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ABSTRACT: 

Due to its wide scope, rapid development and high hazard, remote sensing images with a single time phase and local area coverage 

cannot meet the needs of large-scale flood detection. The problem of large-scale flooding emergency detection can be well solved by 

using Google Earth Engine (GEE) platform, which has the characteristics of fast data computing speed, easy image retrieval and rich 

remote sensing data. In this paper, we propose a method for flood detection using Sentienl-1 imagery based on the GEE platform, 

which can quickly accomplish a large scale flood detection. The method was validated in a flooding event that occurred around the 

Pearl River basin, China in June 2022. It shown that using the proposed method can not only meet the needs of basin-wide flood 

detection, but also extract information on the temporal dimension of the flood development status. 

1. INTRODUCTION

Every year, a large number of flooding events occur around the 

world, and it is very important to obtain accurate and fast 

flooding information to reduce the damage. Remote sensing 

technology is an important tool for more thorough perception 

and understanding of natural disasters, because combining 

multi-source remote sensing images enables accurately extract 

flood disaster information. Mirela et al. [25] provides new ideas 

for the extraction of floods of short duration, which used a 

combined multi-satellite approach to rapidly detect occurring 

floods. Chohan et al. [7] combined remote sensing (RS) and 

Geographic Information System (GIS) technology to analyse 

the sinuosity index of the river channel, providing auxiliary 

information on the river morphology for the flood disaster 

management. In addition, flood disaster research based on 

geospatial information, such as identification of homogeneous 

areas of flash floods[33] and assessment of susceptibility to 

mountain torrents[32], is helpful for flood disaster management. 

At present, remote sensing satellite resources are becoming 

more and more abundant. Higher resolution of remote sensing 

images and more adequate time series images are beneficial for 

more comprehensive and finer monitoring and assessment of 

flooding hazards. How to use long-time series and large-scale 

remote sensing images to realize flood disaster monitoring at 

the basin level is an important research topic. 

Due to the strong computing power, fast data processing, and 

comprehensive database, more and more scholars conduct 

remote sensing image processing research based on Google 

Earth Engine (GEE). Gong et al. [19] developed the global land 

cover data product (GLASS-GLC) with 5 km spatial resolution 

and 34 years by using the Global Land Surface Characteristic 

Reference Dataset (GLASS CDR) from 1982 to 2015 with the 

GEE. Canty et al. [3] analysed long time series of dual-

polarized SAR images in the GEE platform to implement 

applications for monitoring changes in various human activities 

and natural disasters. Ben et al. [9] innovatively used the GEE 

platform for rapid detection of flooding events on Sentinel-1 

SAR images and Landsat images. Guo et al. [2] analysed the 

changes of water bodies within one year using Sentinel 1 and 

Sentinel 2 remote sensing images based on GEE, which 

effectively detected different types of flood information.  

Yan et al. [31] analysed the dynamic change information of 

water bodies in the Yangtze River basin between 2016 and 2020 

based on the results of multi-temporal water body extraction 

from SAR images of long time series. Peter et al. [23] proposed 

a flood depth estimation tool (FwDET) that can provide flood 

depth calculations for flood hazards in a very short period of 

time. Therefore, it is feasible to monitor flood with large scale 

SAR images in GEE platform.  

The core of flood monitoring is to detect the changing state of 

water bodies in the same location. By studying the change 

detection algorithm of SAR images, many scholars have 

realized the direct detection of the change state of water bodies 

in remote sensing. SAR change detection includes methods that 

implement change detection based on difference images (DI), 

and methods that use deep convolutional networks to extract 

diachronic features and predict change information. DI-based 

change detection methods, such as PCA-Kmeans [4], 

GaborTLC [15], NRELM [11], relies on the differentiation of 

DI features and does not work well in regions with complex 

backgrounds. The change detection (CD) method based on deep 

convolutional network can meet the tasks of heterogeneous 

image change detection [30] and building change detection [20], 

but it is generally limited by the difficulty of sample acquisition.  

The test data of these methods are generally remote sensing 

images with a single background, which do not match with the 

actual application scenarios [12]. 

