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ABSTRACT:

Forest dynamics are closely related to climate change, natural disasters, and ecological diversity. The accumulated Landsat archive
provides an unprecedented opportunity for long-term forest dynamics monitoring globally. However, using Landsat time series to
detect small-scale and low-intensity disturbance events is still challenging since the moderate spatial resolution of Landsat images and
the mixed pixel problem. Towards improving the ability of vegetation index (VI) in characterizing sub-pixel forest dynamics, this
paper introduced the spectral mixture analysis (SMA) to develop a novel Pure Forest Index (PFI). The Continuous Change Detection
and Classification (CCDC) algorithm was used to detect forest disturbance based on the PFI time series. Cross-comparison shows that
PFI is far superior to other conventional VI in indicating forest conditions since it can enhance the spectral signal of the forest and
suppress noises from the background. Time series analysis further demonstrates the superiority of PFI in accurately characterizing
forest dynamics. The high overall accuracy of 0.96 for the forest disturbance map generated by the proposed approach was achieved.
This study highlights a novel VI for accurately tracking subtle forest changes in a heterogeneous landscape.

1. INTRODUCTION

As the primary component of terrestrial ecosystems, forests are
crucial to reaching carbon neutrality objectives (Keenan et al.,
2015). However, frequent natural and human disturbances like
climate change, natural disasters, urbanization, and activities re-
lated to forest management have led to extensive forest fragment-
ation and edge effects (Fischer et al., 2021; Bonan, 2008). These
effects have been observed to contribute to forest degradation and
produce substantial carbon emissions (Brinck et al., 2017), which
are much larger than the direct emission caused by deforestation
(Qin et al., 2021; Matricardi et al., 2020). Therefore, spatiotem-
porally explicit information regarding forest disturbance has be-
come one of the key elements in evaluating the carbon dynamics
of forest ecosystems (Estoque et al., 2018).

The exponential growth of remote sensing data and quickly evolving

cloud computing technology provide unprecedented opportunit-
ies to obtain forest disturbance information with appropriate spa-
tial detail and temporal frequency over long periods (Chen et al.,
2021; Hansen et al., 2013). With suitable spectral, temporal,
and spatial resolutions and the advantages of being freely avail-
able, Landsat satellite series imagery has emerged as one of the
fundamental remote sensing data sources for extensive and long-
term forest dynamic monitoring (Chen et al., 2021; Hansen et al.,
2013; Senf et al., 2017).

Researchers have developed several robust change detection al-
gorithms to promote change detection performance. Some well-
known algorithms, such as Breaks for Additive Season and Trend
(BFAST), Landsat-based detection of Trends in Disturbance and
Recovery (Landtrendr), Continuous Change Detection and Clas-
sification (CCDC) were proposed to detect land cover change
using the time series analysis. Although these methods have
brought further progress, the gradual and subtle forest changes re-
main not to be adequately solved, in particular, in areas with high
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landscape heterogeneity and forest degradation. On the other
hand, due to many practical difficulties, using Landsat images
is still challenging to obtain quantitative spatiotemporal inform-
ation on forest disturbance at different scales. (1) Although us-
ing moderate spatial resolution Landsat imagery to monitor large-
scale forest resources is advantageous, it also makes Landsat dif-
ficult to identify forest variation within a forested stand such as
small-scale and low-intensity degradation events (Bullock et al.,
2020a; Wulder et al., 2008; Zhang et al., 2021); (2) As the exist-
ing vegetation index (VI) is not sensitive to minor forest changes,
the satellite may delay or even fail to capture these changes (Wang
et al., 2021); (3) Extensive forest fragmentation and edge effects
exacerbate the mixed pixel issue (Margono et al., 2014; Matri-
cardi et al., 2020), further increasing the difficulty in character-
izing the actual forest dynamics in the mixed pixel using the ex-
isting VIs. The above factors together limit the acquisition of
long-term forest disturbance information.

In order to solve the above-mentioned issues, the objective of this
study is to develop a novel index for improving the monitoring of
forest dynamics. A comprehensive cross-comparison of the novel
index with conventional VIs was conducted. The novel index has
been applied to generate a forest disturbance map with the CCDC
algorithm.

