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ABSTRACT: 

 

This paper presents a method for rapid and automatic visualisation of over-undercutting based on 3D reconstruction and rendering of 

tunnel point clouds. The method uses model filtering and our improved voxel filtering for point cloud lite to maximise the 

preservation of the original tunnel point cloud features while streamlining the point cloud. The 3D reconstruction is then completed 

according to our proposed alpha-shape algorithm with low reconstruction parameters combined with a fast model optimisation 

model, which achieves high reconstruction accuracy while significantly improving computational efficiency to meet the 

requirements of the tunneling project. The rendering method is calculated by selecting the RGB values. The darker the colour, the 

heavier the degree of over-excavation or under-excavation. According to the calculated over-excavation or under-excavation value, 

the ratio of the point in the over-excavation or under-excavation interval is obtained in turn, and the gradient is rendered by 

increasing the base colour of each interval proportionally; the kd-tree is then introduced to calculate and visualise the colour 

information of the reconstructed model. In addition, this paper uses real-world tunnel point cloud data and demonstrates that the 

method meets expectations through qualitative and quantitative evaluation. Visualisation of the tunnel point cloud is accomplished 

while maintaining speed, visualising the over-under-excavation situation and providing an outlook for future work. 

 

 

1. INTRODUCTION 

 

With the rapid development of information technology and safety 

considerations, the requirements of tunnel construction are 

becoming more and more demanding, and tunnel over-

excavation monitoring is bound to develop in the direction of 

systematization, real-time, high accuracy and automation [18,19]. 

Computer and communication technologies improve the 

collection, transmission, processing and expression of 

information saving a lot of time and costs; real-time feedback on 

tunnel excavation to facilitate real-time adjustment and 

processing of the construction progress and programme to ensure 

the safety and smoothness of construction [14]; high-precision 

monitoring data can accurately detect the subtle excavation 

conditions, complete expression of the cyclical changes in the 

tunnel; automation The automated processing can break the 

current problems of low efficiency and accuracy of the complex 

and extensive data processing by hand, while the automated 

processing can be more convenient to produce analysis results 

and trend prediction [5]. 

 

As a narrow structure of underground engineering, the 

conventional way to monitor the tunnel over-excavation is the 

traditional mode of operation based on latitude and longitude 

meter, level, total station, GPS receiver, convergence meter, etc. 

Currently, the monitoring method of this mode consumes a lot of 

human and financial resources and is difficult to measure [20]. 

 

Therefore, it is particularly important to study a new efficient and 

practical monitoring technology, which must have high accuracy 

and at the same time be able to complete the monitoring task 

quickly in real time, with the integration of data acquisition and 

processing, as well as the ability of three-dimensional spatial 

analysis. The application of 3D laser scanning technology has 

brought a boon to the monitoring of over-excavation in tunnels, 

and a great deal of exploration and analysis has been done in the 

application of 3D laser technology in tunnel monitoring, which 

has verified the feasibility of the technology. 

 

Most of the existing methods are to streamline the huge and 

redundant point clouds collected, which facilitates the rapid 

construction of a 3D grid of point clouds. The filtered point cloud 

is meshed to reconstruct the spatial topology between the point 

clouds. There are two broad types of reconstruction methods: 

building a mesh model based on scattered points and 

reconstructing a point cloud mesh model based on geometry. The 

former represents the model by constructing a polygonal mesh 

model, while the latter completes the 3D reconstruction of the 

object by extracting feature points from the point cloud data 

[5,14,20,21]. 

 

Compared with the above methods, our method takes an 

improved algorithm in point cloud refinement, which can retain 

the features of the sampled target well. We combine low-

threshold reconstruction and post-optimisation in the 

reconstruction process, reducing computing time while providing 

options for users with different 3D reconstruction quality 

requirements. The point clouds are rendered with colours 

attached to the calculated over-underexploitation values, 

normalised and then assigned gradient colours in proportion. 

Blue to light blue is under-excavation and yellow to red is over-

excavation, with darker colours representing a greater degree of 

over-excavation. The model cannot currently find an existing 

method, so we have created an original rendering of the model. 

The rendered point cloud for the nearest neighbour of each vertex 

of the model is found via the kd-tree and its mean value is used 

as the colour of that vertex for visualisation. 

 

The rest of the paper is organised as follows: in section 2 our 

method for 3D reconstruction and rendering visualisation of the 
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tunnel point cloud is detailed, and in section 3 the results obtained 

by our method are analysed using real-world collected point 

cloud data. Section 4 points out the limitations of the study and 

looks at future research directions. 

 

 

2. PROPOSED METHOD 

 

2.1 point cloud lite 

 

Introduction: When point clouds are collected in tunnels under 

construction, they are usually scanned for distractions such as 

scaffolding, tripods, and construction personnel, resulting in 

noisy point clouds, which can have an impact on subsequent 3D 

reconstruction work [23]. Therefore, this paper proposes a point 

cloud lite method. With the help of the tunnel construction design 

book we can find the conceptual tunnel design and related 

parameters, transform them into a ground-removed tunnel point 

cloud model, and use this model as a filter for the model filter to 

automatically filter the points that are far away from the tunnel 

model (including ground, construction tools and some anomalies, 

etc.). This can be used to reduce the number of points and 

preserve the shape of the point cloud, which is very useful in 

improving the speed of algorithms for tunnel point cloud 

registration, surface reconstruction and shape recognition.  