At present, the most dominant flood detection method is to 

extract the multi-temporal water body and then compare the 

water body change state. The methods of water body extraction 

using remote sensing images are mainly divided into two 

categories, threshold segmentation method and deep learning 

method. By testing the water extraction accuracy of SAR 

images with HRNet [27], DenseNet [14], SegNet [1], Resnet 

[13], DeepLab V3+ [5], bimodal threshold segmentation, and 

the Otsu algorithms [22], Dong et al. [10] chose HRNet as the 

optimal water extraction method to made a detailed analysis of 

the summer flood of Poyang Lake in China in 2020. Wang et al. 

[28] proposed a deep convolutional  network for water 

extraction from SAR images (FWENet), and the experimental 
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results showed that the accuracy of FWENet water extraction 

was better than the classical deep learning networks UNet, 

UNet++ and DeepLab v3 algorithms, and the method was used 

to successfully analyze the development of flooding in Poyang 

Lake in 2022. The deep learning algorithm for water extraction 

also achieves good accuracy in optical remote sensing images [8, 

16, 17, 29]. But they all require a large number of labelled 

samples and the network model is computationally intensive. 

Compared to advanced deep learning algorithms, the improved 

threshold segmentation method has the advantages of simplicity 

and speed. Chini et al. [6] proposed a hierarchical split-based 

approach to achieve a parametric fit of two types of distribution 

functions for background and target. Due to the difference of 

backscattering between water bodies and other classes in SAR 

images, the threshold method to extract water bodies in SAR 

images has the advantage of simplicity and speed. Nagai et al. 

[21] created a new water body index (NoBADI) that removes 

seasonally fluctuating uncertain water bodies in flooded water 

bodies. Liang and Liu [18] proposed a new local threshold 

method to extract water body boundaries by finely dividing 

according to the GAMMA distribution of each feature and 

water, and achieved high accuracy water body boundary 

extraction by hydrological constraint post-processing. Vanama 

et al. [26] proposed a Normalized Change Index (NCI) to 

extract the flood extent by calculating the difference in 

backscatter coefficients between the before and after flood in 

combination with the Otsu threshold method. 

However, the large-scale flood detection using remote sensing 

imagery is subject to the complex pre-processing process and 

large amount of computation. In addition, the threshold method 

of water body extraction faces the problem of difficulty in 

distinguishing mountain shadows from water bodies. The above 

problems can be solved using the GEE platform as the GEE 

platform has other geospatial data and long-time series of 

remote sensing images. Flood detection based on the GEE 

platform not only avoids the pre-processing of the dataset, but 

also enables fast processing of multiple images. Meanwhile, the 

shadow area of the mountain can be effectively removed from 

the water body extraction results with the terrain data. 

 

The article proposes a large scale remote sensing flood 

detection method, which is based on the long time series SAR 

images of GEE platform to achieve the identification and 

distinction between flooded water bodies and permanent water 

body areas. The example of the study is the flooding that 

occurred in the Pearl River Basin of Guangdong Province in 

July 2022. Through the experimental results, it is found that the 

method in this paper can achieve the extraction and type 

identification of flooded water bodies in large areas. 

 

2. DATA AND METHODS 

The Pearl River is the largest river system in southern China, 

with the geographical range of 22°8'N~25°39'N and 

103°57'E~113°27'E. It is composed of four separate river 

systems: the Xi River (originating from the Yunnan-Guizhou 

Plateau), the Liuxi River (originating from Conghua City in 

Guangdong Province), the Beijiang River, and the Dongjiang 

River (both originating from Jiangxi Province). These four 

rivers join up in Guangzhou, flow for about 70 kilometres (43.5 

miles), and then pour into the South Sea.  

Due to continuous heavy rainfall, Yingde City in the Pearl River 

Basin experienced a major flood around June 20, 2022. Other 

cities in the Pearl River Basin, such as Shaoguan City, and 

Qingyuan City, also suffered severe floods. Secondary disasters 

such as mountain floods, road damage, flooding of farmland, 

and urban waterlogging occurred in many places.  

It is of great significance to use the advantages of remote 

sensing for large-scale observation to monitor flood disasters in 

the basin. Therefore, this paper takes this flood disaster as the 

study area, as shown in Figure 1. In order to verify the 

effectiveness of the method, two severely affected areas 

(Yingde City and Qingyuan City, Guangdong) were selected for 

more detailed analysis, as shown in the two red rectangles in 

Figure 1. 

