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Abstract

The cities within the Itajaí River Basin in Brazil have been experiencing continuous flooding in recent years, causing significant 
material damage to the population and public services. This study aims to present land use and classification techniques based on 
image analysis obtained from the CBERS-4A satellite, using the WFI sensor. The image was cropped to include only the Itajaí River 
basin. Four classification methods were employed: Maximum Likelihood (Maxver), Minimum Distance, Spectral Angle, and 
Random Forest. Classified maps were generated for each algorithm, and the results of each land cover class area were analyzed. 
Validation was performed using sample areas of each class in the original image, presenting the area of each class obtained by each 
algorithm and the confidence level for each.

1. Introduction

The  cities  within  the  Itajaí  River  Basin,  Brazil,  have  been 
experiencing  continuous  flooding  in  recent  years.  As  a 
consequence of this  process,  in 2023,  the city of  Rio do Sul 
faced  seven  major  floods  (Bertoli,  2023),  causing  material 
damage to the population and public services.

The dynamics of surface water flow are directly influenced by 
land  use  and  occupation  (FERREIRA,  2017).  Thus, 
mathematical models for river flow depend on knowledge of the 
area and type of  land cover  in  the hydrographic  basin under 
study.  Remote  sensing  emerges  as  a  crucial  tool  for  this 
research, as image processing allows for precise classification.

This  study  will  present  techniques  for  land  use  and 
classification  based  on  image  analysis  obtained  from  the 
CBERS-4A satellite, using the WFI sensor. The image will be 
cropped  to  include  only  the  Itajaí  River  basin.  Four 
classification  methods  will  be  employed:  Maxver,  Minimum 
Distance, Spectral Angle, and Random Forest. Maps containing 
the classified classes will be generated, and the results of each 
land cover class area will  be analyzed. Finally,  maps will  be 
generated for the sub-basins of the Itajaí River to identify which 
has the lowest vegetation index based on the data obtained.

2. Study Area

Located  within  the  coordinates  of  26°  27'  to  27°  53'  south 
latitude and 48° 38' to 50° 29' west longitude, the study area 
(figure  1) is demarcated by the physiographic features of the 
Serra Geral and Serra dos Espigões to the west, the Serras da 
Boa Vista, Faxinais, and Tijucas to the south, and the Serras da 
Moema  and  Jaraguá  to  the  north,  with  the  Atlantic  Ocean 
bordering the east.

Encompassing an approximate area of 15,000 km², constituting 
16.15% of Santa Catarina's State territory and 0.6% of Brazil's 
landmass, this region stands as the largest hydrographic system 
along the Atlantic slope in Santa Catarina. The Itajaí-Açu River 
extends for about 200 km from its primary source to its estuary, 
presenting  a  drainage  density  of  1.61  km/km².  Its  mean 
discharge  is  recorded  at  205.0  m³/s,  with  minimum  and 
maximum flow rates of 50.0 m³/s and 1,120 m³/s, respectively 
(Schettini, 2002).

The trajectory of the Itajaí-Açu River can be segmented into 
three discernible sections. The Upper Itajaí-Açu, marked by the 
confluence  of  the  Itajaí  do  Sul  and  Itajaí  do  Oeste  Rivers, 
exhibits a sinuous, gently sloping course spanning roughly 26 
km. This micro-region features an Atlantic slope hydrological 
network,  with  the  Itajaí-Açu  serving  as  the  primary  river, 
supplemented by the Itajaí-Mirim, Benedito,  and dos Cedros. 
The  urban  expanse  of  Blumenau  is  notably  influenced  by 
tributaries such as Garcia,  da Velha, Itoupava, Fortaleza, and 
Testo (SEPLAN/Florianópolis-SC).

Over the span of 150 years, the region has witnessed 67 floods, 
leading  to  substantial  losses  in  crops,  livestock,  residential 
structures,  and  industrial  assets.  This  historical  pattern  has 
prompted a deep reflection on the intricate interplay between 
human activity and natural phenomena, evolving from an initial 
reactive stance to the recognition of the imperative for proactive 
measures that foster a balanced coexistence with the Itajaí-Açu 
River.

