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ABSTRACT: 

 

The accelerated urbanisation, threatening the integrity of ecological environment. The lack of future simulation in ecological risk 

assessment in current studies. Especially in metropolis, to address this problem, this study uses the Multiple objective programming 

(MOP) and the improved patch-generating land use simulation (PLUS) models to simulate land use in Beijing in 2035 under the Natural 

Development (ND) scenario and the Liveable City (LC) scenario; the changes in land types and land transfers under different scenarios 

are analysed. In addition, a landscape ecological risk assessment method was applied to analyse the ecological risks caused by land 

use in each scenario. The study found that, in general, the dominant trend of land use change in Beijing is the shift from construction 

land to ecological land. The spatial pattern of ecological risk is polarized from east to west, and the conversion of a large amount of 

built-up land to arable land or grassland, and the high vulnerability of arable land and grassland to human destruction, are the reasons 

for the continuous increase in ecological risk in Beijing. The area of construction land in the LC scenario is closer to the planned area 

than in the ND scenario, and the ecological risks faced by the LC scenario are slightly lower than those of the ND scenario. Therefore, 

it is reasonable to use the LC scenario to simulate the land use situation in Beijing in 2035. 

 

 

1. INTRODUCTION 

Ecological risks caused by the interactions between ecological 

environment and complex human activities, threaten the 

harmony of  human-earth  relations  and healthy ecosystem 

development(Depietri, 2020; Wang et al., 2019). Ecological risks 

index (ERI) , influenced by the LULC ,can be effectively 

measured and assessed in terms of the impacts of human 

activities or natural hazards on regional ecosystems(Chen and 

Liu, 2014). As both the probability of risk occurrence (level of 

disturbance) and potential damage (level of vulnerability) are 

taken into account(Liang et al., 2022), ERI has become an 

important tool for analysing and revealing the spatial and 

temporal characteristics of landscape ecological risk(Ji et al., 

2021; Jiang et al., 2020). However, most of the existing studies 

on landscape ecological risk assessment are based on the 

assessment of historical data(Ai et al., 2022; Karimian et al., 2022; 

Mo et al., 2017; Zhang et al., 2022). It is important to simulate 

the patterns of predicting future ecological risks. 

 

Existing models, such as CA-Markov, FLUS(Chen et al., 2021; 

Guo et al., 2021; Liang et al., 2018; Liu et al., 2017), CLUE-

S(Wang et al., 2018), are widely adopted in LULC studies. 

However, these models have the disadvantage of being difficult 

to represent the underlying drivers of land-use change and unable 

to capture the evolution of multiple land-use patches in space and 

time(Liang et al., 2021). Furthermore, the drivers behind the 

dynamics of land-type shifts and their impact on the expected 

change cannot be illustrated (Meentemeyer et al., 2013). 

Therefore, to reveal the spatial and temporal evolution of 

ecological risks in cities, more advanced prediction models are 

expected to reveal the potential drivers of change in multiple 

landscape types and simulates the patch-level evolution of 

landscape types(Liang et al., 2021). Among these models,   PLUS 
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can predict the land use structure, so as to promote high-quality 

economic and social development in urban areas in the future. 

Moreover, this model has higher simulation accuracy than other 

models(Deng and Quan, 2022). In this study, we try to simulate 

and predict the dynamic trends of landscape ecological risks in 

urban cities by adopting advanced tools to quantitatively assess 

changes in ecological risk distribution. 

 

Most of the current studies focus on under-urbanised cities, 

which still have a lot of room for urbanisation in the coming 

period. However, for cities like Beijing, which are highly 

urbanised, in order to achieve the goal of building an 

international first-class liveable city, population decongestion, 

vacating building sites and increasing greenery will be used to 

achieve the goal, and it will be a challenge to reconcile 

urbanisation and ecology to predict the future development 

scenario(Yujie et al., 2022). Thus, we try to use MOP model to 

find the balance point between economic and ecological benefits 

in urban development. PLUS model is used to predict land use 

demand and spatial distribution patterns under two development 

scenarios (ND Scenario and LC Scenario) at the urban level, and 

the ERI model is used to quantitatively assess changes in 

ecological risk distribution under different scenarios.  

