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Abstract 

 

The study investigates the distribution and seasonal dynamics of phytoplankton communities in Northeast Brazil using ocean color 

data obtained through satellite remote sensing (RS). This unprecedented approach for the region assesses the biomass and composition 

of phytoplankton, which is crucial for understanding the responses of the marine ecosystem to environmental changes and impacts on 

biogeochemical cycles. The research uses in situ data from oceanographic campaigns (MARSEAL, ABRACOS and SWOT) and 

satellite data from sources such as OC-CCI (multi-mission), GlobColour (multi-mission) and Sentinel-3 OLCI (single sensor). These 

datasets allow for the analysis of chlorophyll-a (chl a), phytoplankton functional types (PFTs) and phytoplankton size classes (PSCs), 

with a focus on in situ sampling periods. For chl a, the correlation observed between the in situ data from the campaigns and the OC-

CCI satellite data was explained by some statistical descriptors with the coefficient of determination (R²) explaining approximately 

34% of the variation in the in situ samples, with a root mean square deviation (RMSD) of around 0.2926 and mean absolute percentage 

deviation (MAPD) and mean bias error (MBE) values of -18.7361% and -2.3454%, respectively. As for the in situ data for the accessory 

pigment 19'Hexfucoxanthin (19HF) from the ABRACOS campaigns, which was correlated with the satellite data from the model by 

El Hourany et al. (2019), the R², RMSD, MAPD and MBE were 58%, 0.1815, -4.528% and 0.5411%, respectively. 

 

 

 

1. Introduction 

Phytoplankton is responsible for about 50% of global primary 

production (Field, 1998; Häder & Gao, 2015; Carvalho et al., 

2017), a process by which nutrients are assimilated and inorganic 

carbon is converted into organic carbon (Kemp et al., 1997), 

removing between 5-12 Gt C y-1 of carbon from the atmosphere 

and making it available to consumers such as zooplankton 

(Ducklow & Doney, 2013; Karlusich et al., 2020). Furthermore, 

this planktonic compartment is central to several biogeochemical 

cycles such as those of nitrogen and phosphorus (Naselli-Flores 

& Padisak, 2023). As a result, phytoplankton organisms play a 

fundamental role in the functioning of marine ecosystems (Abreu 

et al., 2010). Various biological, environmental, and 

anthropogenic factors influence the phytoplankton community 

structure. These factors include rainfall, tide level changes, 

fluctuations in herbivory rates, and competition among species 

(Parizzi, 2014). Among nthropogenic factors include the release 

of untreated domestic and industrial sewage into water bodies, 

which, in addition to other problems with the water body's 

bathing water, has a direct impact on phytoplankton organisms, 

as this discharge raises the levels of nutrients that previously did 

not exist and can encourage eutrophication events and even an 

increase in harmful algae (Pan & Rao, 1997). 

 

To assess the impacts of biological, environmental, and 

anthropogenic factors on the community, we can evaluate 

phytoplankton biomass, which can be estimated using 

chlorophyll a (chl a), a pigment common to most phytoplankton 

organisms except for the cyanobacteria genus Prochlorococcus, 

which predominantly uses divinyl chl a as its photosynthetic 

pigment (Gonzalez-Rodriguez et al., 2017). Estimating biomass 

in a region (using chl a as a proxy) allows us to evaluate the 

availability of organic matter for subsequent trophic levels 

(Passavante and Feitosa, 1989), as well as measure biological 

production, facilitating the rational use of ecosystems and the 

development of remediation strategies when necessary (Fonseca 

et al., 2002). 

 

The study of the spatiotemporal dynamics of phytoplankton 

biomass represents an essential first step in understanding this 

community. However, it is also fundamental to understand its 

taxonomic diversity and other functional factors such as size 

classes (Alvain et al., 2008; Bricaud et al., 2012). While other 

understandings regarding biomass require elucidation, the study 

of phytoplankton biomass provides crucial information for 

understanding the structure and functioning of ecosystems. It is 

also relevant for assessing the impact of climate modulation on 

marine biodiversity (Henson et al., 2021) and its effects on 

oceanic biogeochemical cycles (Falkowski et al., 2003). 

