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ABSTRACT: 

Long term coal mining produces pollutants such as coal gangue, coal mine gas and mine water. With the rapid urbanization, the 

increased environmental burden has led to the deterioration of environmental pollution problems, which seriously restricts the 

harmonious and sustainable development of the ecological economy. In order to understand the changes of the ecological environment 

in Shanxi Province in the past seven years, this paper selects the ground remote sensing data of Shanxi Province in the winter of 2013- 
2019 to obtain remote sensing ecological indicators (RSEI) that comprehensively reflect the ground ecological status, and uses spatial 

autocorrelation and geological detectors to explore the driving factors of the ecological environment differences in Shanxi Province, 

revealing the dynamic mechanism of the RSEI differences in Shanxi Province. The results show that the overall ecological environment 

quality in winter in Shanxi Province has a downward trend from 2013 to 2017 and an upward trend from 2018 to 2019. The spatial 

distribution of ecological environment quality between 2013 and 2019 is positively correlated. The clustering and outlier analysis 

chart of RSEI shows that in the seven years from 2013 to 2019, there are stable high value clusters in the north of Shanxi Province, 

while there are more low value clusters in the south. The significance test results show that the output value of the primary industry 

and the output value of the secondary industry dominated from 2013 to 2019. 

1. INTRODUCTION

Energy security is an important issue in the world today. As an 

oil-poor country, China's energy structure of "more coal, less oil 

and less gas" determines the important position of coal in the 

energy structure. Coal is China's basic energy and important raw 

materials. In 2019, the national raw coal output accounted for 

68.6% of the total disposable energy in the country. Coal has 

made an important contribution to ensuring the rapid economic 

and social development of China. Shanxi Province is rich in 

mineral resources and has exported coal resources to the country 

for a long time. However, coal mining produces pollutants such 

as coal gangue, coal mine gas and mine water, which will also 

cause surface subsidence and soil erosion. Under the background 

of rapid changes in the ecological environment, environmental 

problems such as soil pollution, air pollution and water pollution 

are getting worse and worse, seriously restricting the harmonious 

and sustainable development of the ecological economy. Remote 

sensing is different from the traditional field survey method and 

has the characteristics of multi-scale, multi temporal and large-

scale observation. With the progress of remote sensing 

technology, the timeliness, availability and effectiveness of 

remote sensing data have been greatly improved. Ecological 

monitoring based on ecological parameters retrieved from 

remote sensing has become a hot research topic for scholars. 

There are various ecosystems, and the technology of dynamic 

monitoring of ecological quality based on remote sensing has 

experienced a development process from simple to complex, 
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from one-sided to comprehensive. Early scholars proposed 

single indicator evaluation method based on remote sensing to 

monitor the ecological environment, for example, the 

normalized difference vegetation index (NDVI) is used to 

monitor vegetation growth (KAUFMAN and TANRE, 1992; Lu 

et al., 2016); The modified normalized difference water index 

(MNDWI) (Singh et al., 2015) is used to extract the range of 

water bodies, and can be used to monitor the changes of water 

borders between years (Gao, 1996; Xu, 2006); The Forel-Ule 

Index (FUI) (Garaba et al., 2015) is an important indicator of the 

water quality, and is related to the water cleanliness and 

eutrophication status; The Land surface temperature (LST) 

(Yang et al., 2016), as a substitute of the surface temperature, is 

used to retrieve the surface thermal environment, which 

indirectly solves the deviation in the remote sensing estimation 

of the surface temperature, and is widely used in the urban heat 

island effect. 

With the further understanding of the ecosystem, scholars found 

that the ecological indicators based on remote sensing retrieval 

reflect the changes of single aspect of the ecosystem in time and 

space. Therefore, single indicator ecological quality monitoring 

cannot reflect the spatio-temporal changes of the whole 

ecosystem (Xu et al., 2019). Canadian Statistician David J. 

Rapport and Tony Friend put forward the Pressure State 

Response (PSR) model in 1979. This model comprehensively 

considers environmental pressure, environmental state and 

social response indicators, and is widely used in the field of 

ecosystem evaluation. For example, the ecological environment 
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status index (EI), the Scaled Drought Condition Index(SDCI) 

(Rhee et al., 2010), the Aggregate Drought Index (ADI) 

(Keyantash and Dracup, 2004) and MODIS Global Disturbance 

Index(MGDI) (Mildrexler et al., 2009). The comprehensive 

ecological assessment model can more comprehensively reflect 

the ecological statuses studied. However, the PSR model couples 

multiple indicators through the weighting method, and the 

determination of weights is entirely based on expert experience. 

