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ABSTRACT:

Aiming to solve the problem of loss of important image information, such as blurred details and low contrast, caused by fog, haze
and other meteorological influences in the slope monitoring process of UAV remote sensing images, a new method of improving dark
channel image dehazing based on channel-weighted analysis and compensation function is proposed by a training of multilayer
perceptron (MLP) in this study. First, based on the dark channel prior principle, the original hazy UAV image is mapped to obtain the
estimated values of atmospheric light and rough transmittance. Next, by counting the RGB three-channel values of the pixels in the
high-brightness regions, and analyzing the scattering of the RGB three-channel values in the haze, a color recovery module of
atmospheric light is constructed, and the estimated value of atmospheric light is optimized. Then, according to the global
transmittance, the compensation boundary value is determined and a functional relationship between different brightness regions and
the increment of transmittance is established as a compensation function to optimize the rough transmittance. Finally, perform
secondary optimization on the rough transmittance with the multi-layer perceptron (MLP) to obtain a smoother transmittance value.
The experimental results show that the image processed by the proposed method has good contrast. The color saturation and
authenticity are effectively maintained. And the detailed information of the mountain recorded by the image is better restored, which
can provide a real data basis for slope monitoring.

1. INTRODUCTION

In recent years, UAV aerial photography has been rapidly
popularized due to its flexible use, low cost, and good economy.
It has been widely used in emergency event processing, map
mapping, slope disaster monitoring and other fields (Liu, 2015).
The UAV aerial photography system is extremely sensitive to
weather conditions. Weather like fog and haze will have a great
impact on the quality of aerial photography, such as image
grayscale concentration, contrast reduction, and blurred image
details. It is difficult for the image to meet the detection
requirements. Thus it will affect the reliability of numerical
analysis and simulation analysis (Wu, 2015). Therefore, how to
dehaze the UAV image in foggy weather is one of the main
research directions in the current research field of image
dehazing.
At present, image-based dehazing algorithms have made some
progresses. Jobson et al. (Jobson, 1997) proposed a multi-scale
Retinex algorithm, which eliminated the problem of image color
distortion by introducing a color recovery factor, thereby
improving the visual effect of dehazed images. He et al. (He,
2011) proposed a dark channel prior (DCP) dehazing algorithm,
which was based on the atmospheric scattering model to dehaze
the image. And the dehazing effect was better. However, the
algorithm had high complexity, long processing time, and
cannot adjust the fog parameters adaptively. Cai et al. (Cai,
2016) proposed a trainable end-to-end dehazing algorithm to
estimate transmittance. However, the atmospheric light
scattering model in this algorithm relied on a single light source
model, and did not consider scenes with multiple light sources.
Also, the restoration quality in the depth-of-field region needed
to be improved. Ren et al. (Ren, 2016) proposed a multi-scale
deep neural network transmittance estimation algorithm based
on convolutional neural network (CNN). First, a coarse network
was used to generate a coarse-grained transmission map. Then a
finer network was used to obtain a more detailed image. Li et al.