The Itajaí  River Basin is characterized by a diverse land use 
pattern. The Upper Itajaí Valley is notable for its agricultural 
activities,  including  the  cultivation  of  onions  and  tobacco, 
which  are  significant  crops  in  the  region.  Small  towns 
predominate  throughout  the  basin,  providing  a  rural  charm 
while supporting agricultural economies. Additionally, forestry 
operations are widespread across the basin, contributing to both 

Figure 1. Location of the Itajaí River Basin and the area covered 
by an image from the CBERS-4A WFI sensor.
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local economies and the regional landscape. The Itajaí National 
Park, a forest reserve within the basin, plays a crucial role in 
preserving the native Atlantic Forest and maintaining ecological 
balance.

Given  the  importance  of  the  Itajaí  River  Basin's  land  use 
dynamics, remote sensing emerges as a vital tool for monitoring 
land  use  and  occupation.  Satellite  imagery  allows  for  the 
continuous  observation  of  land  cover  changes,  which  is 
essential for understanding the interplay between land use and 
water flow dynamics. This capability is particularly crucial for 
regions like the Itajaí River Basin, where the balance between 
urbanization,  agriculture,  and  conservation  is  delicate  and 
directly impacts the hydrological behavior of the river system. 
The use  of  remote  sensing in  land cover  classification helps 
inform  better  management  practices  and  policy  decisions, 
ultimately  contributing  to  the  sustainable  development  and 
resilience of the basin.

3. Data and Preprocessing

The  satellite  image  was  obtained  from  the  website  of  the 
Brazilian  National  Institute  for  Space  Research  (Instituto 
Nacional  de  Pesquisas  Espaciais,  n.d.) through  their  image 
catalog portal. The selected sensor was the Wide Field Imager 
(WFI) of the CBERS-4A satellite, which has the capability to 
cover  the  entire  study  area  in  a  single  image.  The  CBERS 
(China-Brazil  Earth  Resources  Satellite)  program  is  a 
cooperative  effort  between  China  and  Brazil,  aimed  at 
developing  and  operating  remote  sensing  satellites  for  Earth 
observation. The CBERS-4A, launched in December 2019, is 
equipped  with  several  sensors,  including  the  WFI,  which  is 
designed to capture large-scale images with a spatial resolution 
of 64 meters and a swath width of 866 kilometers. The WFI 
sensor includes four spectral bands: blue (0.45 - 0.52 µm), green 
(0.52 - 0.59 µm), red (0.63 - 0.69 µm), and near-infrared (0.77 - 
0.89 µm).

The image selected for this study is dated November 5, 2023, 
with a cloud cover percentage of 20%. According to the image 
preview  available  on  the  INPE  website,  the  clouds  were 
primarily located over the ocean, ensuring minimal interference 
with the study area. The choice of this image date and quality 
was critical to ensure that the analysis could be performed with 
the highest possible accuracy.

For image processing, QGIS 3.28 software was used, along with 
the  "Semi-Automatic  Classification  Plugin"  (Congedo,  2021) 
and the "Orfeo Toolbox"  (Grizonnet et al., 2017). These tools 
facilitated  the  supervised  classification  process.  A  spectral 
signature training shapefile was created to define the land cover 
classes: urban area, water, dense vegetation, low vegetation, and 
exposed soil. This shapefile is essential for all the classification 
methods employed in this study.

3.1 Definition of Classes

Supervised  classification  is  a  common  method  in  remote 
sensing where the user defines training areas for each land cover 
class. These areas are used to "train" the classification algorithm 
to recognize the spectral signatures associated with each class. 
A shapefile  containing polygons of  sample areas  for  spectral 
signatures  was  created,  divided into  five  classes:  urban area, 
water, dense vegetation, low vegetation, and exposed soil. For 
the urban area, the center of São José city was selected due to its 
highly dense region. Dense vegetation areas were chosen within 
the  Tabuleiro  Reserve  Park  and  the  Itajaí  National  Reserve 

Park.  Low vegetation  areas  were  selected  from pastures  and 
horticultural  crops.  Exposed  soil  included  coastal  dune  areas 
and plowed land. Water samples were selected from maritime 
parts and dam lakes. 

3.2 Classification Algorithms

The  classification  of  land  cover  was  performed  using  four 
distinct  algorithms:  Spectral  Angle,  Maximum  Likelihood 
(Maxver),  Minimum  Distance,  and  Random  Forest.  These 
methods were chosen for their varied approaches to handling 
spectral  data,  offering  a  comprehensive  evaluation  of 
classification  techniques  suitable  for  remote  sensing 
applications.