2. STUDY AREA AND DATASET
2.1 Study area

The study region is in the Brazilian state of Rondonia (Figure
1). The entire research region is covered by the biome of the
tropical Amazon forest. Large-area deforestation in Ronddnia
started in the 1960s due to the development of local traffic, and
the expansion of farmland and cattle pastures (Brondizio, Moran,
2012). Forest conversion has also been influenced by small-scale
clearings for logging, agriculture, or raising livestock. Frequent
natural disasters like fire, windfall, and floods can also damage
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trees. It is reported that about 24% of the primary forest had been
changed to other land uses (Bullock et al., 2020a). In Rondoénia,
massive deforestation and other forest management practices have
resulted in severe forest fragmentation and edge effects.
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Figure 1. The study area. (a) is the location of the study area; (b)
and (c) are 1986 and 2020 Landsat images in the study area

2.2 Landsat imagery and pre-processing

All available growing season Landsat surface reflectance over the
study area from 1986 to 2020 were used to generate a forest dis-
turbance map, including Landsat 4/5 TM, Landsat 7 ETM+, and
Landsat 8 OLI. The quality assessment band was used to remove
the cloud and shadow pixels. Due to the subtle but potentially
significant differences between the spectral characteristics of im-
ages acquired by different Landsat sensors, spectral harmoniz-
ation of TM and ETM+ to OLI spectrum was performed using
a linear transformation method (Roy et al., 2016). Finally, six
bands (blue, green, red, NIR, SWIR 1, and SWIR 2) were selec-
ted for subsequent analysis. All pre-processing was performed on
the Google Earth Engine (GEE) platform (Gorelick et al., 2017).

3. METHODS
3.1 Pure Forest Index

Aiming to improve the ability of VI in characterizing forest dy-
namics over heterogeneous landscapes from moderate resolution
satellite imagery, this study developed a novel Pure Forest In-
dex (PFI) by integrating the spectral mixture analysis (SMA) and
information of VI. First, the SMA was used to estimate the con-
tribution of different endmembers (i.e., green vegetation (GV),
non-photosynthetic vegetation (NPV), soil, cloud, and shade) to
the spectral signal of a pixel. For each endmember, 50 pure pixels
were collected by visual interpretation using the Landsat images
in 2020 and the corresponding Google images at 0.5 m. The fi-
nal endmembers were calculated as the average of the collected
pixels. Here, we used the linear SMA approach was employed
to obtain fractional abundances (Adams et al., 1986). The Root
Mean Square Error (RMSE) was used to quantify the errors of
SMA. Figure 2 shows an example of the SMA over a hetero-
geneous landscape using a linear SMA approach and the 2020
Landsat composite. A low RMSE value of 0.11 was achieved.

According to the principle of linear spectral mixture analysis, the
spectral signal of a pixel is equal to the sum of the product of
fractional abundance and reflectance of endmembers (Adams et
al., 1986). Therefore, the PFI is designed as the transformation

of conventional VI to detangle the contribution of forest and non-
forest to VI (Eq.1). The standard VI value of a non-GV end-
member can be estimated from the spectral of the endmember. In
order to remove the extreme value of PFI and reduce the commis-
sion errors of disturbance detection caused by the extreme index
value, the Softsign function (Glorot, Bengio, 2010) was used to
rescale the range of PFl into [-1, 1].

)

VI
PFI = Softsign <
Aav

. VImAm>

(L
Softsign =

1+ |X|

where VI = value of VI calculated from satellite imagery
M = the number of endmembers

V I,,, = standard VI value of m-th non-GV endmember
A, = fractional abundance of GV endmember

X =input of Softsign function

The principal illustration of the PFI was displayed in Figure 3.
Here, we assumed that there is a mixed pixel (NDVI: 0.6) com-
posed of three endmembers (GV, NPV, and Soil) at t0. After
deforestation/degradation (t1), the NDVI value of the pixel was
reduced to 0.45. We can observe the change of NDVI for 0.15,
which is hard to identify as an abrupt change by the change detec-
tion algorithm. By transforming NDVI to PFI, the PFI variation
caused by forest change could be enlarged, which can facilitate
the detection of small-scale forest change in a pixel. For PFI, the
spectral component of the non-GV endmember in a pixel was es-
timated and eliminated (Eq. 1). Therefore, the PFI can integrated
vegetation index and sub-pixel spectral information to amplify
the signal of disturbances.