Over the years, studies of phytoplankton organisms have evolved 

significantly. Approaches range from plankton net tows for 

visualization and identification under a microscope, which 

remain the most common and accessible methods, to the use of 

more modern and specific techniques such as high-performance 

liquid chromatography (HPLC) and flow cytometry. These 

methods define organisms based on autofluorescence and light 

scattering properties, alongside molecular methods used to 

elucidate phylogenetic relationships (IOCCG, 2014). 

Microscopy has the advantage of requiring low investment 

compared to other methods, but it is limited due to the lack of 

experts in phytoplankton taxonomy. The HPLC technique is 

automatic and precise, but it lacks in situ tools and is very 

expensive. Flow cytometry has available in situ tools, but the 

instruments are expensive and delicate and require a specialized 

user. As for molecular methods, taxa can be selected with a high 

degree of specificity, but the development of methods and tests 

are time-consuming and exceedingly expensive (IOCCG, 2014). 
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With a different approach to studying phytoplankton, satellite 

ocean color observation is a unique tool for analyzing 

phytoplankton dynamics across a wide range of scales, both 

spatial (from a few kilometers to global patterns) and temporal 

(daily, seasonal, and annual variations). Since the late 1970s, 

sensors coupled with satellites have been developed to observe 

ocean color and from that infer conclusions about the optical 

properties of the water and the phytoplankton community. In this 

sense, the Coastal Zone Color Scanner (CZCS) aboard the 

Nimbus-7 satellite was the first satellite ocean color sensor, being 

operational from 1979-1986 and allowing the estimation of 

phytoplankton pigment concentrations in the global ocean, which 

was essential for understanding phytoplankton biomass patterns 

and inevitably served to improve sensors developed later 

(Blondeau-Patissier et al., 2014; Oziel et al., 2022). 

 

Phytoplankton biomass is the main parameter estimated from 

ocean color observation by remote sensing (O'Reilly et al., 2019); 

however, numerous efforts have been made in recent decades to 

go beyond this information (IOCCG, 2014), developing methods 

to represent the structure of the phytoplankton community 

through the description of phytoplankton functional types 

(PFTs), conceptual groupings of phytoplankton species that have 

a common ecological functionality, for example, size classes 

(PSCs), pico-, nano-, and microphytoplankton (Mouw et al., 

2017; IOCCG, 2014), or accessory pigment composition, such as 

fucoxanthin (fuco) and peridinin (Peri) (El Hourany et al., 2019). 

Such information derives from ocean color observation due to a 

variety of direct and indirect effects of phytoplankton 

composition on marine optical properties such as absorption and 

scattering properties, marine reflectance (IOCCG, 2014). 

Performance evaluation of different algorithms derived from 

ocean color observation is highly important as regional 

influences directly affect algorithm performance (Seegers et al., 

2018). So far, no assessment of the performance of methods used 

to estimate phytoplankton diversity from space has been 

conducted in northeastern Brazil (NE). This study will represent 

a necessary first step to evaluate the relevance of existing 

methods and select the most suitable products to provide a first 

description of phytoplankton diversity on a regional scale. 

Furthermore, this proposal is important to establish a new 

research field in Pernambuco and NE, contributing to the 

development of new disciplines and filling scientific, 

technological, and methodological gaps. 

 

 

 

2. Materials and Methods 

 

2.1 Study Area Characterization 

The study used in situ data collected in the coastal and oceanic 

region of NE comprising the states of Rio Grande do Norte, 

Paraíba, Pernambuco, Alagoas, Sergipe and Bahia. The area 

features a narrow continental shelf, up to 40 km wide, with depths 

ranging from 40 to 80 m, and a continental slope ranging between 

1,600 and 3,600 m. Further offshore, the geomorphology 

includes a chain of seamounts with heights ranging from 20 to 

250 m, the Fernando de Noronha Ridge, which encompasses the 

Rocas Atoll and the Fernando de Noronha Archipelago (Figure 

1). 

 

In the basin of the states of Sergipe (SE) and Alagoas (AL) within 

the Environmental Characterization Project of the Sergipe and 

Alagoas Basins (MARSEAL), this area continental shelf varies 

in width, with a range of 20 km in the southern part of SE and 38 

km in AL (Moreira et al., 2019). In the region, we can find the 

third largest drainage basin in Brazil, the São Francisco River 

basin, with a net flow of 1758 m³/s (Marques et al., 2002; 

Medeiros, 2003). The area is highly oligotrophic due to the 

influence of the South Equatorial Current, which transports warm 

and nutrient-poor waters (Ekau and Knoppers, 1999).  