Spectral  Angle  Mapper  classification  considers  the  angular 
geometry between the spectral vectors of image pixels and the 
spectral  signature vectors of training classes.  It  calculates the 
angle between these vectors, with the assigned class being the 
one  with  the  smallest  angle,  indicating  the  greatest  spectral 
similarity. This method is particularly effective in reducing the 
impact of illumination differences (Rashmi et al., 2014).

Maximum Likelihood Classification, or Maxver, is a statistical 
approach that assigns a class to each pixel by maximizing the 
statistical  likelihood  based  on  training  data.  This  method 
assumes  that  the  statistics  for  each  class  in  each  band  are 
normally distributed and calculates  the probability  of  a  pixel 
belonging  to  each  class  (Richards,  2022).  The  pixel  is  then 
assigned to the class with the highest probability.

Minimum Distance classification relies on the spectral distance 
between image pixels and predefined training pixels for each 
class. It assigns each pixel to the class with the shortest spectral 
distance  to  the  class’s  spectral  signatures.  This  method  is 
straightforward  and  computationally  efficient,  making  it 
suitable for large datasets (Kruse et al., 1993).

Random Forest is an ensemble learning method that operates by 
constructing  multiple  decision  trees  during  training  and 
outputting  the  mode  of  the  classes  (classification)  or  mean 
prediction (regression) of the individual trees. It is known for its 
robustness  and  accuracy,  particularly  in  handling  high-
dimensional  data  and  various  types  of  variables  (Breiman, 
2020).  This  method  is  effective  in  dealing  with  complex 
interactions and variability in the dataset.

After  generating  the  raster  files  with  classified  land  cover 
classes  for  the  entire  satellite  image,  a  subset  of  the  image 
focusing exclusively on the Itajaí River Basin was created. This 
subset was created using a shapefile of the Itajaí River Basin, 
obtained from the Agricultural  Research and Rural Extension 
Company of Santa Catarina (EPAGRI, n.d.)) map library portal. 
The raster calculator in QGIS was then employed to determine 
the area of each land cover class within the basin. This approach 
ensured  that  the  analysis  was  specific  to  the  study  area, 
providing accurate and relevant land cover data for the Itajaí 
River Basin.

3.3 Validation of Results

After  the  classification  process,  it  is  essential  to  assess  the 
accuracy of land cover classification to identify and measure 
map  errors.  Accuracy  assessment  is  performed  with  the 
calculation of an error matrix, which is a table that compares 
map information with reference data for a number of sample 
areas  (Congalton,  2001).  The  error  matrix  compares  the 
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identified land cover classes with known reference classes. The 
items in the major diagonal are the number of samples correctly 
identified, while the other items represent classification errors.

The overall accuracy (OA) is calculated as the ratio between the 
number of correctly classified samples (the sum of the major 
diagonal) and the total number of sample units. The producer’s 
accuracy (PA) for each class is calculated as the ratio between 
correct samples and the column total, while the user’s accuracy 
(UA) is  the ratio between correct  samples and the row total.

An area-based error matrix is  recommended  (Olofsson et  al., 
2014),  where  each  element  represents  the  estimated  area 
proportion of each class. This allows for estimating the unbiased 
user’s  accuracy  (UAA)  and  producer’s  accuracy  (PAA),  the 
unbiased area (UA) of classes according to reference data, and 
the standard error (SE) of area estimates.

The formula for the overall accuracy (OA) is: 

OA=∑ aii
n

 (1)

where ∑ aii = is the sum of the diagonal elements      

(correctly classified samples) 
n = the total number of samples.

The formula for the user’s accuracy (UA) for each class is:

UA=
aii

∑ aij
(2)

where aii = is the number of correctly classified 

samples for a particular class  

∑ aij =  the total number of samples classified as  

that class.

The formula for the producer’s accuracy (PA) for each class is:

PA=
aii

∑ a ji
(3)

where aii = is the number of correctly classified 

samples for a particular class  

∑ a ji = the total number of samples that actually  

belong to that class.

The  area-based  error  matrix  provides  a  more  comprehensive 
assessment  of  classification accuracy by incorporating spatial 
information,  ensuring  a  more  accurate  representation  of  land 
cover distribution. This method is particularly useful in large-
scale studies where spatial accuracy is critical.