3.2 Forest disturbance mapping

This study used the CCDC algorithm (Zhu, Woodcock, 2014)
and the PFI time series to generate the forest disturbance map
from 1986-2020. CCDC algorithm has been widely used to detect
forest change based on time-series satellite images. The CCDC
algorithm uses harmonic models to fit observation data with the
least absolute shrinkage and selection operator (LASSO):
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p(i,t) = the fitted value of the i-th PFI band on date ¢
T = the number of days per year

S; = the long-term trend of the i-th band

a, b = the coefficients for COS and SIN function

where

When the fitted data considerably deviates from the actual ob-
servation over five times, the CCDC would consider there was
an abrupt change. According to the experiments, the NBR-based
PFI is superior to other VI-based PFIs in tracking forest dynam-
ics. Thus, the NBR-based PFI time series was employed to map
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Figure 2. Example of the spectral mixture analysis. (a) is the Landsat composite in 2020, (b)-(e) are fractional abundances of GV,
NPV, Soil, and Shade, respectively. (f) represents the RMSE of the linear SMA
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Figure 3. Illustration of the fundamental concept of PFI. The
standard values of NDVI for pure pixels of different land types
were shown in the bottom left panel

forest disturbance. The detection procedure was performed in
the forest area. To obtain the 1986 forest mask, the Random
Forest algorithm was applied to classify the land cover. A total
of 327 samples, including forest, non-forest vegetation, built-up,
and water, were selected for model training. The spectral bands
and fractional abundances of endmembers were used as input fea-
tures for the Random forest classifier to obtain the 1986 forest
mask of the study area.

4. RESULTS

4.1 Comparison of PFI with other VIs in tracking forest dy-
namics

In this study, the NBR was used to calculate PFI. Other VlIs, in-
cluding Normalized Difference Fraction Index (NDFI) (Souza Jr
et al., 2005), NBR, NDVI, EVI, RVI, and DVI, were used for
comparison. The NDFI was developed to map canopy damage by
combining spectral and spatial information. Several studies used
NDFI to monitor deforestation and forest degradation with differ-
ent detectors (e.g., CCDC and BFAST), which prove that NDFI is
suitable to provide forest change information and improve forest
monitoring (Bullock et al., 2020a; Bullock et al., 2020b; Chen et
al., 2021; Souza Jr et al., 2005).

Figure 4 has displayed the VI images over forest regions. The
comparison indicates that PFI can more accurately reflect the
forest distribution than other VIs, which enlarges the distinctions
between forest and non-forest pixels (Figure 4). Additionally, PFI
can identify the proportion of forest within a pixel by integrating
endmember abundance information. In general, PFI enlarged the

forest’s spectral signal and suppresses background noise, which
can improve the PFI’s performance in capturing forest dynamics.

To intuitively understand the sensitivity difference between PFI
and other VIs, we selected two distinct pixels for time series ana-
lysis. We compared the representational ability of different VIs
time series in abrupt and gradual forest change (Figure 5). Com-
pared with other vegetation indices, PFI could better describe the
forest dynamic. In the region of abrupt change forest (Figure 5a),
PF1 is stable before forest disturbance while decreasing sharply at
the time of abrupt forest change. It demonstrated that PFI is good
at representing forest dynamics. Other vegetation indices are not
as sensitive to forest changes as PFI, despite their ability to char-
acterize the dynamic of forests to a certain extent (Figure Sa).
In the region of the gradual change forest (Figure 5b), the per-
formance of PFI is far better than other vegetation indices. PFI is
more stable than other indices when the forest is not disturbed. In
contrast, the amplitude of change of PFI is much more extensive
than other indices, thus assisting CCDC in identifying forest dis-
turbances. In the above two areas, only the forest changes were
detected using CCDC-PF], indicating that PFI is outstanding and
flexible in suggesting forest changes.

4.2 Forest disturbance map derived from different VIs

We also generated the forest disturbance maps using the CCDC
algorithm based on different VI time series (Figure 6). Note that
the PFI used to generate a forest disturbance map is derived from
the NBR.

The comparison of detection results derived from PFI and NDFI
indicates that the PFI enables more accurate and explicit inform-
ation about forest change. Due to the sensitivity of NDFI to the
spectral change, the NDFI tends to produce commission errors.
The NDFI is more sensitive to spectral change, leading to com-
mission errors.