 

To optimise the national land space and provide scientific support 

for the formulation of strategic decisions on the metropolis 

Beijing, this research aims to solve the following objectives: (1) 

integrate statistical data and land use variables using the MOP 

model and simulate changes in land use demand between 2015 

and 2035 under different scenarios; (2) more accurately predict 

the spatial distribution of land use using the PLUS model; (3) 

assess the future distribution of ecological risks in the study area 

at landscape scale and analyse the changes in ecological risks 

under different scenarios. The results from this study are 
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expected to provide scientific support development of land use 

policies to adapt to the social development goal in the new era. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

Beijing is located between 115°25′-117°30′ East longitude and 

39°28′-41°05′ North latitude, with a total area of about 160,000 

square kilometres. It is situated in the northern part of the North 

China Plain, with the TaiHang Mountains and Yan Mountains to 

the west and north respectively. The topography of Beijing is 

high in the northwest and low in the southeast, with an average 

altitude of 43.5 metres above sea level. Beijing has a typical 

temperate monsoon climate, with hot and rainy summers and cold 

and dry winters. As one of the most urbanised regions in China, 

Beijing has already experienced and suffered the consequences 

of a rough and tumble approach to develop. In order to combat 

the negative effects of urbanisation, Beijing, unlike many cities, 

has set the goal of building a 'liveable city'. Based on this 

objective, a liveable city scenario is developed to simulate land 

use changes in Beijing and assess their potential ecological 

impacts, which can provide a basis for optimising land use 

patterns and reducing future ecological risks. 

 

 
Figure 1. Location of the study area. 

 

2.2 Data and Processing 

The land use types were classified into six categories based on 

the purpose of the study and the characteristics of the regional 

landscape: arable land, forest, grassland, water bodies, built-up 

land and other land. Details of the spatial data used in this study 

and how they were obtained are listed in Table 1. 

 

All data were subjected to a series of data pre-processing in 

ArcGIS such as projection transformation, Euclidean distance, 

resampling and cropping to convert the data to raster data with 

the same projection coordinate system and a spatial resolution of 

30 m.  

 

Table 1. The spatial driving factors of the land use change in 

this study. 

Category Data 
Orginal 

Resolution 
Data Resource 

Land Land Cover 30m 
https://www.resdc.

cn/ 

Socioeconomic 

Factors 

Population 
1000m 

https://www.resdc.

cn/ GDP 

Proximity to railway 

30m 
https://www.webm

ap.cn/ 

Proximity to 

highway 

Proximity to road 

Proximity to District 

Proximity to Towns 

Nature Factors DEM 90m 

Slope 
http://www.gscloud

.cn/ 

Annual Mean 

Temperature 

1000m 
https://www.resdc.

cn/ 

Annual Precipitation 

Soil type 

Proximity to open 

water 
30m 

https://www.webm

ap.cn/ 

 

2.3 Methods 

2.3.1 MOP: MOP is a dynamic multi-objective planning 

method that finds ways to optimise land use under a variety of 

constraints imposed by different scenarios, which is capable of 

optimising the area of one or more land classes. It also takes into 

account the uncertainty of these constraints. As a result, an 

accurate model of how land use is distributed in space can be 

better developed. The objective of this study is to find a 

sustainable land use approach using MOP by using objective 

functions, constraints and parameters. 

 

In the optimisation of urban land use structure, consideration of 

economic or ecological benefits alone often leads to 

uncoordinated and unsustainable urban development. Therefore, 

in this study, the MOP model was constructed on Lingo18 to 

optimise the land use structure of Beijing in 2035 from the 

perspective of maximising both economic and ecological benefits, 

in conjunction with the land structure optimisation objectives 

designed in the 14th Five-Year Plan for National Economic and 

Social Development of Beijing and the Outline of Vision 2035. 

In this study, two objective functions were set for economic and 

ecological benefits respectively. 