(Li, 2018) proposed a dehazing algorithm based on residual
depth CNN, which could estimate the transmittance and
atmospheric light separately, and improved the dehazing
efficiency. Based on his dark channel prior (DCP) theory, He et
al. (He, 2013) proposed to use guided filtering instead of the
soft matting method to optimize the transmittance, which
improved the dehazing efficiency. However, there were still
problems such as incomplete dehazing and slow processing
speed after processing. In view of the shortcomings of He et al.,
Liu et al. (Liu, 2018) proposed to introduce an adaptive
threshold in the acquisition process of dark primary colors,
which improved the accuracy of transmittance, but the operating
efficiency was still relatively low. Han et al. (Han, 2020)
proposed an improved atmospheric light estimation method
based on quadtree subdivision and an improved guided filter
optimization method with adaptive weighting factor added,
which reduced the halo effect. But there was also a problem
with color overcorrecting.
Compared with traditional hazy images, UAV hazy images have
their own characteristics, such as: the transmittance of objects in
the scene is roughly the same; the large areas of light color in
the scene, like rivers, lakes, wastelands, buildings, etc., will
affect image dehazing results; factors such as long-distance
shooting fog have a great influence on the image quality (Li,
2018). According to the unique characteristics of UAV images,
it is necessary to improve the traditional image dehazing
method. By improving the robustness, real-time and intelligence
of the algorithm, a higher quality UAV image dehazing effect
can be achieved, so as to ensure the engineering research
accuracy of post-image processing such as feature extraction,
target recognition, and image fusion.
In this paper, we have made some improvements to the
traditional DCP algorithm. First, map the original hazy UAV
image to obtain the estimated values of atmospheric light and
rough transmittance. Next, optimize the atmospheric light
values based on Rayleigh scattering and channel weighting
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analysis. Then, construct a compensation function according to
the relatively consistent depth of field of the UAV image, and
the rough transmittance is optimized to avoid the color
distortion of the restored image in the area of high-brightness
objects. Use the Multilayer perceptron (MLP) to establish the
mapping between the rough projection rate and the optimal
transmittance, so as to obtain the optimal transmittance,
improve the block effect and improve the efficiency of the
algorithm. Finally, dehaze the image according to the
atmospheric light value. The experimental results show that the
algorithm can effectively dehaze the UAV image, and the
detailed information of the mountain recorded by the image can
be restored well, which can provide a real data basis for slope
monitoring. And the dehazing quality of the algorithm is
evaluated by mean square error (MSE), peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM).
This paper is organized as follows. Section 2 presents the
theoretical background, which includes atmospheric scattering
models, dark channel priors, and multilayer perceptrons. Section
3 presents the improved dark channel dehazing algorithm,
including improved atmospheric light estimates and rough
transmittance. Section 4 introduces the experiments, followed
by conclusions in Section 5.

2. THEORETICAL BACKGROUND

2.1 Atmospheric Scattering Model

The DCP algorithm is based on the atmospheric scattering
model for dehazing (McCartney, 1976) , which can be defined
as:

( ) ( ) ( ) [1 ( )]I x J x t x A t x   , (1)

where ( )I x = input haze image
( )J x = output haze-free image
( )t x = transmittance
A = atmospheric light value

By calculating transmittance t(x) and atmospheric light A, the
scene image can be recovered.

2.2 Dark Channel Priors

Dark Channel Prior (DCP) theory is an empirical observation of
the properties of haze-free images, which believes that in most
outdoor non-sky local regions, there will always be at least one
color (Red, Blue, Green) channel with the lowest brightness
value and approaching 0. According to these statistics, the dark
channel of any image can be defined as：

 
dark

( ) , ,
( ) min ( min ( ( ))) 0c

y x c R G B
J x J y

 
  , (2)

where dark ( )J x = dark channel value for haze-free images
c ( )J y = one color channel of the haze-free image
( )x = a square area centered on pixel x.

The dark channel prior dehazing method is an important
breakthrough in the field of image dehazing, which provides a
new idea for researchers in image dehazing.

2.3 Multilayer Perceptron

MLP is derived from the artificial neural network model (Han,
2004), which can map multiple input vectors to a single target

vector. The network model includes input layer, hidden layer
and output layer. The training of MLP is divided into forward
and backward propagation processes. Taking the hidden layer as
an example, suppose the input vector of the MLP network is ix
and the target vector is (1 )iy i n  , the output of the j-th
neuron in the hidden layer is (1 )jZ j n  , jZ can be

expressed as：

1
[ ( )]
n

j ij i j
i

Z f x b


  , (3)

where f = activation function

jb = the bias of the j-th neuron in the hidden layer

ij = the weight between the i-th neuron in the
previous layer and the j-th neuron in the hidden layer

The MLP is trained by continuously updating the weights and
bias values to obtain the desired output dataset through the input
dataset.

3. METHODOLOGY

The flow chart of the proposed method is shown in Figure 1.
First, based on the dark channel prior principle, the original
hazy UAV image is mapped to obtain the estimated values of
atmospheric light and rough transmittance. Next, by counting
the RGB three-channel values of the pixels in the
high-brightness regions, and analyzing the scattering of the
RGB three-channel values in the haze, a color recovery module
of atmospheric light is constructed, and the estimated value of
atmospheric light is optimized. Then, according to the global
transmittance, the compensation boundary value is determined
and a functional relationship between different brightness
regions and the increment of transmittance is established as a
compensation function to optimize the rough transmittance.
Finally, perform secondary optimization on the rough
transmittance with the multi-layer perceptron (MLP) to obtain a
smoother transmittance value.