The PFI has dramatically improved the detection accuracy com-
pared with non-SMA indices (NBR, NDVI, EVI, RVI, and DVI).
The detection results were improved remarkably by PFI trans-
formation compared with the disturbance map generated by NBR.
Without the assistance of SMA, the disturbance detection using
conventional time-series VIs would have failed to detect subtle
spectral change. Therefore, the imperceptible forest change in a
heterogeneous landscape tends to be omitted by conventional VIs
since the area of forest change is too small to change the spectrum
of a forested pixel. In this regard, PFI could improve the forest
change detection compared with non-SMA indices by enhancing
the spectral change caused by subtle forest change and reducing
the commission errors induced by the misleading non-forest and
noises.

In this study, we used a confusion matrix to validate the perform-
ance of the proposed method. The overall accuracy was utilized
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Figure 4. Landsat image and corresponding VIs. (a) is the Landsat image in 2020, (c)-(h) are corresponding images of PFI, NDFI,
NBR, NDVI, EVI, RVI, and DVI, respectively
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Figure 5. Analysis of fractional abundance and VIs time series of (a) a deforestation pixel and (b) a degradation pixel. The year of
forest disturbance was displayed as a red dash line

to assess the detection accuracy. The accuracies of forest dis-
turbance maps using the CCDC algorithm and different VI time
series were quantified (Table 1). As shown in the Table, PFI-
based mapping achieved the highest overall accuracy of 0.96, fol-
lowed by NBR (0.76), DVI (0.72), NDFI (0.56), EVI (0.56), and
RVI (0.32). The NBR-based PFI has greatly improved the map-
ping accuracy for NBR (0.96 vs. 0.76), which also demonstrates
that spectral information is useful for capturing forest change.

5. DISCUSSION

Excellent results were achieved in forest change detection using
the proposed PFI index and the CCDC-PFI method. However,
changes that occurred in previous years may not be detected be-
cause starting data are required to initialize the CCDC algorithm.
Therefore, the integration of PFI with other time series analysis
algorithms such as BFAST and LandTrendr is worthy of in-depth
and extensive research.
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Figure 6. Forest disturbance maps generated by the CCDC algorithm based on different VI time series. White in the reference image
indicates the location of forest change, while black represents non-change pixels

Vegetation index | Overall accuracy
PFI 0.96
NDFI 0.57
NBR 0.76
NDVI 0.71
EVI 0.56
RVI 0.37
DVI 0.72

Table 1. Accuracies of forest disturbance mapping using CCDC
algorithm based on different VI time series

Furthermore, a lack of quality and consistent data can lead to
missed detections and delays in observing forest changes in un-
derserved areas. Long-term forest monitoring in the rainy and
cloudy regions is particularly challenging due to the lack of fine-
grained observations. According to recent studies, forest degrad-
ation is widespread throughout the Amazon rainforest and even
on Earth, which can lead to significant carbon emissions from
forest ecosystems (Bullock et al., 2020b; Qin et al., 2021; Junior
et al., 2021; Matricardi et al., 2020). Therefore, the classifica-
tion of degradation and deforestation is needed to elucidate and
quantify their impact on the global biome. Despite small spectral
differences from healthy forests, PFI is a good characterization of
forest mortality from disease, insect infestation, and natural dis-
asters. Future research should use the new index to investigate the
complex spatial dynamics behind the spread of forest mortality.

6. CONCLUSIONS

In this study, PFI was developed to identify the specific contri-
bution of forest change within pixels, which facilitates accurate
forest change detection. The CCDC-PFI is proposed to monitor
forest change accurately and has achieved excellent results in the
Amazon rainforest. This study indicates that the PFI could pro-
mote detection accuracy by reducing omission and commission
errors caused by data quality, spectral mixture, noise in images,
and minor changes of the surface objects compared with other
vegetation indices. Simultaneously, rich information regarding
forest change can be extracted to support plan-making and ana-
lyse the potential drivers. Besides, the forest monitoring perform-
ance of different vegetation index-based PFIs has been compared.
We found that NBR-based PFI is more remarkable for charac-

terizing forest dynamics and performs better than other vegeta-
tion indices-based PFI in forest change detection. Further study
should focus on the classification of forest change types and the
resulting ecological and environmental impacts.
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