 

 Model filters: An example of the original point cloud 

tunnel capture is provided in Figure 1. The noise points on the 

ground in between include construction tools, survey instruments, 

construction vehicles, etc. These points not only have an impact 

on the accuracy of the modelling, but also create outliers that can 

have an impact on the subsequent rendering visualisation. 

 

For this reason, a theoretical point cloud model of the tunnel was 

constructed by finding the relevant ideal tunnel parameters in the 

tunnel design book. With the help of pcl::ModelOutlierRemoval 

[15] in the PCL library, an ideal tunnel model was constructed as 

input based on the tunnel model in the design book, setting a 

distance threshold of 1.5 times the allowable error value of the 

tunnel excavation depth. The entire input tunnel acquisition point 

cloud is traversed, and those with distances greater than the 

threshold value from the model are removed as noise points. 

Figure 1 shows the effect after the model filter, it can be clearly 

seen that the noise on the ground is well removed, effectively 

avoiding the impact caused by noise [9,22]. 

 

 Improved voxel filtration: After the point cloud has 

been filtered by the model, there is another important step in point 

cloud refinement - voxel filtering. Due to the specificity of the 

point cloud geometry. It not only represents the macroscopic 

geometric shape, but also its microscopic arrangement, e.g. 

similar dimensions in the horizontal direction and the same 

distance in the vertical direction. When point clouds are acquired 

with equipment such as a high-resolution camera like a faro, they 

are often dense. The excessive number of point clouds can make 

subsequent rendering and 3D reconstruction difficult, but there is 

no significant improvement in quality. The voxel grid filter can 

be used to downsample the point cloud without destroying the 

geometry of the cloud itself. In contrast to random downsampling, 

which is more efficient than the voxel filter, the point cloud 

microstructure is destroyed. The use of the voxelised grid method 

for downsampling, which reduces the number of points and 

preserves the shape features of the point cloud, is useful in 

improving the speed of algorithms for point cloud registration, 

surface reconstruction, shape recognition, etc [23]. 

 

The corresponding algorithm implementation relies on 

pcl::VoxelGrid, which creates a 3D voxel grid from the input 

point cloud data. Traditionally, the centre of gravity of all points 

in a voxel is used to approximate the other points in the voxel, 

and all points in the voxel are eventually represented by a centre 

of gravity, but the centre of gravity is not necessarily the point in 

the original point cloud, and the smallest features of the original 

point cloud are lost. Therefore, the nearest point to the centre of 

gravity of the voxel in the original point cloud data is used instead 

of the centre of gravity of the voxel to improve the accuracy of 

the representation of the point cloud data. The filtered point cloud 

is obtained by applying the above processing to all voxels. This 

improved voxel filtering method is slower than the normal 

method of approximating voxel centres, but provides a more 

accurate representation of the surface corresponding to the 

sampled points. 

 

The calculation process is as follows:  

①  Find the maximum values Xmax, Ymax and Zmax and the 

minimum values Xmin, Ymin and Zmin on the X, Y and Z axes based 

on the set of coordinates of the point cloud data 

② Set the side length r of the voxel grid 

③ Find lx, ly and lz from the maximum and minimum values on 

the x, y and z axes 

 

                           {
𝑙𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
𝑙𝑦 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
𝑙𝑧 = 𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛

 ,                            (1) 

 

where  lx , ly , lz= The edge length of the minimum bounding    

box of the point cloud 

 X, Y, Z = Coordinates of points 

 

④ Calculate the size of the voxel grid 

 

                                       {

𝐷𝑥 = ⌊𝑙𝑥/𝑟⌋

𝐷𝑦 = ⌊𝑙𝑦/𝑟⌋

𝐷𝑧 = ⌊𝑙𝑧/𝑟⌋

 ,                                 (2) 

 

where  ⌊𝑖⌋ = Rounding i down 

⑤ Calculate the index of each of the point clouds within the 

voxel gridlet h 

 

                      

{
 
 

 
 ℎ𝑥 = ⌊(𝑥 − 𝑥𝑚𝑖𝑛)/𝑟⌋

ℎ𝑦 = ⌊(𝑦 − 𝑦𝑚𝑖𝑛)/𝑟⌋

ℎ𝑥 = ⌊(𝑧 − 𝑧𝑚𝑖𝑛)/𝑟⌋

ℎ = ℎ𝑥 + ℎ𝑦 ∗ 𝐷𝑥 + ℎ𝑧 ∗ 𝐷𝑥 ∗ 𝐷𝑦

,                (3) 

 

⑥ Sort the elements of h in descending order, calculate the centre 

of gravity of each voxel, and replace all points within the voxel 

with the centre of gravity 

    
Figure 1. Original tunnel point cloud (left) and model 

filtered effect (right) 
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⑦Find the nearest point to the centre of gravity of the voxel and 

replace it with the centre of the voxel. 