 

In the Acoustics along the BRAzilian CoaSt (ABRACOS) 

campaign region, the geomorphology is characterized by a chain 

of seamounts (ranging from 20 to 250 m in height), the Fernando 

de Noronha Ridge which includes the oceanic island of Rocas 

Atoll and the Fernando de Noronha Archipelago (Castello, 2010; 

Kikuchi, 2002). This area is further influenced by the central and 

southern branches of the South Equatorial Current and the South 

Equatorial Subcurrent, forming the South Equatorial Current 

System (Dossa et al., 2021).  

 

The project Surface Water and Ocean Topography (SWOT) took 

place in the southernmost part of Bahia (BA) around the 

Abrolhos Marine National Park, which covers 46,000 km² within 

the continental shelf, characterized by mangroves, coral reefs, 

and rhodolith banks (Moura et al., 2021). The Abrolhos shelf is 

influenced by Tropical Water (TW) and South Atlantic Central 

Water (CSAW) (Castro Filho and Miranda, 1998). 

 

2.2 In situ Data 

The in situ data used were collected during oceanographic 

campaigns of the MARSEAL during the raining season 

(MARSEAL_A1) (May-June 2014) and the dry season 

(MARSEAL_A2) (December 2014 to January 2015), 

coordinated by PETROBRAS/CENPES aboard of the R/V 

Seward Johnson, ABRACOS aboard the R/V ANTEA, which 

was divided into two campaigns, ABRACOS 1 (A1) (August-

September 2015) (Bertrand, 2015) and ABRACOS 2 (A2) 

(April-May 2017) (Bertrand, 2017), and SWOT during the rainy 

season (SWOT_1) (May 2023) and the dry season (SWOT_2) 

(September 2023) aboard the R/V Ciências do Mar IV.  

 

In the MARSEAL and SWOT campaigns, chl a data were 

obtained through spectrophotometer analysis, allowing for the 

quantification of total biomass and biomass of the fraction > 20 

μm. During the ABRACOS campaigns, data were obtained 

through High Performance Liquid Chromatography (HPLC), 

providing information on chl a and accessory pigments indicating 

different phytoplankton groups, such as Bacillariophyceae (fuco) 

and Dinophyceae (Peri). 

 

During MARSEAL, it was observed that picophytoplankton and 

nanophytoplankton (fraction <20 μm) strongly dominated the 

community (>70%), which is a strong indicator of the 

oligotrophic nature of the area (Weber and Weber, 1998; Sabetta 

et al., 2008). As for ABRACOS, as described by Farias et al. 

(2022), it was observed that picophytoplankton and 

nanophytoplankton (fraction <20 μm) strongly dominated the 

community (>80%), regardless of the season and sampling depth. 

 

Medeiros et al. 2023 observed chl a values for the Abrolhos 

Archipelago region ranging from 0.058 to 1.034 mg m³, with an 

average value of 0.525 (± 0.26) mg m³. These values are 

characteristic of oligotrophic waters. 

 

2.3 Satellite Ocean Color Data  

The ocean color data consist of a dataset used to evaluate chl a, 

PFTs, and PSCs results, focusing on the time period 

corresponding to in situ sampling. In this case, daily data (e.g., 
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GlobColour, Ocean Color Climate Change Initiative (OC-CCI), 

and Sentinel 3 OLCI) were considered, and extractions around 

each sampling point were conducted to perform a "matchup 

exercise" (which involves assessing the performance of satellite 

products and associated uncertainties using in situ data).  

 

The homogeneity criteria for the matchup took into account the 

coefficient of variation (CV) < 0.2, and at least 5 valid pixels in 

the 3x3 window that was created around each point in the image 

from the satellite. In practice, various methods currently available 

for assessing phytoplankton biomass (e.g., OC4 algorithm for chl 

a; O'Reilly et al., 2019), PFTs (PHYSAT, Alvain et al., 2005, 

Machine learning-based approaches; Xi et al., 2020), PSCs 

(Kostadinov et al., 2022, Xi et al., 2020, Ciotti et al., 2006), and 

accessory pigments of phytoplankton (El Hourany et al., 2019) 

were considered. 