 

𝐹1(𝑥) = max⁡(∑𝐸𝑐𝑜𝑖 × 𝑥𝑖)

6

𝑖=1

 

𝐹2(𝑥) = max⁡(∑𝐸𝑠𝑣𝑖 × 𝑥𝑖

6

𝑖=1

) 

(1) 

where F1 and F2 are economic value and ecological value 

functions respectively; 𝐸𝑐𝑜𝑖 and 𝐸𝑠𝑣𝑖  are economic value and 

ecological value coefficients respectively, representing the 

economic output and ecosystem service value per unit area of the 

i-th land use type. xi is the area of the i-th land use type. 

 

For the calculation of economic benefits, this study refers to the 

method of some scholars  (Jiang et al., 2022)and takes the gross 

value of agriculture, forestry, animal husbandry and fishery in the 

Beijing Statistical Yearbook as the economic benefits of arable 

land, forest land, grassland and water bodies respectively, the 

gross value of secondary and tertiary industries as the economic 

benefits of construction land, and the economic benefits of 

unused land as 0. Using 2020 as the base year, the economic 

benefits of each type of land were calculated separately. The 

economic benefits per unit area are calculated separately for each 

type of feature. The economic benefits of arable land, forest land, 

grassland, water bodies and construction land were calculated as 

294, 131, 360, 97 and 1014 million yuan/km2 respectively. 

 

 

 
⁡⁡𝐹1(𝑥) = 294𝑥1 + 131𝑥2 + 360𝑥3 

+97𝑥4 + 101400𝑥5 + 0𝑥6 
(2) 

 

Current ecological benefits are mainly estimated using value 

quantities and quantified in monetary terms. This paper draws on 

previous research(Zhao, 2020) to establish the ecological 

benefits of various types of features. 

 

 

 
𝐹2(𝑥) = 1368𝑥1 + 24083𝑥2 + 1614𝑥3 

+15292𝑥4 + 0𝑥5 + 11𝑥6 
(3) 
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The LULC situation in Beijing in 2035 is constrained according 

to the 14th Five-Year Plan for National Economic and Social 

Development of Beijing and the outline of Vision 2035 and other 

relevant plans, and the constrained situation is shown in Table 2. 

 

Table 2. Constraints on the objective function for the 2035 LC 

scenario. 
constraint condition Description 

∑𝑥𝑖

6

𝑖=1

= 𝑆 

Total area constraint：The total area of all land 

use types shall be equal to the total area of 

Beijing  

0.46𝑥1 + 𝑥2 + 0.49𝑥3
≥ 45% × 𝑆 

Forest control rate constraint：According to 

the objectives in the policy, Beijing is required to 

achieve a forest coverage rate of 45%. Calculate 

the share of forest coverage according to 

"ecological green equivalent". In the land system, 

the land use types that meet the green equivalent 

include farmland, forest land and grassland, with 

coefficients of 0.46, 1.00 and 0.49 respectively. 

200 × (𝑥1 + 𝑥2 + 𝑥3)
+ 5800𝑥5 ≤ 23000000 

Demographic constraints：The outline of goals 

requires that the population of Beijing be 

controlled within 23 million by 2030. Referring 

to the research of some scholars(Liang, 2017), 

the population density of construction land and 

ecological land in Beijing is 5800 people /km2 

and 200 people /km2 respectively(Zhao, 2020) 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ S × 75% 

Ecological land constraints：The policy 

requires that the scale of ecological land in 

Beijing by 2035 should reach more than 75% 

3543.14 ≤ 𝑥1 ≤ 3841.57 
Cultivated land/Forest /Grassland/Waterbody 

area constraint：The area of these features 

should not be lower than 2020, nor higher than 

the corresponding maximum area in economic or 

ecological benefits. 