Therefore, the comprehensive indicators generated through this 

process have the shortcomings of arbitrariness and subjectivity. 

Xu (Xu et al., 2018) proposed that the use of principal 

component analysis (PCA) can avoid the risk of artificially 

determining weights, which is more objective than the analytic 

hierarchy process (AHP), and uses PCA to couple the four 

indicators of greenness, humidity, dryness, and heat to generate 

Risk-Screening Environmental Indicators (RSEI) completely 

based on remote sensing data. The application of this index to 

evaluate the ecological status of Fuzhou, China, shows that RSEI 

can effectively reflect the regional ecological quality. In addition, 

RSEI is completely based on remote sensing data, which is 

characterized by rich data and easy access and excluding 

subjective weight setting. It is widely used in watershed (Li et 

al., 2022; Yang et al., 2021), plain (Ren et al., 2022), city (Hang 

et al., 2020; Tang et al., 2021), oasis (Gao et al., 2020) and other 

regions. 

 

Xu (Xu et al., 2019) uses the sharpened surface temperature 

image to improve RSEI, Specifically, he monitors the ecological 

changes in Fujian Province, China, from 2002 to 2017 by 

generating the RSEI time series that reflect the ecological status, 

and conducting spatial autocorrelation and change vector 

analysis on the time series. Yue (Yue et al., 2019) observed the 

ecological quality changes of 35 major cities in China by using 

the RSEI index, quantified the ecological quality of Beijing by 

combining the principal component analysis with the random 

forest algorithm, and analyzed the relationship between the RSEI 

and the four ecological indicators. Yuan (Yuan et al., 2021) and 

Xiong (Xiong et al., 2021) respectively inverted the ecological 

quality of Dongting Lake Basin and Erhai Basin based on RSEI, 

and Zheng (Zheng et al., 2020) evaluated the long-term 

ecological status of China's coastal areas based on RSEI. Xu (Xu 

et al., 2018)explored the relationship between impervious 

surface and RSEI to explore the connection between population 

growth and impervious surface, and fitted the model to predict 

the coming population and the ecological impact of impervious 

surface growth in Xiong’an New Area.  

 

The long-term coal mining in Shanxi Province has caused 

serious pollution to the local ecological environment. Based on 

the characteristics of the main sources of ecological pollution in 

Shanxi Province, this paper uses the PCA method to couple the 

four ecological indicators of greenness, humidity, heat and 

dryness to obtain a comprehensive ecological quality index that 

reflects the ecological status of Shanxi Province. This index is 

used to monitor the land ecological status of Shanxi Province for 

a long time, periodically and comprehensively, It can provide 

scientific basis for the local government to formulate ecological 

restoration and protection policies. 

 

2.  MATERIALS AND METHODS 

2.1 Study area 

Shanxi Province is located on the east bank of the middle reaches 

of the Yellow River and on the Loess Plateau to the west of the 

North China Plain. It is bounded by Taihang Mountain in the east 

and adjacent to Hebei; Shaanxi and Henan are bordered by the 

Yellow River in the west and south, and Inner Mongolia is 

bordered by the Great Wall beyond the north, between 34 ° 34 ′ 

- 40 ° 44 ′ north latitude and 110 ° 14 ′ - 114 ° 33 ′ east longitude, 

with a total area of 156700 square kilometers. Shanxi Province 

has complex geomorphic types, including mountains, hills, 

platforms and plains. Mountains and hills account for 80% of the 

total area of the province, while plains and valleys account for 

20% of the total area. Most areas of the province are above 1500 

meters above sea level. This area belongs to temperate 

continental monsoon climate zone. In recent years, the annual 

precipitation of Shanxi Province has increased year by year.  

 

Figure 1.  Location and the elevation of Shanxi Province. 

 

2.2 Data and Pre-processing 

The GEE platform is used to collect and process 

Landsat8OLI/TIRS images provided by the United States 

Geological Survey Center (USGS). In order to avoid the 

uncertainty caused by seasonal changes, the Landsat8 

Collection2Level 2 surface reflectance data with cloud content 

less than 10% in the winter of 2014 to 2020 is screened. The data 

has been subject to radiation correction, atmospheric correction 

and other operations. In addition, the precipitation and 

temperature data are from the fifth generation reanalysis data 

(ERA-5), the digital elevation data are from the NASA-DEM 

dataset, and the GDP, the primary industrial output value, and 

the secondary industrial output value are from the statistical 

yearbook of Shanxi Province. 