 

The OC-CCI uses data from five sensors: the Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS), the Moderate Resolution 

Imaging Spectroradiometer on board the Aqua Earth Observing 

System (MODIS-Aqua), Medium Resolution Imaging 

Spectrometer (MERIS), Visible Infrared Imaging Radiometer 

Suite (VIIRS) and the Ocean and Land Colour Instrument 

Sentinel-3A (OLCI-S3A) (Colella et al. 2021).   

 

2.4 Statistical Methods 

The comparison between in situ observations and satellite 

estimates followed standardized protocols to validate ocean color 

data. A subset of pixels around the sampling points was extracted, 

and quality criteria were applied to verify the consistency 

between observations. The "matchup" data set was used to 

analyze the performance of the assessed methods and calculate 

statistical descriptors such as root mean square deviation 

(RMSD), mean absolute percentage deviation (MAPD), mean 

bias error (MBE), and coefficient of determination (R²) to select 

the best satellite product. 

 

3. Discussion and Results 

3.1 Chlorophyll a  

A linear regression of in situ chl a with satellite-measured (OC-

CCI and GlobColour 4Km) chl a was made. For the OC-CCI, the 

R² explained approximately 34% of the variation in the in situ 

samples, with an RMSD of around 0.29, and MAPD and MBE 

values of -18.73% and -2.34%, respectively.  For GlobColour, 

the R² explained approximately 32% of the variation in the in situ 

samples, with an RMSD of around 0.31, and MAPD and MBE 

values of -23.1% and 64.37%, respectively. 

 

Sathyendranath et al. (2019) evaluated the performance of OC-

CCI against global in situ data. Compared to the present study, 

the RMSD was very close with a value of 0.30. As for R², the 

value was 0.81. On the other hand, the MBE of our study was 

quite low compared to the cited study with the lowest value being 

-0.0409 for. In the study we are comparing for the OC-CCI, the 

lowest data value (N) was 6049, while ours was 44. Coppini et 

al. (2013), evaluating the performance of GlobColour in the 

Mediterranean Sea, obtained values similar to our study for R² 

and intercept, being 0.31 and -0.41, respectively. The authors 

compared the performance of GlobColour in the Mediterranean 

Sea with a regional model focused on the area, Med Regional 

SeaWiFS RANMyOcean (Med Reg) and it was observed that 

Med Reg obtained better results and this was pointed out as an 

advantage of using regionalized algorithms to specific regions. 

 

It was found that OC-CCI offers greater spatial coverage and 

better performance in long-term applications while GlobColour 

provides an integration of more satellite sensors (Moradi, 2021). 

In general, performance was reasonable, with dispersion due to 

differences in the in situ methods used in the campaigns. There 

was an overestimation in the chl a found for lower values, this 

has already been observed for the OC-CCI (Moradi, 2021) and 

an alternative to resolve this is to use the optical water types 

(OWT) to identify the classes where there is a failure in said 

sensor (Cui et al., 2020). The data set for the region needs to be 

more robust so that the results are also robust, since the number 

of data (n sample) interferes with the conclusions of the most 

adapted algorithm.  

 

 

3.2 Accessory pigments 

Regarding accessory pigments, the algorithm by El Hourany et 

al.(2019) was tested for 6 accessory pigments that are present in 

the in situ HPLC data set of A1 and A2 (Zeaxanthin (zea), Peri, 

Fuco, 19’Butanoyloxyfucoxanthin (19BF), 19'Hexfucoxanthin 

(19HF) and Chlorophyll b (chl b)) and below it is possible to 

observe some results. In Figure 3a, the in situ data for the 

dinoflagellate’s diagnostic pigment peri from campaigns A1 and 

A2 exhibit a strong correlation with satellite data processed using 

the algorithm developed by El Hourany et al. (2019) for 

GlobColour data. Peri is one of the 10 pigments reliably 

estimated in El Hourany et al. (2019), where self-organizing 

maps (SOMs), unsupervised neural classifiers applied in remote 

sensing, were utilized. In this instance, the R² explains 

approximately 44% of the variation in the in situ samples, with 

an RMSD around 0.32, and MAPD and MBE values of -7.06% 

and 11.45%, respectively. El Hourany et al. (2019) used R² and 

RMSD as statistical metrics and found values of 80% and 0.01 

for peri, respectively. 