7482.06 ≤ 𝑥2 ≤ 7989.07 

1255.07 ≤ 𝑥3 ≤ 1616.30 

422.39 ≤ 𝑥4 ≤ 581.89 

2637.46 ≤ 𝑥5 ≤ 2760 

Built land area constraint：The area of built 

land shall not be higher than the 2760 km2 

required in the policy, and shall not be lower than 

the minimum area corresponding to the highest 

economic or ecological benefits 

0 ≤ 𝑥6 ≤ 29.08 

Unused land area constraint：As the 

"regulator" of land optimization, unused land can 

balance the area of various types of features, so 

the largest unused land area is taken as the upper 

limit 

 

2.3.2 PLUS: The PLUS model is a future land use change 

simulation model that integrates a rule-mining framework based 

on a land expansion analysis strategy (LEAS) and a CA based on 

multi-type random patch seeds (CARS). The rule mining method 

of the LEAS module extracts the portion of each type of land use 

expansion between the two periods of land use change, and uses 

the random forest algorithm to mine the factors of each type of 

land use expansion and driver one by one to obtain the 

development probability of each type of land use and the 

contribution of the driver to the expansion of each type of land 

use in that time period. The CARS model combines random seed 

generation and a decreasing value mechanism to allow for the 

automatic generation of spatio-temporal dynamic simulations of 

patches within the constraints of development probabilities. 

 

2.3.3 LULC Accuracy Verification: The 2020 LULC data 

for the study area was compared with the contemporaneous 

LULC data simulated based on the PLUS model to calculate the 

Kappa coefficient and the overall accuracy (OA). The closer are 

these two values to 1, the higher the accuracy of the simulation; 

values greater than 0.8 indicate that the accuracy of the model is 

satisfactory(Shi et al., 2022). The simulated LULC Kappa 

coefficients for 2020 in this paper are 0.841 and the overall 

accuracy is 0.891 respectively, indicating that the simulation 

results have a high degree of confidence. 

 

2.4 Scenario Setting 

Two different development scenarios of potential land use 

change are proposed in this study, namely ND Scenario and LC 

mentioned in the 14th Five-Year Plan of Beijing. The principles 

and objectives of the design scenarios are as follows: 

 

2.4.1 ND Scenario: The scenario assumes that past trends in 

land use change will continue. As the Markov model is a model 

of purely mathematical significance, it is used by many scholars 

to represent a scenario of natural development of the LULC(An 

et al., 2022; Linjuan Li et al., 2022). Therefore, this paper 

calculates the land demand for the 2035 ND scenario based on 

the Markov chain transfer transfer probabilities for the period 

2015-2020. 

 

2.4.2 LC Scenario: In reality it is difficult for a single 

scenario of maximum ecological or economic benefits to occur, 

so the future development of Beijing does not necessarily need to 

be modelled using a single scenario, and trade-offs between 

economic and ecological benefits need to be made to find the 

most appropriate development model for the region. To this end, 

this study combines socio-economic data on Beijing and plans 

for the future development of the city to propose a Liveable City 

Scenario that provides a new perspective on the future 

development of Beijing. In order to realise the LC Scenario, land 

use benefits need to be maximised both in terms of economic and 

ecological benefits in order to achieve an optimal state of urban 

development. 

 

 LC⁡Scenario = max{𝐹1(𝑥), 𝐹2(𝑥)} (4) 

 

2.5 Ecological Risk Index 

①Division of landscape ecological risk evaluation units. Using 

ArcGIS, the LULC data of Beijing was gridded by 5km×5km, 

and Beijing was divided into 753 evaluation units; Fragstats 4.2 

software was used to calculate the ecological risk index value of 

each evaluation unit, which was used as the ecological risk value 

of the central point of the sample site. The ecological risk index 

of each evaluation unit was calculated using Fragstats 4.2 

software. ② From the perspective of landscape pattern, the 

landscape ecological risk index was constructed based on 

existing research results(Wang et al., 2021; Zhang et al., 2022). 

The calculation formula is. 

 
𝐸𝑅𝐼𝑘 =∑

𝐴𝑘𝑖
𝐴𝑘

𝑅𝑖

𝑛

𝑖=1

 (5) 

 

where 𝐸𝑅𝐼𝑘 denotes the ecological risk index of the landscape 

within the kth evaluation unit, 𝐴𝑘𝑖 denotes the area of landscape 

type i within the kth evaluation; 𝐴𝑘  is the area of the kth 

evaluation unit and R_i is the landscape loss index of landscape 

type i. 