 

Figure 2 shows the results of the improved voxel filtering 

compared to the uniform sampling filtering. The original point 

cloud is shown on the left, the improved voxel filtering result is 

shown in the middle, and the uniform sampling result is shown 

on the right. It can be clearly seen that the improved voxel filtered 

point cloud is more evenly distributed and neatly aligned 

vertically. This shows that our proposed filtering reduces the 

number of point clouds while retaining the characteristics of the 

original point cloud in Figure 2, and greatly improves the 

efficiency of the subsequent 3D reconstruction, without causing 

the hollowness of the reconstruction due to the varying density 

of uniform sampling as in Figure 2 (c). 

 

Table 1.  Comparison of outcome data for different sampling 

methods 

Sampling 

method 

Original 

Point Cloud 

Improved 

voxel filtering 

Uniform 

sampling 

Number of 

point cloud 

35947 7836 7190 

 

2.2 Tunnel 3D reconstruction  

 

 Overview of tunnel 3D model reconstruction: Tunnel 

3D model reconstruction techniques are widely used in fields 

such as reverse engineering, data visualisation, machine vision 

and virtual reality. Surface reconstruction can be divided into two 

main categories based on the relationship between the 

reconstructed surface and the data point cloud: interpolation and 

approximation. The interpolation method results in a 

reconstructed surface that is derived entirely from the original 

data points, while the approximation method uses piecewise 

linear surfaces or other forms of surfaces to approximate the 

original data points, resulting in a reconstructed surface that is an 

approximation of the original data point set [3,7,16]. According 

to the representation of reconstructed surfaces, they can be 

classified as:  subdivisional surface reconstruction, parametric 

surface reconstruction, deformation surface reconstruction, 

piecewise linear surface reconstruction and implicit surface 

reconstruction. Due to the need for efficiency in reconstructing 

the model, it is necessary to recreate a realistic tunnel scene in a 

short period of time to allow for subsequent rendering procedures. 

Therefore, this paper uses a combination of alpha-shape 

reconstruction and model optimisation to quickly reconstruct a 

high-quality 3D model of the tunnel [19]. 

 

 Principle of alpha-shape reconstruction: On a three-

dimensional level, the algorithm can be imagined as a ball rolling 

through a set of points, where the three points that meet the 

condition will form a polygon, a "null sphere rule" (similar to the 

null circle rule), meaning that the ball will contain no points other 

than the three basic points. The α value is the radius of the sphere, 

as three points alone do not make a sphere, but need to be 

combined with a custom α parameter [1,7,12,16]. 

 

 Steps for alpha-shape reconstruction: The specific 

steps are shown in Figure 3: firstly, the Delaunay triangulation is 

performed on the scattered point set, and then the value interval 

of each simplex (tetrahedron, triangular face, edge, vertex) 

belonging to the α-form in the result of the dissection is 

calculated separately, and the simplex is retained if the parameter 

α value lies within the value interval, and deleted if the α value 

does not lie within the value interval [2,7,8]. 

 
Figure 3. Schematic diagram of the algorithm flow 

 

Suppose there is a point set P in the two-dimensional plane whose 

α-form is a unique polygon determined by the point set P and the 

radius parameter α. As shown in Figure 4, it can be envisaged 

that there exists a circle of radius α that starts rolling from a point 

outside the point set P. If α is large enough, then the circle will 

not roll to the interior of the point set P. The trace of the circle 

rolling is the boundary line of the point set P. If alpha tends to 

infinity (α → ∞ ), then the detected boundary line is the convex 

envelope of the point set P. Similarly in 3D space, the alpha-

shape algorithm determines the boundary point by making a ball 

of radius α at three points and creates a triangular slice at the 

resulting boundary point, thus reconstructing the tunnel surface 

[7]. 

 
Figure 4. Schematic diagram of the alpha shape algorithm 

 

 alpha-shape reconstruction effects: Figure 5 shows 

the original point cloud of a section of the tunnel and the result 

of reconstructing the tunnel using the alpha-shape method. In the 

example below, the mesh parameter alpha is set to 0.05, 0.12, 0.2 

and 0.3 from left to right, and the results are shown in Figure 5 

for different values of alpha. The smaller the value of alpha, the 

smoother and more angular the tunnel surface is, the fewer the 

voids and the fewer the overlapping triangles. However, the time 

required to construct the mesh increases accordingly, so 0.12 and 

0.2 are chosen for further analysis 

   
Figure 2. Comparison of the results of different sampling 

methods 
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 Principle of 3D model optimisation algorithm: The 

purpose of the 3D model optimisation is to update the alpha-

shape mesh results with a more detailed triangulation of the mesh 

structure for the generation of high quality triangular and 

polyhedral decompositions in the general plane, surface and 

volume domains. It automatically fills in the 'holes' in the tunnel 

mesh model constructed in the previous step, repairs them, 

optimises the triangulation mesh to improve the quality of the 

reconstructed model while maintaining speed, and generates the 

optimal convex pack mesh for the actual tunnel situation [4]. The 

optimisation module uses an unstructured mesh generator and the 

Delaunay Tessellation Library to optimise the reconstructed 

initial mesh to meet the functional requirements of the software 

[13,17]. 

 

The model optimisation algorithms broadly comprise 

optimisation-based algorithms for constructing new meshes, 

existing mesh optimisation drive techniques, and procedures for 

assembling procedures for Delaunay Tessellation, Voronoi 

composite and Bauer diagrams, as shown in Figure 6. 

