𝑤 is the weight of the ⅈ-th particle, 

and 𝑀 is the total number of particles. 
 
Resampling: Due to the varying weights of particles, some 
particles may become overrepresented while others may be 

underrepresented, leading to a loss of diversity in the sample set. 
To maintain a representative distribution, MCL performs a 
resampling step where a new set of particles is generated based 
on the weights of the current particles. 
 

∑ 𝑡𝑖
𝑤𝑁

𝑖=1
= 1                              (11) 

 
Particles with higher weights are more likely to be selected, 
ensuring that the sample set reflects the current belief about the 
robot's state. 
 
Through these phases, MCL effectively estimates the robot's 
position and orientation. The MCL module in this paper is an 

extension of the AMCL3D framework (catec/amcl3d: Adaptive 
Monte Carlo Localization (AMCL) in 3D. (github.com)), We 
utilize the laser odometry mentioned in LIO-SAM as the motion 
model for the MCL module. For the detailed construction method, 
refer to (Shan et al., 2020). Initially, feature points and plane 
points are extracted based on different point cloud curvatures. 
Feature points are matched using the point-to-line distance 
method, while plane points are matched using the point-to-plane 

distance method, as shown in the following formulas: 
 

ⅆ𝑝𝑜𝑖𝑛𝑡−𝑙𝑖𝑛𝑒 =
|𝐴𝑥+𝐵𝑦+𝐶|

√𝐴2+𝐵2
                      (12) 

 

Where 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 represents the line equation, and (𝑥, 𝑦) 
is the point's coordinates. This metric helps to minimize the 

distance between scanned points and the reference line, 

facilitating robust feature association. On the other hand, the 
point-to-plane distance is given by the formula (13): 
 

ⅆ𝑝𝑜𝑖𝑛𝑡−𝑝𝑙𝑎𝑛𝑒 =
|𝐴𝑥+𝐵𝑦+𝐶𝑧+𝐷|

√𝐴2+𝐵2+𝐶2
                        (13) 

 

Where 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0  represents the plane equation, 

and (𝑥, 𝑦) is the point's coordinates. 
 
Based on the two aforementioned equations, the inter-frame 
matching relationship is derived. By applying iterative 

optimization using the Levenberg-Marquardt (L-M) algorithm, 
the motion transformation for each frame is obtained, which 
serves as the motion model for the prediction phase of MCL. 
 
Considering that long-distance operation of laser-based 
Simultaneous Localization and Mapping (SALM) can result in 
trajectory drift, where the current frame's point cloud has a 
reduced match with the prior map, this paper also includes a 

feature to adaptively update the particle generation range. Once 
a decrease in matching accuracy is detected, the range for 
generating particles in the next frame is updated based on the 
product of the pose transformation and an adaptive coefficient. 
 
Following these steps, by using a laser odometer as the motion 
model and the fit of a second-order surface as the observation 
model, and applying Sequential Importance Resampling (SIR), 

the real-time pose of the rover corrected by DEM data can be 
obtained. 
 

4. Graph Optimization 

Since the laser odometry obtained based on LiDAR point cloud 
frame-to-frame matching only contains relative position 
information and faces trajectory drift issues during long-distance 
movement, while the MCL correction results contain absolute 
position information but are prone to sudden changes, this paper 
fuses the two by constructing a factor graph. Considering the low 
frequency of point cloud frame-to-frame matching, IMU pre-
integration factors are also introduced. The use of each factor is 
as follows: 

 
LiDAR odometry factor: The lidar odometry factor utilizes point-
to-line and point-to-plane matching techniques, as implemented 
in LIO-SAM (Shan et al., 2020). This factor generates constraints 
based on the alignment of laser scan points with geometric featur- 

 
 

Figure 3. The yellow squares represent IMU messages, the blue stars represent LiDAR frames, the pink hexagons represent the MCL 
module, and the cyan squares represent the current state of the rover. 
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es in the environment, such as edges and planes. By minimizing 
the distance between observed points and their corresponding 
model projections, this factor improves the accuracy of relative 
motion estimates. In the factor graph, each lidar measurement 
introduces constraints that refine the trajectory by effectively 
capturing the robot's movement over consecutive frames, 
accounting for uncertainties in the measurements. 
 

MCL factor: It not only provides absolute positional information 
but also corrects the LIO pose. By combining laser measurements 
with particle filtering, MCL can identify the robot's position 
within the environment in real time. This mechanism introduces 
absolute constraints in the factor graph that enhance the stability 
and accuracy of pose estimation, especially in complex 
environments. 
 
IMU pre-integration factor: The IMU pre-integration factor 

leverages inertial measurements to build a dynamic model of 
motion between keyframes. By integrating angular velocity and 
linear acceleration over specific time intervals, this factor 
provides robust motion estimates, which are especially valuable 
during periods with poor visual observation. The integration is 
performed using a formulated state transition model, resulting in 
a compact representation that is incorporated into the factor graph. 
This ensures continuity in state estimation, thus aiding in 

reducing drift. 
 
In summary, these factors are integrated into the factor graph to 
optimize the overall state estimation process, the overall factor 
graph is illustrating in Figure 3. 
 