Figure 1. Flow chart of the improved DCP algorithm.
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3.1 Atmospheric light value optimization based on color
recovery module

Atmospheric light value A is one of the key parameters for
image dehazing. If the error of atmospheric light estimation
value is too large, the dehazing effect of the whole image will
be worse. The dark channel dehazing algorithm proposed by He
is to use the top 0.1% pixels in the dark channel image, that is,
the brightest part of the image, as atmospheric light A (He,2011).
However, this estimation method will be distorted when there
are objects with white surfaces in the image. This is because the
brightness of objects with white surfaces will be significantly
higher than the brightness of atmospheric light after haze
scattering, resulting in a large error in the estimation of
atmospheric light A. Since the angle of view of drone aerial
photography is larger than that of traditional photography, large
areas of high brightness are prone to appear in the image, such
as lakes and white buildings. Therefore, we proposed an
improved atmospheric light estimation method.
According to Rayleigh scattering theory, blue light is more
easily scattered than other colors of light, so for the RGB three
channels of hazy images, when estimating atmospheric light A,
the value of B (blue) channel will be smaller due to scattering.
In this paper, the channel-weighted method proposed by Lee
(Lee,2018) is used to compensate for the low value of the B
channel due to scattering during atmospheric light estimation,
so as to avoid the darkening of the restored image and even the
color distortion of some objects. The main calculation steps are
as follows:
(1) Select the brightest top 0.1% pixels in the dark channel
image, and calculate the sum of the RGB three-channel values
of these pixels respectively, namely sumR , sumG and sumB .
(2) Calculate the color averages RZ , GZ and BZ of any two
pairs of channels of the three RGB channels:

R sum sumZ =(G /N+B /N)/2 , (4)

G sum sumZ =(R /N+B /N)/2 , (5)

B sum sumZ =(R /N+G /N)/2 , (6)

(3) According to formulas (4), (5), (6), a suitable CS can be
obtained:

*( ) / 2, { , , }C
C CS q avg Z c R G B   , (7)

where q = 0.1
CZ = three-channel color image composed of RZ ,

GZ and BZ

Cavg = three-channel color image composed of

sumR , sumG and sumB
(4) Substitute it into the atmospheric light estimation as a
color recovery module, and the final atmospheric light
estimated value is as follows:

C CA A S  , (8)

where CA =Atmospheric light value estimated by He.

3.2 Coarse transmittance optimization based on
compensation function

For UAV aerial images, the existence of large areas of
high-brightness objects makes some areas in the image do not

meet the prior knowledge of dark channels dark ( ) 0J x  ,
resulting in a small overall transmittance, which makes the
restored image distorted in color.
In this paper, we constructed a compensation function to
increase the transmittance of the highlight area as a whole.
Since there are other non-high-brightness areas in the image, the
compensation function needs to ensure that the transmittance of
the high-brightness area increases, and the transmittance of the
non-high-brightness area is basically unchanged. The
transmittance ( )t x processed by the compensation function
can be expressed as:

( ) '( ) ( )t x t x t x   , (9)

where '( )t x = raw estimated coarse transmittance
( )t x = compensation function

( )t x = optimized coarse transmittance
When using ( )t x compensation for high-brightness areas,
'( )t x needs to be fully boosted in the high-brightness area, to

prevent the invalidation of DCP theory in the high-brightness
area, and at the same time, At the same time, it is necessary to
prevent ( )t x from being over-lifted in non-high-brightness
areas.
According to the DCP principle, it can be known that the
estimated rough transmittance '( )t x can reflect the depth of
field to a certain extent, that is, the rough transmittance '( )t x
and the depth of field ( )d x are inversely proportional as
shown in equation (10) :

( )'( ) d xt x e  , (10)