Figure 6. Composition of the optimization library 

 

The model optimisation algorithm defines a scalar function that 

scores the shape quality of each cell based on its geometry. A 

mesh improvement framework is constructed using various local 

optimisation predicates, including:①a local vertex smoothing 

operation based on vertex coordinate perturbations.  ② through 

local updates to the underlying mesh connectivity.   ③insertion 

of new vertices. In this process, additional vertices are introduced 

into the mesh. It can be shown that locally optimal solutions can 

be achieved by iterative application of these optimisations, and 

convergence can be achieved when further improvements in 

mesh quality are not possible [4,13]. In addition, a new priority-

driven optimisation technique is introduced in this paper. In this 

optimisation technique, the optimisation effort concentrates on 

triangular meshes that can be improved, effectively filling holes 

and easily obtaining narrow triangles. In other words, the 

optimisation algorithm pursues the concept of an 'active set'. In 

each iteration, optimisation objects are applied to a restricted 

subset of the mesh entities, which are identified as candidates for 

further optimisation. The evolution of this active set is explicitly 

tracked as the optimisation progresses [11]. This approach can 

significantly improve computational efficiency while 

maintaining optimisation performance. 

 

The basic principle of Delaunay tessellation is to create a large 

triangle or polygon, enclose all the data points, insert a point into 

it which is connected to the three vertices of the triangle 

containing it to form three new triangles, and then perform null 

outer circle detection on them one by one, while optimising them 

using the Rosen-designed local optimisation process, i.e. by 

swapping diagonals to ensure that the resulting triangle net is a 

Delaunay triangular mesh [6,11]. 

 

The 3D model optimisation algorithm is theoretically rigorous 

and unique, and the mesh satisfies the null-circle property, which 

is more desirable. The mesh can be constructed by deleting and 

adjusting non-Delaunay edges as they are encountered. When 

new points are added after completion of the construction, it is 

not necessary to re-network all the points, only the triangular area 

of influence of the new points, and the local networking method 

is simple and easy to implement. Similarly, the deletion and 

movement of points can be done quickly and dynamically [4]. 

However, in practice, this networking algorithm is also slower 

when the point set is large and produces triangles that do not 

satisfy the conditions if the point set range is a non-convex region 

or if there are inner loops. The aforementioned point cloud 

refinement is therefore particularly important to ensure a uniform 

distribution of the point cloud while greatly improving the 

efficiency of the algorithm operation [17]. 

 

The basic steps of the 3D model optimisation algorithm are 

shown in Figure 7-9: 

(1) Construct a mesh improvement framework, smoothing the 

coordinates of the perturbed vertices and topologically 

transforming the underlying mesh 

(2) Construct a super triangle containing all the scattered points 

and the newly inserted vertices from the previous step, and place 

it in the triangle chain table. 

(3) Insert the scattered points in the point set in turn, find the 

triangle in the triangle chain table whose outer circle contains the 

inserted point (called the influence triangle of the point), delete 

the common edges of the influence triangle and connect the 

inserted point with all the vertices of the influence triangle to 

complete the insertion of a point in the Delaunay triangle chain 

table. 

(4) According to the mesh quality function to determine its 

convergence, if it does not converge means that the triangle mesh 

still needs to be optimised, cycle through step 3 above until all 

scattered points are inserted. 

Figure 7. Tessellation optimization process based on 

Delaunay's triangle 

 

        
Figure 5. Schematic diagram of the configuration of the 

network with different parameter values 
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Triangular mesh improvement is often seen as an optimisation 

problem and the resulting mesh improvement process can only 

optimise cell shape quality, further limiting the choice of quality 

metrics to area and volume length metrics. In essence 

optimisation is about finding the right geometric and topological 

configuration for the triangular mesh and therefore a criterion is 

needed to judge the effectiveness of the optimisation. We have 

therefore devised a mesh quality function which is designed to 

score each element configuration based on the shape quality of 

each element according to a set of user-defined criteria. In 

contrast to other metrics (such as the Delaunay criterion or 

dihedral angle-based metrics), this formulation can robustly 

detect all types of low quality triangular and tetrahedral element 

types. The use of volumetric length measures typically leads to 

optimal mesh improvement results for a wide range of tetrahedral 

tests. By operating on a given vertex a,b, such that each dihedral 

is shared by a pair of tetrahedra adjacent to vertices a, b. Given 

such a configuration, the operation attempts to replace the set of 

tetrahedra adjacent to a subset of sandwich faces by re-

triangulating the torus cavity associated with the edge ab such 

that min(Q(M)) > min(Q(N)). This re-triangulation step is the 

exact inverse of the edge removal operation described earlier. 

The polyhedral removal process is shown in Figure 10. 

 

Figure 11 shows an illustration of the polyhedral re-triangulation 

operation for a tetrahedral complex shape, showing the sequence 

of inverse operations required to convert from one state to 

another. As with the edge and polyhedral removal operations, 

polyhedral re-triangulation is performed on non-planar polygons 

seeking improved triangulation. 

 

The polyhedral re-triangulation operation is a topological 

transformation of tetrahedral meshes in which tetrahedra adjacent 

to a dihedral ring and sandwiched between a pair of vertices are 

re-triangulated, preserving the region sandwiched in between, 

thus optimising more detailed small triangles and making the 

model smoother [6,11]. 