5. Experiment 

5.1 Dataset 

The ARCHES Mount Etna Dataset (AMEDS) was collected 
during a test campaign conducted on the slopes of Mount Etna in 
the summer of 2022 by ESA’s Human Robotic Interaction lab 

(HRI) (Suter et al., 2023)，The experimental setup is shown in 

the figure 4. The data acquisition involved the HRI’s Interact 
rover, equipped with advanced navigation's spatial dual inertial 
navigation system (GNSS/INS), which combines a real-time 
kinematic compatible GNSS receiver and an IMU for high-
precision pose measurement, a schematic diagram of the rover is 
shown in the Figure 4. Additionally, a velodyne VLP-32C 
LiDAR is mounted on the rover to acquire a large field-of-view 

data. The rover was tasked with performing nine traverses and 

two rock picking experiments, aimed at generating a robotic 
dataset representative of a lunar analogue environment. The 
experiments of the proposed framework and the subsequent 
analyses are based on this dataset. A bird's-eye view of the overall 
experiment area and the DEM data are illustrated in Figure 5. 
 

 

Figure 4. Environments and patrol devices employed in the 

dataset used in the experiment. 

 
Figure 5. Overview of the experimental area from a bird's eye 

perspective and utilization of DEM Data in the proposed 
framework. 

 

5.2 Results 

Due to data loss encountered during each individual experiment 
in the AMEDS data collection, some of the ground truth data is 
inaccurate. Consequently, experiments were conducted using 

traverse4 and traverse6 to verify the absolute positioning 
capability of the proposed framework. We designated a 20m × 
20m area as the starting region without providing an accurate 
initial pose. The operational process of the framework is 
illustrated in Figure 6.  
 
It is evident that even without an accurate position and orientation, 
the proposed framework successfully achieves real-time absolute 

positioning and mapping. To further validate the real-time absol- 
 

 
Figure 6. The operating process of the framework proposed in this paper. (a) the initial range of particles is about 400 m2. (b)(c)(d) 
the particles have successfully gathered at the correct position due to the matching. (e)(f) the trajectory got a deviated direction and 
absolute position. (g)(h) As the MCL factor continuously checks the poses, the trajectory and moving direction can be accurately 

adjusted based on the MCL factor while ensuring the success of the localization task.
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ute positioning capability of the proposed framework, we 

compared it with the open-source frameworks HDL-Localization, 
LeGO-LOAM (Shan et al., 2018), and LIO-SAM. 
 
Due to the relatively flat terrain and the absence of significant 
obstacles, LeGO-LOAM failed to generate maps in tests 
conducted on traverse4 and traverse6. Additionally, the 
resolution of the DEM point cloud was too low for the HDL-
Localization framework, resulting in localization failure as well. 

Therefore, we focused our comparison on LIO-SAM and the 
proposed framework. The red line in the Figure 7 represents the 
relative positioning results from LIO-SAM, while the green line 
illustrates the real-time absolute positioning results based on the 
proposed framework within a 400 square meter area. 
 

 
 
Figure 7. Comparison of trajectories between LIO-SAM and the 
proposed framework. (a) Comparison experiment on traverse4. 
(b) Comparison experiment on traverse6. The trajectories from 

both experiments were aligned using the EVO tool for 
comparison. The actual trajectory obtained by LIO-SAM 

deviates from the ground truth, whereas the proposed 
framework more accurately captures the rover's true absolute 

position. 
 
Observing the ATE distribution of the positioning and mapping 
trajectory from the proposed framework (see Figure 8), it is 
evident that the localization error is primarily concentrated 
during the initial stage. Due to only providing a rough range (400 
square meters), the ATE is relatively large at the beginning.  

However, as the rover continues to move, the localization error 
gradually decreases and stabilizes, as shown in the Figure 8. 
Qualitative comparison results of several frameworks are 
presented in the Table 1 and Table 2. 
 
Considering the characteristics of NDT and second-order surface 
fitting, it is evident that voxel size significantly impacts the 
overall performance of the framework. Second-order surface 

fitting requires the estimation of six parameters, necessitating at 
least six points. If higher-order surface fitting is employed, even 
more points are needed. In this study, the DEM data used in the  

 
Table 1. Trajectory comparison results of traverse4, where “--” 

means, the framework is failed using the DEM prior map. 
 

 
Table 2. Trajectory comparison results of traverse6, where “--” 

means, the framework is failed using the DEM prior map. 
 

 
 

Figure 8. The Absolute Trajectory Error (ATE) varies over 
time. It can be observed that the periods with larger ATE are 
primarily at the initial stages, and as the rover continues to 

move, the ATE gradually stabilizes. 
 
experimental dataset has a resolution of 1 meter, and the sampled 
point cloud also has a 1-meter resolution, which sets a voxel size 
of 3 meters as the baseline for the experiments. To investigate the 
effect of voxel size on the experimental results, tests were 
conducted using voxel sizes of 3, 5, 7, and 9 meters. 
 

 
Table 3. Results comparison with different voxel size. 

 
The results are presented in Table 3, which compares the 
performance across different voxel sizes. As shown in the table, 
the 3-meter voxel size exhibits relatively lower accuracy 

compared to larger voxel sizes, primarily due to the decreased 
number of points it contains. Hence, selecting an appropriate 
voxel size is crucial for optimizing accuracy in the framework. 
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6. Conclusions 

This paper addresses the current needs of rovers in deep space 
exploration missions by conducting preliminary research on 
synchronous real-time absolute positioning and mapping based 
on LiDAR technologies. Given the limitations of existing 

positioning methods, which are characterized by inadequate real-
time responsiveness and trajectory drift issues in SLAM 
frameworks over long distances, a novel approach is proposed 
that integrates DEM data for real-time localization based on 3D-
MCL. Experimental results demonstrate that, even within a 400 
m² area, the proposed framework achieves relatively accurate 
absolute localization, with an average Absolute Trajectory Error 
(ATE) of approximately 0.6 meters. This research offers 
significant insights into real-time absolute positioning for rover 

operations. 
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