 𝑅𝑖 = √𝑆𝑖 × 𝐹𝑖 

𝑆𝑖 = 𝑎𝐶𝑖 + 𝑏𝑁𝑖 + 𝑐𝐷𝑖 
(6) 

 

where 𝑆𝑖 is the landscape disturbance index, which is constructed 

by the landscape fragmentation degree 𝐶𝑖, landscape separation 

degree 𝑆𝑖 and landscape dominance degree 𝐷𝑖. a, b and c are the 

weights of each landscape index, and a+b+c=1, which are 

assigned as 0.5, 0.3 and 0.2 respectively according to the existing 

research results and the actual situation; 𝐹𝑖  is the landscape 

fragility index, which is combined with the existing research 

results(Ran et al., 2022), and the fragility index (𝐹𝑖) values of 

each landscape are normalized to 0.19, 0.10, 0.14, 0.24, 0.05 and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W2-2022 
Urban Geoinformatics 2022, 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W2-2022-15-2022 | © Author(s) 2022. CC BY 4.0 License.

 
17



 

0.29 respectively. ③ Exploratory spatial data analysis. The 

ArcGIS geostatistical analysis module was used to spatially 

interpolate the LULC data using the kriging method for the 

sample site centroid data and to classify the landscape ecological 

risk levels into five categories: lower, lower, medium, higher and 

higher using the natural interruption point method with 2020 as 

the base year. 

 

2.6 Technical Route 

The technical route for this study is shown in Figure 2. 

Sample

Random Forest

Transition 

Matrix

Neighborhood 

Weight

Quantity 

Forecast

CA Model

LULC Database
Socioeconomic 

Database

Markov MOP

ND scenario LV scenario

Land use 2015,2020

Driving Factors

Growth probabilities

Land expansion

Accuracy 

Verification

LEAS CARS

PLUS Model

Simulation of LULC in different future 

scenario(2035)

Simulation of LULC in different future scenario 

and Compute landscape ecological risk index

landscape 

ecological risk 

index(2015-2035)

 
Figure 2. Technical flow chart. 

 

 

3. RESULTS AND ANALYSIS 

3.1 LULC Simulation under Multi-Scenarios 

3.1.1 Spatial-Temporal Land Use Changes in Beijing 

We applied the PLUS model to simulate the spatial distribution 

of land use in Beijing under different scenarios in 2035 (Figure 

3), and calculated the area of each type of feature and the area of 

each type of land use for the historical and future periods (Table 

3). In general, as shown in Figure 3, ecological land in Beijing is 

concentrated in the north-west and the areas affected by human 

activities are concentrated in the south-west. During the period 

2015-2020, the land use types in the urban agglomeration are 

mainly forests, accounting for more than 40% of the entire area, 

followed by agricultural land, built land and grassland. Water 

body and unused land make up only a small part of the study area. 

The areas of agricultural land, forest land, grassland and water 

body show an increase, by 33.81 km2, 180.18 km2, 145.17 km2 

and 94.08 km2 respectively. The area of built land is shrinking, 

from 4028.5 km2 to 3560.23 km2, indicating that Beijing's 

ecological protection efforts are effective in 2015-2020. 

 

In both scenarios of the 2035 land use simulation, as shown in 

Figure3(c) and Figure3(d), the ND Scenario and LC Scenario still 

maintain the trend that the area of agricultural land, forest land, 

grassland and water bodies show an increase and the area of built 

land decreases. In the ND Scenario 2035, compared to 2000, the 

areas of agricultural land, forest land, grassland and water body 

show an increase of 177.27 km2 ,512.34 km2 ,60.61 km2 and 

160.28 km2 respectively, while the built land decreases by 

922.774 km2. In the LC Scenario, compared to 2000, the area of 

agricultural land, forest land, grassland and water body increased 

by 145.05km2, 405.49km2, 94.14km2 and 160.72km2 

respectively; while the built land decreased by 805.28km2. This 

is due to the fact that in the government's plan, the size of the 

built-up land in Beijing in 2035 is explicitly mentioned, making 

the ND Scenario This is due to the fact that the government has 

explicitly mentioned the size of the built-up land in 2035, which 

makes the ND Scenario significantly more urban than the LC 

Scenario.