 

 Example of 3D model optimisation: As shown in 

Figure 12 (left), the initial 3D model of the scene was 

reconstructed using the point cloud generated for a section of the 

tunnel during the data acquisition process, and the results of the 

3D model optimisation algorithm are now invoked as shown in 

Figure 12 (right). It can be seen that the multifaceted 

rearrangement operation leads to a moderate improvement in 

mesh quality compared to the comparative results generated 

using a combination of edge removal and multifaceted removal 

operations alone. 

 

2.3 Point cloud rendering 

 

Visualisation of over-under-excavation is an important purpose 

of point cloud rendering and 3D reconstruction of tunnels. 

Traditional measurement methods have a significant impact on 

the workload and judgement still relies on manual inspection. 

This uncertainty of error greatly increases the threat of over-

under-excavation to tunnel construction safety and leads to a 

waste of tunnel excavation resources. In order to accurately 

reflect the extent of tunnel excavation in reality, we combined the 

collected point cloud data with the calculated over- and under-

excavation values and visualised them using gradient colours. 

 

Specifically, we first combine the calculated underdigging values 

with the original point cloud coordinates to form a new point 

cloud data format, named PointXYZRGBD, from which we find 

the extreme values of the underdigging values (including 

elevation maxima and minima); we then select a rendering colour 

palette: from the bottom up, the under-excavation is in a cool 

colour palette, with the minimum values in blue (RGB values 

0,0,255) and the maximum values is represented by light blue 

(RGB values of 0,255,255). The over-excavation values are 

expressed in warm tones, fading from yellow (RGB values of 

255,255,0) to red (RGB values of 255,0,0). It is specified that 

when the over-excavation value is exactly 0 it is rendered in 

yellow. The overall gradient is blue → light blue → yellow → 

red. In order to achieve the gradient, each point cloud RGB value 

is normalised to the over- and under-dig values, and the ratio of 

the over- and under-dig values of each laser point in turn to the 

over- and under-dig intervals where the median and minimum 

values are located. The under-excavation is done in blue (0,0,255) 

and the calculated ratio is added to the corresponding RGB G-

value for each under-excavation point; similarly, the over-

    
Figure 12. Illustration of the effect of grid optimisation 

 
Figure 10. Illustration of edge and polyhedral removal of 

a tetrahedron 

 
Figure 8. Discrete point set 

 

 
Figure 9. Delaunay triangulation 

 

 

 
Figure 11. Illustration of a triangular reconstruction of a 

polyhedron 
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excavation is done in yellow (0,255,255) and the calculated ratio 

is reduced to the corresponding RGB G-value for each over-

excavation point. Follow this procedure to cycle through each 

point in the point cloud in turn to complete the rendering of the 

point cloud. 

 

2.4 Rendering of the tunnel 3D model 

 

 3D kd-trees for point clouds: A kd-tree (k-dimensional 

tree) is a data structure used in computer science to establish 

relationships between points in a k-dimensional space. It is a 

binary search tree with specific constraints. kd-tree is useful for 

range search and nearest neighbour search. We usually only deal 

with point clouds in three dimensions, so all our k-d trees are in 

three dimensions [10]. 

 

The idea based on the kd-tree uses Euclidean distance to find just 

the nearest neighbour point between a given kd-tree and a node, 

which is the nearest neighbour search. Figure 13 below is a 

demonstration of the steps involved: at each level a split is made 

in the x-y direction for points other than the leaf nodes. Then a 

depth-first search is performed on the binary tree, assuming that 

the point marked as a star is the test point. Starting from A, a 

circle is drawn with A as the centre and the current nearest 

distance as the radius; this circle is called the candidate 

hypersphere. If the circle intersects the axis of the retracing point, 

all the nodes on the other side of the axis need to be put inside 

the retracing queue (the nodes on the right in Figure 13 (d) do not 

intersect and are therefore excluded). Set the best estimate to the 

distance from test point to A, then check the left child node B, 

compare the value of the split dimension of the node to be queried 

and the split node, if it is less than or equal to the left child tree 

branch, if it is equal to the right child tree branch until the leaf 

node, follow the "search path" to quickly find the nearest point, 

that is, the leaf node in the same subspace as the point to be 

queried, then backtrack search path, and determine whether there 

may be data points closer to the query point in the space of other 

sub-nodes of the node on the search path, if possible, you need to 

jump to the space of other sub-nodes to search (add other sub-

nodes to the search path). Repeat this process until the search path 

is empty.  

 

Figure 14 shows a partial diagram of the zoomed-in point cloud 

(pink) and the 3D reconstructed mesh vertices (green), which are 

not overlapping but rather are nearest neighbours. alpha-shape 

reconstruction of the tunnel model itself has no colour 

information, so we need to add our own rendering to achieve the 

result. This paper therefore uses the kd-tree nearest-neighbour 

search to create a search index for the subsequent colour 

assignment of the 3D model. 

 
Figure 14. Point cloud with triangular grid vertices 

 

 Colour distribution: The first step is to reconstruct the 

face elements from the alpha-shape 3D reconstruction into a 

Mesh. The Mesh contains the vertices and triangulated mesh 

faces of the 3D reconstruction, and in the colour distribution 

algorithm each vertex in the Mesh is searched to find its nearest 

neighbour on the rendered point cloud (the nearest neighbour in 

the algorithm is set to 3), i.e. the search index is the kd-tree 

established in the previous step for the rendered point cloud. The 

RGB colour of each point on the mesh is then assigned to the 

mean of the RGB values of the neighbouring points, and this step 

is repeated for the entire mesh to render the 3D reconstructed 

tunnel model. 