 

 

Figure 1 The location of Pearl River in China. 

 

The experimental data are ESA Sentinel-1 C-band dual-

polarization (VV and VH) SAR data. This collection provided 

by the GEE is the corrected and ortho-corrected Ground Range 

Detected (GRD) product generated by the Sentinel-1 Toolbox. 

The time-series information of SAR images is an important 

factor in determining the type of water bodies. The GEE 

platform has powerful computing performance and fast data 

retrieval capability. In order to calculate the frequency of water 

bodies, the experimental data includes 70 Sentinel-1 data 

covering the study area from January 4, 2022 to June 26, 2022. 

Based on the GEE pre-processing, the data were terrain 

corrected and Refine Lee filtered. The details of the data are 

shown in Table 1 

 

Sentinel-1 

Acquisition mode IW 

Polarization VV & VH 

Swath GRD 

Pixel spacing (m) 10 

Spatial resolution(m) 20×22 

Date of Acquisition 

20220104(Pre-flood) 20220109(Pre-flood) 

20220116(Pre-flood) 20220121(Pre-flood) 

20220128(Pre-flood) 20220202(Pre-flood) 

20220209(Pre-flood) 20220214(Pre-flood) 

20220221(Pre-flood) 20220226(Pre-flood) 

20220305(Pre-flood) 20220310(Pre-flood) 

20220310(Pre-flood) 20220317(Pre-flood) 
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20220322(Pre-flood) 20220329(Pre-flood) 

20220403(Pre-flood) 20220410(Pre-flood) 

20220415(Pre-flood) 20220422(Pre-flood) 

20220427(Pre-flood) 20220504(Pre-flood) 

20220509(Pre-flood) 20220516(Pre-flood) 

20220521(Pre-flood) 20220528(Pre-flood) 

20220602(Pre-flood) 20220609(Pre-flood) 

20220614(During-flood) 20220621(During-flood) 

20220626(During-flood) 20220703(Post-flood) 

20220708(Post-flood) 20220715(Post-flood) 

20220720(Post-flood) 20220727(Post-flood) 

Table 1.Sentinel-1 data used for 2022 Pearl River basin 

flood mapping 

 

The flow chart of the proposed method is shown in Figure 2. 

After data selection and pre-processing, all time-series SAR 

images covering the study area from January-July 2022 were 

obtained. In order to better utilize the dual polarization 

information of the sentinel images, the Sentinel-1 Dual-

Polarized Water Index (SDWI) [24] water body index was used 

to extract the water body features of the images. The formula 

for SDWI is as follows: 

 

       (        )     (1) 

 

Where VV represents the VV polarization channel of SAR 

image, VH represents the VH polarization channel of SAR 

image. 

 

Figure 2 Flowchart of this study. 

 

The water body extraction accuracy of sentinel-1 images is 

constrained by the imaging of SAR images and other factors, 

and the threshold of water and land separation is also not fixed. 

Thus we used randomly selected permanent water body samples 

from the Joint Research Centre (JRC) Global Surface Water 

datasets to statistically analyse the SDWI in the SAR images. 

Filter all permanent water samples for SDWI outliers, i.e., 

values greater than 1 and less than 0. Assuming that the SDWI 

value coverage of the water body conforms to a normal 

distribution, the optimal threshold is obtained by calculating the 

mean SDWI value of all samples and subtracting twice the 

standard deviation. Through the statistical analysis, the optimal 

threshold of water was used for rough extraction of water bodies 

from SAR images. 

The accuracy of water bodies extracted using only the threshold 

segmentation method is not high because there are a large 

number of mountain shadows in the SAR images in areas with 

large terrain relief. There is a serious misclassification problem 

between shadows and water bodies of SAR images in water 

body extraction, thus we introduced Slope data in Digital 

Elevation Model (DEM) data and Height Above the Nearest 

Drainage (HAND) data as the basis for distinguishing water 

bodies and shadows. After masking the area with slope greater 

than 20 and HAND greater than 20, we get relatively fine water 

extraction results. 