 

Figure 3b shows the relationship between in situ data and the 

haptophyte diagnostic pigment, 19HF, for the same campaigns. 

Here, R² explains approximately 58% of the variation in in situ 

samples, with RMSD around 0.18, and MAPD and MBE values 

of -4.52% and 54%, respectively. In one of the metrics used El 

Hourany et al. (2019) found the same value for R² and the RMSD 

was 0.03. Figure 3c illustrates the relationship between in situ 

data and cyanobacteria diagnostic pigment, (zea), for the same 

campaigns. In this case, R² explains approximately 33% of the 

variation in in situ samples, with RMSD around 0.36, and MAPD 

and MBE values of -23.92% and 29.92%, respectively. El 

Hourany et al. (2019) found a maximum R² value for zea of 79% 

and the RMSD was 0.02. 

 

Overall, El Hourany et al. (2019) found that their model was 

efficient for all pigments used with R² > 0.75 and an average 

RMSE = 0.016 mg/m³. Farias et al. (2022) observed in the area 

that for the phytoplankton groups that can be quantified by the 

amount of accessory pigments, the distribution of pigments 

showed higher concentrations of Cyanophyceae (zea) in the 

surface layer, regardless of region and season, and an increase in 

the accessory pigments of three phytoplankton groups, 

Bacillariophyceae (fuco), Dinophyceae (peri) and 

Chlorophyceae (chlorophyll b, neoxanthin, violaxanthin) in the 

fall in all regions, indicating a structural change in the community 

between seasons. This was the first time that the method of El 

Hourany et al. (2019) was evaluated in Northeast Brazil. This 

algorithm can provide valuable information for assessing and 

diagnosing the distribution of the main phytoplankton groups, as 

it seems to work effectively for certain groups, for example for 
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dinoflagellates, as an exactly equal R² was observed for one of 

the metrics used in the El Hourany et al. (2019) neural network.  

 

The in situ data set used in this work was nowhere near the data 

set that generated the SOMs and this reinforces the need to have 

a robust data set so that more robust analyses can be carried out.  

The limitation in relation to zea can be attributed to the low 

chlorophyll values characteristic of these groups, which consist 

of cyanobacteria, organisms with small cell sizes and, 

consequently, low chl a content characteristic of oligotrophic 

regions.  

 

 

4. Conclusion 

 

This study represents the first evaluation of ocean color 

algorithms for the NE region, and while the results for 

chlorophyll a are considered reasonable, some dispersion and 

underestimation were observed. 

 

The study of accessory pigments used the A1 and A2 datasets, 

which are the first in situ HPLC data available for the region. This 

approach is valuable as it quantifies accessory pigments in 

addition to chlorophyll a, which is important for understanding 

phytoplankton community composition. Future studies using this 

methodology are promising and crucial for gaining a better 

understanding of phytoplankton community structure. 

 

Subsequently, methods such as those of Brewin et al. (2010) and 

Hirata et al. (2011), which are simpler and use empirical 

relationships involving chl a, will be evaluated in the Northeast 

of Brazil. This step is crucial because it marks the beginning of 

the use of satellite data for time series, seasonality, trends and 

climate modulation. 

 

Methods that evaluate phytoplankton groups based on accessory 

pigments such as that of El Hourany et al. (2019) are promising 

and show that it is necessary to evaluate other methods that 

already exist or that may emerge in order to assess which are most 

suitable for the region. Finally, satellite images derived from 

sensors that evaluate phytoplankton will be analyzed to have a 

better representation of phytoplankton biomass and community 

composition dynamics on the NE shelf of Brazil. 

 
Figure 1: Sampling area of in situ data on the Brazil northeast, 

campaigns ABRACOS 1 and ABRACOS 2, MARSEAL, and 

SWOT. 

 
Figure 2: Linear regression between the in situ chlorophyll a 

concentrations of the campaigns and the chlorophyll a values 

observed by the OC-CCI and GlobColour, both with a 

resolution of 4km. 
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Figure 3: Linear regression between the in situ 19HF, 

Peridinin and Zeaxanthin concentrations  from the 

ABRACOS 1 and ABRACOS 2 campaigns and the satellite-

observed values using the El Hourany et al. (2019) algorithm. 
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