Since the depth of field of the drone image does not change
much, according to the original method, as the depth of field
increases, the transmittance of distant objects will decrease;
removing the haze in the larger depth of field , the transmittance
of near objects will be estimated to be high, and the dehazing
effect will be poor. Therefore, in the process of UAV image
dehazing, it is necessary to ensure that the estimated values of
transmittance in each area of the image are basically consistent,
which is in line with the characteristics of UAV images.
In this paper, we firstly performed global scale compensation
for the UAV image, and adjust the scale according to the
maximum value of the sky area as the boundary value. The
specific adjustment formula is as follows:

max( ') '
max( ') min( ')

t tp
t t





, (11)

where p = global scale compensation function constructed
'( )t x = original estimated coarse transmittance, [0.1]
max( ')t = maximum value of '( )t x , [0.1]
min( ')t = maximum value of '( )t x , [0.1]

Then a nonlinear function is constructed to ensure that when the
depth of field is large or the brightness of the object itself is
high, '( )t x is small, At this time, no compensation function is
needed, and ( )t x will be adaptively reduced. Conversely,
when the depth of field is small, in order to ensure the dehazing
effect in the distance, the '( )t x will increase, and the ( )t x
will increase accordingly to ensure the dehazing effect in this
area. Specifically as follows:
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( ) '( ) kpt x t x e   , (12)

where k = compensation function coefficient, and the
optimal value range is in [7, 20]
After many attempts, k=11 works best. Substitute Equation(12)
into Equation (9) to obtain the optimized transmittance map.
From b and c in Figure 2, it can be seen that after optimization,
the transmittance is more uniform, which is in line with the
depth of field change characteristics of UAV images.

Figure 2. Transmission optimization comparison: (a) Hazy
image. (b) Initial coarse transmittance. (c) Optimized coarse

transmittance.

3.3 Coarse transmittance optimization based on MLP

The coarse transmittance estimation by Equation (9) is
pixel-level, lacks integrity, and the output image has block
effect. Since the transmittance changes slowly within a certain
range, the overall smoothing of the transmittance map can be
performed (Huang, 2021). He uses soft matting to optimize the
rough transmittance to improve the visual effect of the image
(He, 2013). The difference between the exact value of the
transmittance t and the rough transmittance t is as follows:

( ) ( ) ( )T TE t t Lt t t t t     , (13)

where L = Laplace operator
 = regularization parameter

The Laplace operator is as follows:

1
3

|( , )

1( (1 ( ) ( ) ( )))
k

T
ij i k k j k

k i j k k

I U I


  
 





      ,(14)

where iI = the color of the pixel at i in the input image

jI = the color of the pixel at j in the input image

ij =Kronecker function

k =the number of pixels in the area k

k =Mean matrix of colors

k =covariance matrix of colors

3U = 3×3 identity matrix
 =regularization parameter

However, the dehazing effect of the soft matting algorithm is
not obvious when there are large areas of high brightness in the
image. And through Equation (13) and Equation (14), it can be
seen that the Laplacian operator is related to the large-scale
sparse linear equation, which leads to the high computational
complexity of the algorithm (Pu, 2021) . In order to smooth the
transmittance map, further remove residual haze and refine the
contour of ground objects, ensure the efficiency of the algorithm,
this paper uses MLP method to refine the coarse transmittance
map.
First, the transmittance map obtained by Equation (9) and
Equation (12) is used as the input vector of MLP, and the

optimized transmittance is used as the target vector of MLP. By
training the MLP to learn the soft matting algorithm, the
mapping relationship between the coarse transmittance and the
fine transmittance is directly established. The experiment is
based on Pu's MLP algorithm (Pu, 2021) , and uses a three-layer
neural network structure to optimize the coarse transmittance.
The size of the image generated each time is the same, and it is
the center of ( , )x y , the side length is 16, a sliding window is
set, and the number of input and output neurons is 256 each
time. After optimizing the coarse transmittance with MLP, the
obtained transmittance map tends to be smoother, as shown in
Figure 3.