After extracting the water bodies from the SAR images of each 

time phase from January 2022 to July 2022, we can obtain the 

multi-temporal water body results of the Beijiang River basin in 

the Pearl River. The water frequency statistics are calculated at 

the pixel level for the water body extraction results of multiple 

temporal. The water frequency equation is shown below: 

 

  (  ) (    )        (2) 

 

Where F represents the frequency value of the water body,    

represents the sum of images of a pixel identified as water in all 

time phases, and      represents the sum of images of that pixel.  

With seasonal changes, the area where the surface is a water 

body changes considerably during the year. The boundary areas 

of water bodies change during periods of high and low water. 

Areas where the surface is covered by water for a long period of 

time can be classified as permanent water bodies. Therefore, the 

identification of permanent water bodies is performed based on 

the water body frequency map F.  

The F threshold for determining whether it is a permanent water 

body varies with the specific geographical location of different 

regions. By comparing with the JRC data analysis, it was 

revealed that the area can be identified as permanent water 

bodies when the frequency of the water body is greater than 

60%.Thus, this region uses 60% as the reference threshold. 

When F is less than a certain reference value and the area of the 

water body is significantly enlarged, flooding is more likely to 

occur in the region. By identifying the category of water bodies 

from SAR images at the time of possible flooding, a large-scale 

flood detection mapping can be quickly obtained 

 

3. RESULTS 

During watershed flood disasters, there is a correlation between 

upstream and downstream floods. Therefore, it is necessary to 

use remote sensing images to realize global flood dynamic 

monitoring. In order to verify the effectiveness of the proposed 

method, the experimental section takes the large-scale flood 

disaster in the Pearl River in China in June 2022 as an example 

to monitor the flood disaster range in the Beijiang River Basin. 

We took Beijiang in the Pearl River Basin as the area of interest 

and retrieved a total of 70 Sentinel 1 SAR images from January 

to July 2022. Using the GEE platform to quickly realize the 

mosaic of time series remote sensing images in the study area. 

After that, we performed terrain correction pre-processing on 

the SAR image set using NASA Shuttle Radar Topography 

Mission (SRTM) digital elevation data, and image noise 

filtering using RefinedLee algorithm. The above pre-processing 

operations can remove the interference of some noise and hill 

shadows on water extraction. 100 points of water body types in 

the JRC were randomly selected, and the backscattering 

coefficients of the SAR image set were statistically analyzed 

according to the point information. Finally, the segmentation 

threshold of the optimal backscattering coefficient for water 

extraction in this area can be obtained. The water bodies of 

long-time series SAR images are extracted by threshold 
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segmentation method, and hill shadows are removed by 

topographic data. After the water frequency map is calculated 

from the multi-temporal water extraction results, the flood 

disaster area in the Pearl River Basin can be extracted. The 

results of water body type identification and flood intrusion 

extent of the whole Beijiang basin can be obtained within a few 

minutes. June 20 was the most severely affected day in the 

study area, but since there was no SAR image coverage on that 

day, flood extent mapping was performed on the June 14 image, 

when the flooding had just begun. The detection results of the 

flood disaster range in the Beijiang River Basin are shown in 

the Figure 3.  

 

Figure 3 The extent of flooding in the Beijiang basin of the 

Pearl River. 

Blue areas are identified permanent water bodies, where the 

frequency of water bodies is greater than 60%. The red areas are 

the extent of the increased water body on June 14. The map on 

the left shows the distribution of flooding in the Beijiang River 

basin of the entire Pearl River. The right two images are flood 

detection maps around Yingde City and around Qingyuan City, 

which were severely attacked by floods in the Pearl River Basin. 

As can be seen from the Figure 3, there are a large number of 

increased water bodies around Yingde city and Qingyuan city. 

The extent of the increased water bodies in Qingyuan is greater 

than the extent of the increased water bodies in Yingde, and all 

distributed in the tributary basins of the Beijiang River. The 

flooded areas are located at the confluence of rivers that are 

most obvious in Qingyuan City. In the middle reaches of the 

Beijiang River, both sides of the river are mountainous areas, 

with no obvious new water body areas. 