 

 
Figure 3. Land use:(a) year 2015; (b) year 2020 and simulation results in 2035: (c) ND Scenario; (d) LC Scenario. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W2-2022 
Urban Geoinformatics 2022, 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W2-2022-15-2022 | © Author(s) 2022. CC BY 4.0 License.

 
18



 

 

 

Table 3. LULC change in the study area during different 

periods (km2). 

LULC Type 2015 2020 2035ND 2035LC 

Cultivated 

land 
3630.47 3664.30 3841.57 3809.34 

Forest 7302.65 7482.83 7995.17 7888.33 

Grassland 1109.91 1255.08 1315.69 1349.22 

Waterbody 328.31 422.39 582.66 583.11 

Built-up land 4028.50 3560.23 2637.46 2754.95 

Unused Land 1.68 16.71 29.13 16.71 

 

3.1.2 Land use conversion relationship 

 

In addition, the transfer relationships and areas of various 

features were calculated for the period 2015-2035 (Table4, 

Figure4). Under historical conditions, Figure5 shows that the 

most significant conversion of building land to other land types 

was observed, with 458.91km2, 96.26km2, 121.22km2 and 

56.62km2 being transferred from built-up land to agricultural 

land, forest land, grassland and water bodies respectively; 

however, only 224km2, 25.69km2, 6.59km2 and 12.1km2 were 

transferred from other land types to building land. For building 

land, the outflow is greater than the inflow, and building land is 

the main source of increase in ecological land area, especially for 

agricultural land area. Once again, this shows that Beijing's 

ecological conservation efforts in 2015-2020 are effective. 

 

 
Figure 4. The relationship between land use conversion in 

2015-2020(The beginning of the arrow indicates the land 

proportion in the baseline year, and the arrow points to the land 

proportion in the target year). 

 

For the period 2020-2035, this study counts the relationship of 

land use transfer between ND Scenario and LC Scenario between 

2020 and 2035 respectively. The trend of shifting from built land 

to ecological land use continues during this period. In the ND 

Scenario, Table5 shows that the conversion of built land 

to agricultural land, forest land, grassland and water body is 

1061.43km2, 207.31km2, 120.03km2 and 23.15km2. However, 

the other land types only transfer 454.19km2, 26.22km2, 

11.54km2 and 0.44km2 to building land. In the LC Scenario, 

Table6 shows that built land was converted to agricultural land, 

forest land, grassland and water bodies by 1061.43km2, 

207.31km2, 120.03km2 and 23.15km2 respectively. Other land 

types were only transferred to built-up land by 454.19km2, 

26.22km2, 11.54km2 and 0.44km2. The increase in the area of 

woodland was also a more obvious factor of change during this 

period. In addition to the conversion of built land to woodland, 

grassland and cropland were also converted to woodland to 

varying degrees. in ND Scenario, Figure5(a) shows that about 

1.74% and 1.44% of grassland and cropland were converted to 

woodland, and 1.26% of the conversion of built-up land to 

woodland. In the LC Scenario, Figure5(b) shows that about 1.49% 

and 1.13% of grassland and cropland were converted to 

woodland and 0.91% of built-up land was converted to woodland. 

This indicates that cropland and grassland are the main sources 

of increase in woodland area. 

 

Table 4. Conversion of Land Types from 2020 to 2035 (km2). 

 Cultivated 

Land 
Forest 

Grass

-land 

Water-

body 

Built-

up 

Land 

Unused 

Land 

Cultivated 

Land 
3126.00 164.80 27.80 79.84 224.0 8.05 

Forest 54.06 7178.41 24.37 19.63 25.69 0.50 

Grass-land 7.71 29.42 
1062.