 

In the pre-processing stage, the Landsat8 satellite data was cloud 

masked by the mask function (CFMASK), and the water body 

was masked by the improved normalized water body index 

(MNDWI) (Xu, 2006). At the same time, era-5 data, NASA-

DEM data, Shanxi Statistical Yearbook and other data are 

selected to study the driving factors of spatial and temporal 

changes of RSEI.  
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Figure 2.  comprehensive risk assessment technology 

roadmap of Shanxi Province. 

 

2.3 Methods 

2.3.1 Construction of RSEI model: The comprehensive 

indicator RSEI based on the Pressure State Response (PSR) 

framework objectively assigns weights to the five indicators 

through PCA, avoiding the disadvantage of experts setting 

weights. In specific operation, NDVI represents greenness, and 

the third component of tassel cap transformation is humidity, 

LST represents heat, and NDBSI represents dryness. The 

calculated four indicators are respectively de outliers, 

normalized, and then linearly weighted to obtain the 

comprehensive indicator RSEI, in which the indicator weight is 

the feature vector corresponding to each feature value(Kim et al., 

2021; Kotzee and Reyers, 2016). To sum up, the index has the 

advantages of objectivity, stability and visualization, and can 

quickly and scientifically express the surface ecological status. 

 

The PCA is used to couple the information of the four ecological 

indicators, and the first principal component band with the 

highest contribution rate is selected for normalization to obtain 

the remote sensing ecological index (RSEI). The RSEI 

calculation formula is as follows: 

 

𝑅𝑆𝐸𝐼0 = 𝑓(𝑁𝐷𝑉𝐼, 𝑊𝐸𝑇, 𝑁𝐷𝐵𝑆𝐼, 𝐿𝑆𝑇) ; 

 

𝑅𝑆𝐸𝐼 =
(𝑅𝑆𝐸𝐼0−𝑅𝑆𝐸𝐼0𝑚𝑖𝑛

)

(𝑅𝑆𝐸𝐼0𝑚𝑎𝑥−𝑅𝑆𝐸𝐼0𝑚𝑖𝑛
)
 ,   (1) 

 

Among them, 𝑅𝑆𝐸𝐼0 represents the remote sensing ecological 

index before normalization, and 𝑅𝑆𝐸𝐼  represents the remote 

sensing ecological index after normalization. According to the 

interval of 0.2, the RSEI values are divided into five categories: 

poor (0-0.2), average (0.2-0.4), moderate (0.4-0.6), good (0.6-

0.8) and excellent (0.8-1). The larger the RSEI value, the better 

the ecological environment. 

 

2.3.2 Model index inversion:  (1) Greenness：NDVI 

reflects the growth status and biomass indicators of surface 

vegetation, and is widely used in vegetation coverage 

research and crop growth monitoring (Li et al., 2022). 

Therefore, NDVI is used as the greenness index in this study. 

The calculation formula is as follows: 

 

𝑁𝐷𝑉𝐼 = (𝐵2 − 𝐵1)/(𝐵1 + 𝐵2) ,  (2) 

 

Where, B1 and B2 are the red band and near-infrared band of 

Landsat 8 products respectively. 

 

(2) Dryness：With the intensification of urbanization and human 

activities, green space is gradually replaced by buildings and 

bare land, which leads to the reduction of urban vegetation 

coverage. With the combined effect of urban heat island effect 

and greenhouse effect, the dryness of the ground increases and 

the environmental conditions deteriorate. In order to measure the 

dryness of the surface, Hu and Xu's index based cumulative 

index (IBI) and soil index (SI) can be used to construct a 

standardized differential cumulative and bare soil index (NDBSI) 

to represent the dryness of RSEI. The calculation formula is as 

follows: 

 

𝑆𝐼 = ((𝐵1 + 𝐵6) − (𝐵2 + 𝐵3))/((𝐵1 + 𝐵6) + (𝐵2 + 𝐵3)) ; 

 

𝐼𝐵𝐼 = (2 ∗
𝐵6

𝐵6+𝑏2
− (

𝐵2

𝐵1+𝑏2
+

𝐵4

𝐵4+𝑏6
))/(2 ∗

𝐵6

𝐵6+𝑏2
+

(
𝐵2

𝐵1+𝑏2
+

𝐵4

𝐵4+𝑏6
)) ; 

 

𝑁𝐷𝐵𝑆𝐼 = (𝑆𝐼 + 𝐼𝐵𝐼)/2 ,  (3) 

 

Where, B1-6 is the red band, near infrared band, blue band, green 

band and mid infrared band 1 of Landsat8 product respectively. 