To compare the four classification algorithms it is important to 
note  that  the  spectral  signatures  used  for  classification  are 
consistent across all methods. This consistency allows for a fair 
comparison of the algorithms' performance. By using the same 
spectral  signatures,  any  differences  in  classification  accuracy 
can be attributed to the inherent strengths and weaknesses of 
each  algorithm rather  than  variations  in  the  input  data.  This 
approach ensures that the comparison focuses on the algorithms' 
ability  to  accurately  classify  land  cover  types,  providing 

valuable insights into their relative effectiveness for the study 
area.

4. Results

4.1 Classified Images

Classified images for each algorithm were generated to visually 
represent the distribution of land cover types in the Itajaí River 
Basin.  These images illustrate  significant  differences in  class 
delineation, highlighting the strengths and weaknesses of each 
classification method.

Figure 2. Resulting Image from Spectral Angle Mapping 
Classification

Figure 3. Minimum Distance Classification Resulting Image

Figure 4. Maxver Classification Resulting Image
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4.2 Area Estimation

The results of satellite image classification for land cover in the 
Itajaí River Basin are detailed in Table  1, which presents the 
area values for  each land cover class obtained from the four 
different classifiers in square kilometers. 

Classifier Urban 
Area

Water Dense 
Veg.

Low 
Veg.

E. 
Soil

Spectral 
Angle

252 129 9759 3568 1219

Maximum 
Likelihood

1406 88 7966 3913 1557

Minimum 
Distance

196 143 7461 5914 1216

Random 
Forest

628 77 8528 4069 1624

Mean 621 109 8428 4366 1403

Standard 
Deviation

557 29 1076 1000 178

Table 1. Area of Land Cover Classes (in square kilometers) for 
Each Classification Algorithm

4.3 Classification Accuracy

The classification accuracy analysis is essential for evaluating 
the effectiveness of the applied algorithms. Table 2 presents the 
overall accuracy (OA) for each algorithm. Tables 3 to 6 provide 
the area-based error matrices for each algorithm. These tables 
detail the producer's accuracy (PA) and user's accuracy (UA) for 
each land cover class, offering a comprehensive understanding 
of each algorithm's performance.

Classification Algorithm
Overall Accuracy (OA) 

(%)

Random Forest 97.08

Minimum Distance 95.26

Maximum Likelihood (Maxver) 97.24

Spectral Angle 94.29

Table 2. Overall accuracy of each Classification algorithm

Class 1 2 3 4 5
Area 
(km²)

1 0.076 0.000 0 0.018 0.002 1355

2 0 0.029 0 0 0 405

3 0 0 0.676 0 0 9537

4 0 0 0 0.164 0 2317

5 0 0.009 0 0 0.026 496

Total 0.076 0.038 0.676 0.182 0.028 14054

Estimated 
area (km²)

1071 538 9537 2571 393 14054

SE (km²) 26 17 0 25 19

PA (%) 100 75 100 90 94

UA (%) 79 100 100 100 74

Table 3. Area-Based Error Matrix - Random Forest

Class 1 2 3 4 5
Area 
(km²)

1 0.015 0 0 0 0.006 293

2 0.000 0.040 0 0 0 565

3 0 0 0.676 0.030 0 9921

4 0.000 0 0.001 0.151 0.008 2260

5 0.012 0 0 0 0.061 1013

Total 0.027 0.040 0.677 0.181 0.075 14054

Estimated 
area (km²)

384 559 9515 2544 1049 14054

SE (km²) 25 4 35 40 31

PA (%) 55 100 100 84 81

UA (%) 72 99 95 94 84

Table 4. Area-Based Error Matrix - Spectral Angle

5. Discussion

The results from the land cover classification in the Itajaí River 
Basin reveal significant differences in the performance of the 
four algorithms: Random Forest, Minimum Distance, Maximum 
Likelihood  (Maxver),  and  Spectral  Angle.  Each  algorithm's 
ability  to  accurately  classify  the  different  land  cover  types 
varies,  impacting  the  precision  and  reliability  of  the 
classification results.