17 
4.01 6.59 0.02 

Water-

body 
16.85 13.91 19.52 262.29 12.10 3.64 

Built-up 

Land 
458.91 96.26 

121.2

2 
56.62 

3291.

69 
3.80 

Unused 

Land 
0.77 0.03 0.01 0.001 0.17 0.70 

 

Table 5. Conversion of Land Types from 2020 to 2035 ND 

scenario (km2). 

 Cultivated 

Land 
Forest 

Grass-

land 

Water-

body 

Built-

up 

Land 

Unused 

Land 

Cultivated 

Land 
2711.74 235.97 185.26 65.89 454.19 11.17 

Forest 42.93 7264.60 86.43 62.71 26.22 0.13 

Grassland 24.27 285.88 923.22 10.13 11.54 0.03 

Waterbody 1.14 0.73 0.35 419.75 0.44 0.03 

Built-up 

Land 
1061.43 207.31 120.03 23.15 2145.01 3.32 

Unused 

Land 
0.06 0.68 0.41 1.06 0.06 14.45 

 

Table 6. Conversion of Land Types from 2020 to 2035 LC 

scenario (km2). 

 Cultivated 

Land 
Forest 

Grass-

land 

Water-

body 

Built-

up 

Land 

Unused 

Land 

Cultivated 

Land 
2775.59 184.79 202.29 87.52 414.01 0.02 

Forest 38.96 7309.65 74.21 37.55 22.64 0.007 

Grassland 24.36 244.61 961.90 13.83 10.36 0.006 

Waterbody 1.13 0.69 0.38 419.77 0.44 0.01 

Built-up 

Land 
969.30 148.58 110.44 24.41 2307.49 0.01 

Unused 

Land 
0.01 0.004 0.007 0.03 0.001 16.66 
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Figure 5. The relationship between land use conversion in 2020-2035 ((a) represents 2020–2035 ND Scenario, (b) represents 2020–

2035 LC Scenario. The beginning of the arrow indicates the land proportion in the baseline year, and the arrow points to the land 

proportion in the target year). 

 

3.2 Spatial and Temporal Changes in the Supply of ERI 

under Different Scenarios 

Based on the future land use raster data simulated by the PLUS 

model, we assess the ecological risk of the landscape in Beijing. 

From the spatial pattern (Figure6), there is a clear east-west 

polarised structure of landscape ecological risk in Beijing. Areas 

of higher ecological risk are concentrated in the north and south-

east of the city, increasing over time and gradually shifting from 

dispersion to aggregation. In contrast, lower ecological risk and 

low ecological risk areas are mainly located in the centre and 

west of the city, and show a decreasing trend. Meanwhile, 

Figure7 shows that the proportion of areas at higher and higher 

ecological risk increases each year, with 27%, 36.3%, 48% and 

46.8% for the two scenarios from 2015 to 2035, respectively. The 

area at low and lower ecological risk decreases each year to 

48.5%, 37.6%, 31.3% and 31.8% respectively. 

 

Table 7. Area and change of each level of landscape ecological 

risk. 

Time Lower Low Medium High Higher 

2015 2243.83 5709.11 4020.48 3073.04 1358.48 

2020 1465.52 4606.02 4239.38 3686.29 2184.70 

2035ND 1160.33 3970.23 3399.44 2805.27 5069.68 

2035LC 1203.97 4016.27 3499.40 2937.59 4747.75 

2015-2020 -778.31 -1103.09 218.90 613.25 826.22 

2020-2035ND -305.19 -635.79 -839.94 -881.02 2884.98 

2020-2035LC -261.55 -589.75 -739.98 -748.70 2563.05 

 

 
Figure 6. Spatial distribution of landscape ecological risk(a) year 2015; (b) year 2020 and simulation results  
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Between 2015-2020, the higher and higher ecological risk levels 

increased by 826.22km2 and 613.25km2, while the area of lower 

and lower ecological risk was decreasing by 778.31km2 and 

1103.09km2, respectively, and the ecological risk of the 

landscape increased in this period. Between 2020 and 2035, the 

most significant change in higher ecological risk is observed, 

with ND Scenario and LC Scenario increasing in higher 

ecological risk by 2884.98km2 and 2563.05km2 respectively, 

while the area at lower ecological risk decreases by 235.34km2 

and 205.29km2 respectively. In comparison, LC Scenario faces 

slightly lower ecological risk than ND Scenario. 