Figure 3. Coarse transmission optimization comparison: (a)
Coarse transmittance map. (b) Soft matting optimization. (c)
Guided filter optimization. (d) MLP optimization

4. EXPERIMENTALRESULTS AND ANALYSIS

4.1 Subjective Effect Evaluation

Some traditional dehazing algorithms are selected for
comparative analysis with the method proposed in this study: ①
Dark channel prior dehazing algorithm proposed by He(He,
2011). ② Improved dark channel prior algorithm proposed by
Pu (Pu, 2021). ③ Wang's fast adaptive histogram
equalization algorithm(Wang, 2006). ④Cai's DehazeNet
algorithm based on Convolutional Neural Networks(Cai, 2016).
It can be seen from Figures 4-6 that the overall visibility and
contrast of the image have been greatly improved after several
methods of dehazing.
However, He's DCP algorithm had obvious color distortion
when dealing with urban gravel roads and white buildings in the
distant view. there was also a halo phenomenon in the depth of
the scene when dealing with the river part view. When dealing
with the bare ground, due to the high brightness of this part of
the ground, the estimated value of transmittance was low, and
there was haze residue after He's processing. The result of
processing with Pu's improved dark channel prior algorithm,
had haze residue in the foreground view. and the color is darker.
The Fast adaptive histogram equalization by Wang, was an
image enhancement technology. It did not rely on atmospheric
scattering models for processing, and directly enhanced photo
details by enhancing image contrast. It also had the problem of
color distortion. Cai's DehazeNet dehazing algorithm relied on
the convolutional neural networks(CNN), directly calculated the
mapping relationship between the input hazy image and the
dehazed image. But the obtained image after this method was
darker and the details of the mountain texture were lost.
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Figure 4. Comparison of different methods on images of
buildings: (a) Original hazy UAV image. (b) He's Dark Channel
prior algorithm. (c) Pu's Improved DCP algorithm. (d) Wang's

fast adaptive histogram equalization algorithm. (e) Cai's
DehazeNet algorithm. (f) Proposed method

Figure 5. Comparison of different methods on images of river:
(a) Original hazy UAV image. (b) He's Dark Channel prior
algorithm. (c) Pu's Improved DCP algorithm. (d) Wang's fast

adaptive histogram equalization algorithm. (e) Cai's DehazeNet
algorithm. (f) Proposed method

Figure6. Comparison of different methods on images of
mountains: (a) Original hazy UAV image. (b) He's Dark

Channel prior algorithm. (c) Pu's Improved DCP algorithm. (d)
Wang's fast adaptive histogram equalization algorithm. (e) Cai's

DehazeNet algorithm. (f) Proposed method

The dehazing effect of the algorithm proposed in this study was
better than that of the commonly used image dehazing
algorithms. Due to the introduction of the color recovery
module, the overall picture brightness is basically appropriate,
and the colors of red and blue buildings in the distance are more
natural. The hazy on the mountain was completely removed,
and the red markings on the road were clearly restored.
The rough transmittance estimate was optimized by a
compensation function, which eliminates haze in the mountain
section. The MLP algorithm was used to make the coarse
transmittance estimation among the pixels more average, and
the halo phenomenon in the depth of field was obviously
eliminated. The image processed by the proposed method had
natural color, in addition to having a good dehazing effect, it
was more in line with the brightness of human visual habits.

4.2 Objective Numerical Analysis

In this study, three indicators commonly used in image dehazing
quality evaluation were selected to evaluate the effective of the
proposed. They were the mean square error (MSE), the peak
signal-to-noise ratio (PSNR), and the structural similarity
(SSIM). Where MSE represents the root mean square error
between the original image and the enhanced image. The
smaller the value, the better the algorithm. The formula is as
follows:

21 1

0 0

1 [ ( , ) ( , )]
mn

m n

i j

MSE I i j P i j
 

 

  , (15)

where m = the length of the image
n = the width of the image
I = enhanced image
P =original image
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PSNR is a method to measure the relationship between the
original image and the processed image from a statistical point
of view, and calculate the difference between the corresponding
pixel gray values of the original image and the processed image.
The larger the value, the smaller the degree of image distortion
and the smaller the noise. Since MSE is the average energy of
the difference between the real image and the noisy image, and
the difference between the two is noise, PSNR is the ratio of the
peak signal to MSE, and its formula is as follows:

2

1010* log ( )IMAXPSNR
MSE

 , (16)

PSNR is simple to calculate, but it only depends on the
statistical point of view to consider the difference between the
corresponding pixels of the processed image and the original
image, while ignoring the relationship between pixels and pixels,
which makes it different from the subjective evaluation results.
SSIM unifies image brightness, contrast and features as image
evaluation parameters, because it is more in line with the visual
structure of the human eye, and this method can obtain
evaluation results that are basically consistent with subjective
evaluation. The principle is to define the images before and
after processing as X and Y , and calculate and obtain the
brightness information ( , )L X Y , contrast information
( , )C X Y and structural information ( , )S X Y of the image

according to the following formula:

1
2 2

1

2( , ) X Y

X Y

CL X Y
C

 
 




 
, (17)

2
2 2

2

2( , ) X Y

X Y

CC X Y
C

 
 




 
, (18)

3

3

( , ) XY

X Y

CS X Y
C


 





, (19)

where X = mean of image X

Y = mean of image Y

X = standard deviation of image X

Y = standard deviation of image Y

XY = covariance of image X and image Y

1C , 2C , 3C = constant
In summary, the SSIM formulas of the images X and Y are
defined:

( , ) * ( , ) * ( , )SSIM L X Y C X Y S X Y   , (20)

where  ,  ,  = parameters for adjusting specific gravity
settings
The value of SSIM is between 0 and 1, and the closer it is to 1,
the smaller the distortion is when the processed image is
compared with the original image.
The effect of the proposed method was better than the above
image dehazing algorithms, as shown in Table 1.

Algorithms (a)Rivers (b)Buildings (c)Mountains
MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

Dark Channel
prior 1933.7 15.2669 0.2862 1923.4 15.2902 0.3127 2408.9 14.3127 0.3188

Improved
Dark Channel 5253.5 10.9263 0.1520 3269.9 12.9855 0.6209 3906.5 12.2129 0.5745

Adaptive
Histogram 1249.3 17.1641 0.2889 1810.5 15.5527 0.2525 1775.5 15.6377 0.2599

DehazeNet 4230.9 11.8665 0.6036 3269.9 12.9855 0.6209 3906.5 12.2129 0.5745
Proposed
method 1700.7 15.8245 0.6991 1117.5 17.6485 0.7341 1090.7 17.7536 0.7310

Table 1. Evaluation results of each algorithm on UAV images dehazing of ground objects: (a) In the processing of rivers. (b) In the
processing of buildings. (c) In the processing of mountains.

In the processing of rivers, the PSNR of the proposed method
was inferior to the adaptive histogram equalization and the
SSIM value was the highest. It showed that the PSNR indicator
only measured the relationship between the original image and
the processed image from a statistical point of view, but lacked
the consideration of the relationship between pixels, which
made the evaluation results have certain errors. In the image
processing of buildings and mountains, the three evaluation
indicators (MSE, PSNR and SSIM) of dehazing effects selected
in this paper are all optimal. Especially in the image processing
with mountains, the SSIM of the proposed method was 0.731,
which was much higher than the other four dehazing methods. It
indicated that the proposed method can more effectively achieve
dehazing and improve the accuracy of subsequent processing
when monitoring mountain landslides.

5. CONCLUSION

Starting from the principle of dark channel, this study clarifies
the degradation of UAV images caused by haze weather. By

optimizing the estimated value of atmospheric light and
transmittance value, it makes up for the problem of image color
distortion caused by the traditional dark channel dehazing
method for large-area rivers, buildings and other objects. Using
MLP to refine the contour of the ground object while improving
the efficiency of the algorithm, thereby further improving the
overall effect of image dehazing. The experimental results show
that the image processed by the proposed method has natural
color, more vivid details, and more prominent detail intensity
and tone restoration effect. The contrast of the processed image
is good, the color saturation and authenticity are effectively
maintained, and the detailed information of the mountain
recorded by the image is better restored, which can provide a
real data basis for slope monitoring. However, the results of the
proposed method is not ideal when processing images with
rivers. This aspect has yet to be further studied.
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