By mapping the flooding of the entire Beijiang River, it is an 

important to judge the development of the whole flood disaster., 

It also can be seen that the proposed method effectively 

removes the shadow interference in the study area, and the 

boundaries of permanent and flooded water bodies are clear.  

In order to show the development of floods more clearly, the 

extent of water bodies during the period before and after the 

floods in Yingde and Qingyuan were mapped. The results are 

shown in Figure 4 and Figure 5. 

The blue area in the figure is the result of water body extraction 

at different moments. It is obvious that the water expanded 

significantly on June 14, and the area of the water body on the 

26th was significantly less than the area of the water body on 

the 14th. This is consistent with the fact that June 20 was the 

most serious flooding event in many parts of the Beijiang River 

basin. The terrain around the study area of Yingde City is 

complex, and the range of water bodies extracted by the 

proposed method effectively suppresses the interference of 

mountain shadows.  

 

Figure 4 Water body extraction results of Yingde. 

 

From the multi-temporal water body extraction results, we can 

see that the edge information of lakes and other types of blocky 

water bodies is well maintained. The river area in Figure 4 is 

effectively extracted as a water body area, and by comparing the 

water body extraction results of different period, it can be 

concluded that the permanent water body in Figure 3 is 

correctly discriminated. The scope of water bodies in Yingde 

City on June 26 basically restored to the same distribution of 

water bodies before the flood. Upstream new water bodies 

recede more quickly compared to downstream receding. There 

were still large bodies of water in Qingyuan City on June 26, 

which is in the downstream. Combining the multi-temporal 

water body extraction results and the flood distribution range 

during the flood, it is clear to see the flood development status 

of the affected area. 

In addition, it can be seen that the proposed method effectively 

solves the problem of false detection of water bodies in 

Qingyuan City due to terrain ups and downs. However, the June 

2 image of Qingyuan City has some errors in the water 

extraction results due to imaging quality problems. The time-

series water distribution maps obtained based on the GEE 

platform provide more information on the development of 

flooding. As shown in Figure 3, the permanent water bodies in 

the region are correctly identified by the processing of the water 

body frequency map. 

 

Figure 5 Water body extraction results of Qingyuan. 
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It is difficult to obtain the development status of the disaster 

from single time phase images due to the development of flood 

monitoring is very fast. The excellent remote sensing image 

calculation capability of GEE platform can analyse the time-

dimensional information of flood monitoring. The results of 

water body extraction based on long time series allow obtaining 

the frequency of water bodies identified as water bodies over a 

period of time in the study area. The frequency maps of water 

bodies in Yingde and Qingyuan from January to July 2022 are 

shown in Figure 6 and Figure 7. 

 

Figure 6 Frequency map of water bodies of Yingde. 

 
Figure 7 Frequency map of water bodies of Qingyuan. 

 

The image represents how often each pixel point was identified 

as a water body during this period. The closer a pixel value is to 

1, the more the pixel can be identified as the permanent water 

body. The results of water body extractions were considered as 

seasonal water bodies, except for permanent water bodies. 

These areas were identified as water bodies less than 60% of the 

time in the long time series. In the frequency map of water 

bodies in Yingde, the frequency of water bodies in the river 

areas are close to 1, while the frequency of water bodies in the 

area where flooding occurred on June 14 is between 0.1 and 0.5. 

In addition, the frequency values of water bodies in the road 

area are approximately between 0.1 and 0.2, indicating that 

roads are also mixed into water bodies in the multi-temporal 

water body extraction results. 

However, it can be found that the water body frequency map 

also has some misdetection problems caused by the shadow of 

the mountain. Permanent water bodies can be effectively 

identified using water body frequency values, but the accuracy 

of water body extraction in a single time phase affects the 

accuracy of flood range detection. Therefore, the selection of 

thresholds for judging flooding and seasonal water bodies still 

needs to be further explored. 

 

4. CONCULSION 

This paper presents a method for large-scale flood monitoring 

using Sentinel-1 imagery based on the GEE platform. The 

method makes full use of the multi-temporal information of the 

Sentinel-1 data to effectively detect the extent of basin flooding 

and to achieve the distinction between permanent water bodies 

and new water bodies in flooding. 
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