 

(3) Humidity：The tassel cap transformation generates three 

components: humidity, greenness and brightness. The third 

component of humidity can reflect the ground water content. In 

addition, large areas of water have a great impact on the humidity 

index. Generally, the water mask operation is performed before 

calculating the humidity. The humidity component is calculated 

as follows: 

 

WET = B1 ∗ 0.1147 + B2 ∗ 0.2489 + B3 ∗ 0.2408 + B4 ∗
0.3132 − 0.3122 ∗ B5 − 0.6416 ∗ B6 − 0.5087 ∗ B7 ,   (4) 

 

Where, B1~7 are respectively the red band, near infrared band, 

blue band, green band, mid infrared band 1 and mid infrared 

band 2 of Landsat8 products. 

 

(4) Heat：Temperature reflects the heat index of a region and 

affects the exchange of sensible and latent heat between the 

ground, atmosphere and water body. It is a very important 

ecological indicator in the ecological environment. As the 

surface temperature is difficult to obtain, this study uses the 

temperature product Landsat8 launched by NASA to replace it. 

This product reflects the land surface temperature, with a time 

resolution of 16 days and a spatial resolution of 1000m, and is 

widely used in land ecological environment monitoring. 
 

2.3.3 Spatial autocorrelation analysis: According to the first 

law of geography: "Everything is related to other things, but 

things near are more relevant than things far away.". In order to 

explore the spatial distribution of ecosystem monitoring results, 

this paper uses spatial autocorrelation to test whether RSEI is 

related to its adjacent spatial RSEI. The spatial correlation of 

RSEI was analyzed by Moran index and local Moran index. The 

global Moran index reflects the correlation of adjacent spatial 

values in the global range. The value range of the index is - 1~1. 

Negative numbers represent negative correlation and positive 

numbers represent positive correlation. The closer the absolute 

value of the Moran index is to 1, the stronger the spatial 

autocorrelation of the attribute values in the region is. The 

calculation formula is as follows: 

 

𝐺𝑙𝑜𝑏𝑎𝑙𝑚𝑜𝑟𝑎𝑛′𝑠𝐼 =
𝑚∗∑ ∑ 𝑊𝑖𝑗(𝐷𝑖−𝐷̅)(𝐷𝑗−𝐷̅)𝑚

𝑗=1
𝑚
𝑖=1

∑ ∑ 𝑊𝑖𝑗(𝐷𝑖−𝐷̅)2𝑚
𝑗=1

𝑚
𝑖=1

  ,  (5) 
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After the global Moran index calculates that the study area has 

spatial autocorrelation, the local Moran index can be used to 

analyze whether the study area has spatial heterogeneity. If there 

is no global spatial correlation, the local Moran index can also 

be used to find the area with local spatial autocorrelation. The 

calculation formula is as follows: 

 

𝐿𝑜𝑏𝑎𝑙𝑚𝑜𝑟𝑎𝑛′𝑠𝐼 =
(𝐷𝑖−𝐷̅)∗∑ 𝑊𝑖𝑗(𝐷𝑗−𝐷̅)𝑚

𝑗=1

∑ (𝐷𝑖−𝐷̅)2𝑚
𝑖=1

  ,  (6) 

 

Where, m is the total number of pixels, 𝐷𝑖 and 𝐷𝑗 respectively 

represent the RSEI at location i and j, 𝐷̅ represents the average 

value of RSEI in the study area, and 𝑊𝑖𝑗  represents the spatial 

weight. 

 

2..3.4 Geodetector: Geographic detectors include factor 

detectors, interaction detectors, risk detectors, and ecological 

detectors. This paper uses geographic detectors to study the 

spatial differentiation of six factors, elevation, slope, greening, 

humidity, dryness, and heat, and Shanxi the variance of the total 

region, then it can be RSEI. The principle is that the spatial 

distribution of independent variables and dependent variables 

should be consistent. If the variance of a sub region is less than 

considered that there is spatial differentiation in the region. 

The q value of the factor detector indicates the relative 

importance of the factor to RSEI in the study area. The greater 

the q value, the greater the importance of the factor. This method 

can be used to determine the driving factors of ecological quality 

in Shanxi Province. The calculation formula of q value is as 

follows: 

 

𝑞 = 1 −
∑ 𝑁𝑗𝜎𝑗

2𝑀
𝑗=1

𝑁𝜎2
    (7) 

 

Where 𝑁𝑗  and  𝜎𝑗
2 are the sample number and variance of the 

factor labeled j, 𝑁 and 𝜎2 are the sample number and variance 

of the dependent variable in the whole study area. 