 

3. EXPERIMENTAL RESULTS 

 

3.1 Point cloud lite 

 

The data in this paper was collected using a phase-based laser 

scanner, the FARO Focus 3D, on a section of real tunnel data 

under construction, which was used to evaluate the method of 3D 

reconstruction and rendering proposed in this paper. This point 

cloud data collection contains 585,955 points and is a continuous 

segment of the tunnel with a length of 53.5m. As shown in Figure 

15, there are various stray points on the ground containing 

construction scaffolding, measuring instruments, associated 

 
(c) 

 
(d) 

Figure 13. Nearest Neighbour Search Steps 

 

 
(a) 

 
(b) 
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personnel, etc., which can cause serious disturbance to the 

subsequent rendering. 

 

Therefore, a tunnel model was created based on the parameters 

in the tunnel design plan in the design book as input to the model 

filter, and then the allowable error in the design book was used 

as a distance threshold to filter out points that were greater than 

the threshold from the model. This acquisition process is 

automatically generated except for the input parameters, and the 

results are shown in Figure 15 is shown. Compared to the original 

point cloud, it can be seen that the ground and other noisy point 

clouds that do not need to be rendered are effectively removed. 

 

Improved voxel filtering is the unique approach we propose in 

point cloud refinement. For sampled point clouds, the significant 

reduction in number can effectively increase the speed of 

rendering and 3D reconstruction. Implementing downsampling 

using the voxelised mesh method reduces the number of point 

clouds while maintaining their shape characteristics; in 

improving the speed of algorithms for point cloud registration, 

surface reconstruction, shape recognition, etc. Figure 16 

(a)(b)(c)(d) shows the effect of downsampling for different raster 

voxel sizes, from left to right, (a) original tunnel point cloud; (b) 

voxel filtering at raster voxel 0.06f; (c) voxel filtering at raster 

voxel 0.1f; (d) fast uniform sampling. The number of point clouds 

after thinning is shown in Table 2 is shown. In contrast to the 

uniform sampling method, although the number of point clouds 

sampled is similar to that for a raster voxel size of 0.1f*0.1f*0.1f, 

the voxel sampling preserves the nature of the tunneling point 

cloud and the point cloud distribution is more uniform and 

regular. The point cloud from fast uniform sampling is more 

cluttered, especially in the middle part where the point cloud 

density is high, which can create voids in the subsequent 3D 

reconstruction. Although the number of point clouds differs 

greatly between the two parameter voxels, they both retain the 

characteristics of the tunnels well and the overall density is 

uniform, so both can be used as input for 3D reconstruction. Note, 

however, that the large difference in the number of point clouds 

can lead to large differences in subsequent rendering and 3D 

reconstruction times, which has a significant impact on the 

practical use of the tunnelling project, given that it is a much 

longer sample than the one used in this paper. We will therefore 

compare the results after using both samples in the rendering 

process. 

Table 2. Number of post-sampling point clouds 

Dilution methods Number of 

point clouds 

Original tunnel point cloud 467297 

Improved voxel filtering (raster voxel 0.06f) 290453 

Improved post-voxel filtering (raster voxel 

0.1f) 

142106 

Fast uniform sampling (average of five points 

to retain one) 

155766 

 

 

 

 

3.2 Tunnel point cloud rendering and 3D reconstruction 

 

The two sampled point clouds from section 3.1 were combined 

with the calculated values of the super undercut to render and 

reconstruct them in 3D. The Figure 17 below shows the rendered 

point cloud, and the advantages of the point cloud refinement and 

rendering in this paper over other existing methods are evident. 

It is worth noting that the two point clouds with different levels 

of point cloud refinement are more than twice as different, but 

both retain the characteristics of the original tunnel point cloud 

well in our design, so that both visualise the over-under-

excavation of the tunnel. Light blue to blue represents under-

excavation and yellow to red represents over-excavation, with  

darker the colour the greater the degree of over-excavation. 

Nevertheless, real-world point cloud data can be challenging. For 

example, the point cloud cavities that appear in this image are 

escape routes or firefighting equipment storage areas that are 

being excavated in the tunnel. These voids can cause 

discontinuities in the rendering and consequently some visual 

misalignment, and can also create voids in subsequent 3D 

reconstructions. There are also outliers such as the red areas in 

the diagram, which are phases of construction that are not 

reflected in the design document and therefore cannot be filtered 

out by point cloud refinement. However, it affects the 

normalisation process of the over-undercut values and therefore 

makes the rendering inaccurate. This is something we will 

subsequently improve. However, we still achieved good 

visualisation renderings, and in this way also proved the 

feasibility of our approach. 