The Random Forest algorithm demonstrated the highest overall 
accuracy (97.08%), indicating its robustness and effectiveness 
in  handling  complex  datasets  and  variable  interactions.  This 
performance  can  be  attributed  to  the  ensemble  approach  of 
Random  Forest,  which  combines  multiple  decision  trees  to 
improve  classification  accuracy.  The  algorithm  effectively 
classified  dense  vegetation,  low vegetation,  and  urban  areas, 
making  it  suitable  for  detailed  land  cover  studies  in  diverse 
regions like the Itajaí River Basin.

Figure 5. Random Forest Classification Resulting Image
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Class 1 2 3 4 5
Area 
(km²)

1 0.015 0 0 0 0.005 287

2 0.001 0.040 0 0 0 568

3 0 0 0.652 0.001 0.003 9213

4 0.000 0 0.026 0.180 0 2892

5 0.011 0 0 0.000 0.066 1092

Total 0.027 0.040 0.677 0.181 0.075 14054

Estimated 
area (km²)

384 559 9515 2544 1049 14054

SE (km²) 24 5 34 32 27

PA (%) 56 100 96 99 88

UA (%) 74 98 99 87 85

Table 5. Area-Based Error Matrix - Minimum Distance

The Maximum Likelihood algorithm also showed high accuracy 
(97.24%), performing well in classifying dense vegetation and 
urban  areas.  Its  statistical  approach,  which  maximizes  the 
likelihood of a pixel belonging to a particular class based on 
training  data,  is  particularly  effective  in  areas  with  distinct 
spectral signatures. However, it may be less effective in regions 
with  mixed  land  cover  types  or  where  spectral  signatures 
overlap.

Class 1 2 3 4 5
Area 
(km²)

1 0.026 0 0 0 0.0198 644

2 0 0.040 0 0 0.0011 574

3 0 0 0.676 0 0 9506

4 0 0 0 0.176 0 2484

5 0.002 0 0 0.004 0.054 844

Total 0.027 0.040 0.677 0.181 0.075 14054

Estimated 
area (km²)

384 560 9516 2545 1050 14054

SE (km²) 23 7 5 14 28

PA (%) 94 100 100 98 72

UA (%) 56 97 100 100 90

Table  6.  Area-Based  Error  Matrix  -  Maximum  Likelihood

The Minimum Distance algorithm achieved an overall accuracy 
of 95.26%. This method, which classifies pixels based on the 
shortest spectral distance to class centroids, is straightforward 
and computationally efficient.  While it  performed adequately, 
its reliance on spectral distance can lead to misclassification in 
areas with similar spectral properties across different land cover 
types.

The Spectral Angle algorithm had the lowest overall accuracy 
(94.29%).  Although  this  method  is  effective  in  reducing  the 
impact of illumination differences by considering the angular 
similarity  between  reflectance  vectors,  it  may  struggle  with 
subtle spectral variations within the same land cover class. This 
limitation  is  reflected  in  its  lower  accuracy  compared  to  the 
other algorithms.

The  choice  of  algorithm  significantly  influences  the 
classification results, which in turn impacts decision-making in 
environmental management and urban planning. For instance, 

the high accuracy of the Random Forest algorithm makes it a 
preferred choice for detailed and precise land cover mapping, 
essential for flood management and urban development in the 
Itajaí River Basin. Conversely, the faster and simpler Minimum 
Distance algorithm may be suitable for preliminary assessments 
or regions with less complex land cover dynamics.

6. Conclusion

This study demonstrated the effectiveness of using CBERS-4A 
satellite images and machine learning algorithms for land cover 
classification in the Itajaí River Basin. The Random Forest and 
Maximum Likelihood algorithms showed the highest accuracy, 
making  them  suitable  for  detailed  environmental  and  urban 
planning applications. The varied performance of the algorithms 
highlights the importance of selecting the appropriate method 
based on the specific requirements of the study.

The  results  provide  a  clear  understanding  of  the  land  use 
dynamics  in  the  Itajaí  River  Basin,  contributing  to  better 
environmental  management  and  policy-making.  The  high 
accuracy  of  the  classification  methods,  particularly  Random 
Forest, underscores the potential of advanced machine learning 
techniques in remote sensing applications.

Future  research  should  focus  on  integrating  additional  data 
sources and exploring hybrid classification methods to further 
improve accuracy and reliability. The continuous monitoring of 
land cover changes using advanced remote sensing technologies 
will  be  crucial  in  addressing  environmental  challenges  and 
supporting sustainable development in the Itajaí River Basin.
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