 

3.  RESULTS 

3.1 RSEI  

As shown in Figure 3, The seven years' RSEI results from 2013 

to 2019 are classified using 0.2 interval, that is, 0-0.2 is Class 1 

(Poor), 0.2-0.4 is Class 2 (Fair), 0.4-0.6 is Class 3 (Moderate), 

0.6-0.8 is Class 4 (Good), and 0.8-1 is Class 5 (Excellent). The 

classification display is shown in Figure 3. It can be seen from 

the figure that most of the regions in 2013-2014 fall into two 

categories: Category 2 and Category 3. Since 2015, Category 3 

has decreased significantly, and Category 2 has occupied a large 

area of Shanxi Province. In 2015, there were 5 types in the north. 

In 2016-2017, 2 types occupied most of the area. In 2018, the 

north began to recover 3 types, sometimes 4 or 5 types. It can be 

seen from the winter mean value table in Figure 4 that the two 

years 2013-2014 were the highest value of RSEI in Shanxi 

Province. In winter 2015, RSEI dropped sharply, and after 2015,  

it showed a slow rise. 

 
Figure 3.  RSEI map of Shanxi Province for winter 2013-

2019 

 
Figure 4.  Average curve of RSEI of Shanxi Province for 

winter  

 

3.2 Spatial autocorrelation 

In order to reflect the global spatial distribution pattern as much 

as possible, this paper uses fishing nets to sample the seven year 

winter RSEI results to obtain 1506 sampling points, and extracts 

the corresponding RSEI values of the sampling points for spatial 

distribution pattern analysis. Specifically, the invalid values of 

the sampled RSEI values are eliminated, and the global and local 

autocorrelation of the sampled RSEI values are analyzed using  

spatial autocorrelation. The results are as Table 1. 

Table 1.  spatial autocorrelation of Shanxi Province 

 

It can be seen from Table 1 that the spatial autocorrelation P 

values in the seven years from 2013 to 2019 are all 0, so the null 

hypothesis is rejected, that is, the spatial pattern presented by the 

data has a significant spatial structure, and the z scores are far 

greater than 2.58 in the seven years, that is, the probability of 

randomly generating this cluster pattern is less than 1%, and the 

Moran index is greater than 0, and the RSEI shows a positive 

spatial correlation in Shanxi Province. The spatial aggregation 

result obtained by using local spatial autocorrelation is shown as 

Figure 5. 

Year Moran’I P z Correlation 

2013 0.23 0 8.59 positive 

2014 0.28 0 10.6 positive 

2015 0.5 0 25.0 positive 

2016 0.36 0 13.6 positive 

2017 0.36 0 13.4 positive 

2018 0.51 0 26.0 positive 

2019 0.54 0 27.0 positive 
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Figure 5.  Geodetector results of Shanxi for 2013-2019 

 

It can be seen from the above figure that in 2014, the low value 

of 2016,2019,2020 was concentrated in the southeast, while the 

northwest was more concentrated in the high value. The high 

value in 2017,2018 is mainly distributed in the middle of the 

province, while the low value is closer to the junction of Shaanxi 

and Hebei. In 2015, low values were mainly distributed in the 

southwest, while high values were distributed in the north of 

Shanxi Province. From the attribute value statistics table in the 

following table, it can be seen that the number of high value 

clusters in 2014-2020 is generally increasing year by year, with 

a sharp increase in 2016. The low value aggregation statistical 

value is relatively irregular, increasing year by year in 2014-

2016 and then decreasing, and the number of low values and high 

values in 2017-2020 have similar increase and decrease laws. It 

can be seen from Figure 4 that the overall trend of high value 

aggregation is rising, and it should also be noted that low value 

aggregation has a consistent trend of change. 

 

3.3 Geodetector  

The factor detector results for 2013-2019 are as follows： 

Table 2.  Geodetector results of Shanxi Province for 2013-

2019 

 

4.  CONCLUSION 

There are two different trends in the north and southeast of 

Shanxi Province. The RSEI in the north is high value 

aggregation in spatial mode, while the RSEI in the southeast is 

low value aggregation in spatial mode. From the perspective of 

administrative region, northern Shanxi is the traditional coal 

mining area of Datong City. As a "resource-based city", Datong 

takes coal mining as the leading industry. After the early 

predatory mining, the single industrial structure tends to collapse. 

In 2005, it was reported that Datong is facing a situation of 

resource depletion. The time range selected in this study is 2013-

2019. Datong City changes its industrial structure after resource 

depletion, The ecological environment has been restored to a 

certain extent. With the growth of time, the high value of RSEI 

has gathered here. 
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