   
Figure 15. Effect of model filtering 

   
           a                     b                      c                        d 

Figure 16. Effect of different filters 

  

  

                         
Figure 17. Tunnel point cloud over-undercut visualization 

(left input is a raster voxel sampled at 0.06f, right is 0.1f) 
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The next step is the 3D reconstruction of the point cloud. The 

rendered point cloud is used as input to the surface reconstruction 

algorithm. The Poisson surface reconstruction algorithm was 

considered, but it was ultimately rejected as more suitable for 

closed 3D surfaces with minimal sharpness. In this paper, the 

ground point cloud was removed for rendering purposes to 

reduce its interference with the over-undercut visualisation, as 

this part was not required for rendering. Delaunay retains the 

angles and is better suited to more planar surfaces, as mentioned 

earlier in this paper, the complexities of real tunnels under 

construction are not ideal for smooth, cylindrical-like surfaces. In 

turn, we chose alpha-shape for the 3D reconstruction, whose 

parameter α allows us to control the fineness of the triangulated 

mesh generation, which is in line with our actual needs and can 

be used in conjunction with the model optimisation algorithm in 

the next section. There is not much research in the literature on 

the rendering of triangular meshes for clouds. We therefore 

explored our own method of rendering 3D meshes. Using a kd-

tree, a search index is created on the original RGB point cloud, 

and each point on the mesh is searched for three proximal points 

corresponding to the original RGB point cloud. The RGB channel 

mean of each vertex is then obtained as the RGB mean of the 

vertex on the mesh. The following Figure 18 shows the 

reconstructed rendering model after sampling two different raster 

voxels, with α set to 0.12. Table 3 lists the corresponding 

efficiencies. 

 

Table 3. Comparison of data from different point cloud 

reconstructions 

Voxel grid 

(size) 

Rendering 

(time/sec) 

Reconstruction 

(time/sec) 

Construction 

(quality) 

 

 

0.1f 

 

 

3.605 

 

 

38.63. 

Fair (needs 

improvement 

where high 

precision is 

required) 

0.06f 7.161 66.589 Better 

(acceptable) 

 

Overall both reconstructions work well and the over- and under-

excavation values can be visualised well in the 3D model. The 

colours are evenly distributed and give a reasonable 

representation of the true condition of the over-under-excavation. 

However, they are still limited by images of real-world data, such 

as the linear cavities running through the figure, which are pipes 

laid in the tunnel, and the cavities used to dig escape routes. 

However, it is undeniable that the quality of the results for a voxel 

raster size of 0.1f is only average under engineering evaluation, 

a situation that is clearly unacceptable if higher precision results 

are required, even though it runs about twice as fast as the latter. 

So we have an extended idea of whether the 0.1f results can be 

optimised again to run at a moderate speed to achieve better 

visualisation. This will be shown and discussed in the next 

subsection. 

 

3.3 3D model optimisation 

 

The model optimisation workflow is an optimisation operation 

based on the original mesh and is therefore significantly faster 

than the last small node cloud reconstruction. Figure 19 shows 

the detail of the model after optimisation. When the model 

optimisation finds a cavity, it is good to segment it more finely 

and generate a denser triangular mesh to fill it. Typically, a 

denser triangular mesh will result in a smoother surface for the 

tunnel model, reducing the number of erroneous holes that occur 

in the 3D reconstruction. 

 

In order to quantify this process, we have chosen to compare the 

effect of an optimised reconfiguration result of 0.1f with a 

reconfiguration of α = 0.3. Figure 20 shows the results obtained. 

Both have very good results, fixing the original error holes, 

tunnel lines and making the tunnel surface look smoother and 

closer to the real situation. The data in the table shows that the 

number of mesh faces is around one million, thus achieving a 

high standard of 3D reconstruction. What is even more striking 

is that the run times for the selected tunnel segments are 

optimised to be somewhat less than if high alpha values had been 

applied directly, so that the application of our method to the 

whole tunnel would be significantly faster and more efficient.  

Table 4.Comparison of optimization efficiency 

Reconfiguration 

methods 

Operating 

time/sec 

Mesh 

face/number 

Reconfiguration 

optimization 

2.459 989151 

Raster size 0.1f (α=0.3) 

reconfiguration 

41.52 740449 

Raster size 0.1f 

(α=0.12) reconstruction 

36.707 1081621 

 

However, it is undeniable that the existence of gaps in scenarios 

with complex real data can introduce ambiguity into the 

optimisation results. The optimisation has the problem of filling 

in what would otherwise be gaps in reality, which are still 

coloured in during the rendering process. It is therefore 

unreasonable to plan the construction of these areas in 

accordance with this result, as the filling of seemingly reasonable 

  
Figure 19. Detail of the model before and after optimization  

(left is before optimization, right is after optimization) 

  

  
Figure 18. 3D reconstruction effect 

(Left is0.1f, Right is 0.06f) 

  

  
Figure 20. Comparison of optimized results(left is α=0.12 

and optimized, right is α=0.3 reconstructed only) 
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voids is not possible in the real world, and we have considered 

ignoring the realistic voids to avoid such problems. 

 

4. CONCLUSION AND FUTURE WORK 

 

With the advent of high performance laser scanner equipment, 

there is an interest and demand for SLAM in many industries. 

But to achieve easy automation and optimised simulation models 

is still a considerable challenge, as complex environments like 

tunnels can add many difficult noise points to point clouds, and 

the need for efficiency requires us to upgrade and improve our 

method. 