 

 
Figure 7. Area proportion of each level of landscape ecological 

risk(From the inner ring to the outer ring in the order of 2015, 

2020, 2035 ND Scenario, 2035 LC Scenario). 

 

4. CONCLUSIONS AND DISCUSSIONS 

4.1 Conclusions 

In this study, we proposed a new development scenario for a 

liveable city for optimising the future land use structure of 

Beijing based on planning documents for urban development. 

This work also explores the spatial and temporal changes in 

landscape ecological risk patterns in large cities from the 

perspective of land-use change. The findings from this study are 

as follows:  

1. The main feature of LULC change in Beijing in the future is 

the transformation of construction land to surrounding ecological 

land. The mountainous area in the northwest of Beijing is 

dominated by ecological land. The area of urbanization mainly 

occurs in the southeast plain area, and the scope of built-up land 

in the main urban area is greatly reduced. In 2035, the built-up 

land area under LC scenario is closer to the policy requirements 

than that under ND scenario. It shows that the future land use 

situation of Beijing simulated by the LC scenario is reasonable. 

2. By comparing the spatial pattern of LULC and ecological risk, 

we find that there is a high correlation between them. The built-

up land mainly shows lower ecological risk, the forest shows 

lower ecological risk, and the grassland and cultivated land show 

higher and higher ecological risk. The built-up land is distributed 

intensively, and it is difficult for human activities to cause further 

damage to the construction land. Therefore, the urban center is 

faced with lower ecological risks. In contrast, cultivated land and 

grassland are extremely vulnerable to human activities, which 

leads to higher ecological risks of cultivated land and grassland. 

Therefore, it leads to the spatial pattern of dual polarization. 

3. The increase of ecological risk is caused by the change of 

grassland, cultivated land and built-up land. Specifically, the 

increase of grassland and cultivated land area leads to the 

increase of areas with higher ecological risks. The reduction of 

built-up land has led to the reduction of the area with low 

ecological risks. 

 

4.2 Discussions 

4.2.1 Drivers of Urban Development 

Cities are complex megasystems and the choice of LULC drivers 

has focused on static factors in society, economy and nature. 

However, many studies have shown that dynamic factors such as 

policy planning, the daily activities of residents and the regional 

industrial structure also have a significant impact on land use 

change. As a world-class tourist city, the daily activities of 

tourists and local residents will affect the transportation, 

commercial sites and other factors. These factors also affect the 

changes in LULC (Yujie et al., 2022). In the following research, 

we use the Point of Interest (POI) data of residents' daily dynamic 

activities to improve the accuracy of the prediction model. 

 

4.2.2 Scenarios for the Future of the City 

In the study, we constructed the ND scenario that is not affected 

by any factors, and the LC scenario that represents the balanced 

development of economic and ecological benefits. However, 

urban development is not limited to the two scenarios in this 

paper. Future climate scenarios, SDG goals, etc. can be used to 

build future urban development scenarios. In addition, this study 

only predicts the LULC in 2030, which is difficult to reflect the 

long-term change of LULC. In the following research, LULC 

should be predicted in the short, medium and long term to meet 

the need for urban planners to formulate land use policies in 

different periods. 

 

4.2.3 Limits of Ecological Risk 

Due to the difficulty of data collection, this study only considers 

the changes of LULC caused by human activities. However, the 

change of ecological risk is also affected by other factors, such as 

the expansion of road network, terrain, meteorological changes, 

geological disasters and other natural factors.(Mo et al., 2017). 

This will contribute to a better understanding of the impact of 

human activities on ecological risk. Therefore, an integrated 

evaluation of ecological risk from a multi-risk source perspective 

is necessary in the future. 
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