  

Compared to other methods, our method's simplified point cloud 

better preserves the characteristics of the original point cloud, is 

more efficient in its simplification, and the uniform density 

reduces the appearance of voids when reconstructing. The 3D 

reconstruction takes a combination of low threshold fitting plus 

optimisation, improving efficiency while providing options for 

users with different accuracy requirements. The rendering uses 

our original method of using the RGB mean of the coloured point 

cloud around a triangular grid vertex as the RGB value for that 

vertex, allowing for good visualisation of the tunnel over-

undercut condition. Compared to traditional tunnel over-under-

excavation assessment, our method is much simpler and more 

automated, with significant labour savings and rendering 

accuracy that meets engineering requirements. 

   

Future work will focus on the study of noisy point clouds, 

filtering the scanned construction pipelines, people and 

equipment through features that differ from the target point cloud 

to improve quality. Improvements will also be made to the 

rendering methods of the 3D reconstruction to render the 

reconstruction results with more detailed colours and more 

accurate visualisation results. 

 

REFERENCES 

[1] Chen Ting-Wang, Wang Qing. A triangular meshing 

algorithm for SfM-based point cloud reconstruction[J]. 

Computer Application Research, 2011, 28(2):4. 

[2] Chen Jinrui. Research on 3D reconstruction of point cloud 

data [D]. Wuhan University of Technology, 2011. 

[3] Chen D, Yang S-P, Zhuang Y, et al. 3D laser point cloud 

rendering and depth map construction based on visual 

information[C]// Proceedings of the 29th Chinese Control 

Conference. 2010. 

[4] Engwirda D . Locally optimal Delaunay-refinement and 

optimisation-based mesh generation[J]. University of 

sydneyfaculty of scienceschool of mathematics & statistics, 2014. 

[5] Guo XJ, Min FL, Zhong SC, et al. Analysis of the difficulties 

and key technologies of Nanjing Yangtze River tunnel project[J]. 

Journal of Rock Mechanics and Engineering, 2012, 31(10):7. 

[6] Han J, Rong M, Jiang H, et al. Vectorized indoor surface 

reconstruction from 3D point cloud with multistep 2D 

optimization[J]. ISPRS Journal of Photogrammetry and Remote 

Sensing, 2021, 177: 57-74. 

[7] Li Q, Gao XW, Fei XY, et al. Tree canopy 3D model 

construction using Alpha-shape algorithm[J]. Mapping Bulletin, 

2018(12):5. 

[8] Lier. 3D point cloud reconstruction and model processing 

based on feature analysis[J].  2012. 

[9] Lin YD. Research on key technologies of tunnel point cloud 

data processing and visualization [D]. Donghua University of 

Technology, 2017. 

[10] Moore A . An introductory tutorial on kd-trees[C]// IEEE 

Colloquium on Quantum Computing: Theory, Applications & 

Implications. iet, 1991. 

[11] Pan R, Skala V. Continuous global optimization in surface 

reconstruction from an oriented point cloud[J]. Computer-Aided 

Design, 2011, 43(8): 896-901. 

[12] Qiu Qiang. Research on point cloud-based 3D model 

rendering technology[D]. Harbin Institute of Technology. 

[13] Qian Guiping. Scattered point cloud mesh reconstruction 

and repair[D]. Zhejiang University, 2008. 

[14] Song Q, Xu D, Fang S. 3D Tunnel Surface Reconstruction 

Method in Complex Scenarios[C]//2021 China Automation 

Congress (CAC). IEEE, 2021: 1369-1374. 

[15] Sun Yangxing. Research on point cloud model filtering 

algorithm for structural feature preservation. 

[16] Shi Zuxu, Zeng An, Vincent Ricordel, et al. A point cloud 

rendering algorithm based on vector quantization of tree-

structured meshes[J]. Computer Applications Research, 2019, 

36(7):5. 

[17] Wang Songbai. Design and implementation of a WebGL-

based rendering system for architectural point cloud models [D]. 

South China University of Technology. 

[18] Wei Z, Yao T, Shi C. Research on the Construction of 3D 

Laser Scanning Tunnel Point Cloud Based on B-spline 

Interpolation[C]//Civil Infrastructures Confronting Severe 

Weathers and Climate Changes Conference. Springer, Cham, 

2021: 111-118. 

[19] Xue Y, Zhang S, Zhou M, et al. Novel SfM-DLT method for 

metro tunnel 3D reconstruction and Visualization[J]. 

Underground Space, 2021, 6(2): 134-141. 

[20] Yi C, Lu D, Xie Q, et al. Hierarchical tunnel modeling from 

3D raw LiDAR point cloud[J]. Computer-Aided Design, 2019, 

114: 143-154. 

[21] Yi C, Lu D, Xie Q, et al. Tunnel deformation inspection via 

global spatial axis extraction from 3D raw point cloud[J]. Sensors, 

2020, 20(23): 6815. 

[22] Zhu N, Jiaa Y, Luo L. Tunnel point cloud filtering method 

based on elliptic cylindrical model[J]. The International Archives 

of Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 2016, 41: 735. 

[23] Zhang B. Research on automatic point cloud alignment 

based on key point matching[D]. Minnan Normal University, 

2020. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W1-2022 
14th GeoInformation for Disaster Management (Gi4DM 2022), 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-93-2022 | © Author(s) 2022. CC BY 4.0 License.

 
101




