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ABSTRACT: 
 
Urbanization is an essential phase of a nation's economic development. A very effective way to examine urban growth is to look at 
how impervious surface changes over time, however impervious surface can only show the current situation in terms of urban 
development. Compared to the existing methods, the use of construction bare land to monitor urban growth has the following benefits 
over currently used techniques. First, it is possible to track the progress of structures being constructed as part of urban expansion. The 
second is to assess the city's development intensity and identify the inward expansion. Therefore, the detection of construction bare 
land is of great significance for the development of a more sophisticated urban dynamic perception technology. This paper proposes 
an asymmetric fuzzy classification network (AFCNet) for detection of construction bare land scenes. The generation of fuzzy sample 
sets, the backbone network, and the proposed fuzzy classification module make up the method's three primary components. The deep 
features of the scene are then extracted using the fuzzy classification network and converted into ambiguity. Finally, the ambiguity is 
converted into predicted probability using the fuzzy weight vector. The fuzzy sample set is generated to introduce more prior 
information into the network. High-level features are extracted using the backbone network. Fuzzy classification methods based on 
spectral features are used to improve the performance of scene classification. The results demonstrate that the OA of our method is 
higher than all other comparison methods. 
 
 

1. INTRODUCTION 

Today in a world of rapid urbanization, urban monitoring and 
dynamic cognition are crucial. Urbanization is an essential phase 
of a nation's economic development. Remote sensing can model 
and forecast how urban elements will change, which is useful for 
managing urban space (Feng et al., 2022). 
 
As many cities continue to grow as a result of globalization and 
will continue to expand in the future, greater efforts are needed 
to improve urban planning solutions and tools. Urban monitoring 
is the basis of urban planning. Remote sensing monitoring of 
urban land use changes and spatial evolution mainly involves the 
identification, extraction and monitoring of urban land cover and 
driving factors, thus directly serving urban comprehensive 
decision-making and management. Based on remote sensing 
monitoring, it is possible to simulate and predict the changes of 
urban elements, which is an in-depth deduction for the changes 
of urban elements, and has a practical guiding role in urban space 
management, planning and development. 
 
The majority of long-term land cover data used for current 
monitoring of urban growth is of relatively low resolution (Wang 
et al., 2022), including MODIS land cover at 500 m and 1 km 
resolution, ESACCI land cover at 300 m resolution, and GLASS 
land cover at 5 km resolution. High-resolution monitoring of 
urban growth is less researched. Liu et al. (2020) examined the 
urbanization process using a technique for spotting changes in 
impervious surface in remote sensing images. A very effective 
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way to examine urban growth is to look at how impervious 
surface changes over time, however impervious surface can only 
show the current situation in terms of urban development. The 
expansion tendency and intermediate status of the city cannot be 
reflected in the state's performance. In order to examine the 
growth of cities, some people also use urban night light data 
(Zhou et al., 2015), however this method is less sensitive to 
changes occurring within the city itself and is more prone to 
observing the expansion of urban boundary contours.  
 
Compared to the existing methods, the use of construction bare 
land to monitor urban growth has the following benefits over 
currently used techniques. First, it is possible to track the progress 
of structures being constructed as part of urban expansion. The 
second is to assess the city's development intensity and identify 
the inward expansion. Therefore, the detection of construction 
bare land is of great significance for the development of a more 
sophisticated urban dynamic perception technology. 
 
The current monitoring of urban expansion mainly uses long-
term land cover data. Unfortunately, existing continuous multi-
temporal data are obtained at lower spatial resolutions, such as 
MODIS land cover at 500 m and 1 km resolution, ESACCI land 
cover at 300 m, GLASS land cover at 5 km, these land cover data 
contain a lot of mixed pixels with low spatial resolution. There 
are studies on monitoring the urbanization process by detecting 
changes in the impervious surface in remote sensing images (Liu 
et al., 2020). Some researchers also use urban night light data to 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W2-2022 
Urban Geoinformatics 2022, 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W2-2022-23-2022 | © Author(s) 2022. CC BY 4.0 License.

 
23



 

study the development of cities, but night light data is more 
inclined to observe the expansion of the urban boundary contour, 
and is not very sensitive to changes within the city. 
 
The construction bare land is an intermediate state of urban 
expansion, which not only provides new ideas for studying the 
temporal and spatial evolution of urbanization, but also can be 
cross-validated with products based on other data such as 
impervious surfaces. Therefore, the detection of construction 
bare land is more refined for development. The remote sensing 
image urbanization monitoring technology is of great 
significance. 
 
At present, there are few studies on the recognition direction of 
construction land scenes, and most of them still focus on the 
visual interpretation of remote sensing images, and manually 
interpret the construction sites in the images. The visual 
interpretation process has high requirements on the professional 
background knowledge of the interpreters. When performing 
inspection tasks on long-term and large-scale construction sites, 
the high-resolution images used are massive, and the use of 
manual interpretation is inefficient, strong subjectivity, high cost, 
and obviously cannot meet the requirements of information 
extraction tasks. 
 
Traditional classification methods have a poor effect on the 
recognition of construction bare land scenes, because bare soil 
serves as the primary identifier for building barren land with 
other elements varied, and there isn't a distinguishing factor. 
Additionally, the spots' shapes are asymmetrical on the remote 
sensing image, and the arrangement regulation is quite complex. 
This paper proposes a deep learning neural network for detection 
of construction bare land scenes. 
 
The deep learning neural network classification method is very 
suitable for the scene classification of remote sensing images. 
There are also some studies using deep learning methods to 
identify construction sites. Because of its powerful image feature 
extraction ability, convolutional neural networks are widely used 
in land cover or land use classification, such as Googlenet 
(Szegedy et al., 2014), Shufflenet (Ma et al., 2018), ResNet (He 
et al., 2015), Nasnet (Zoph et al., 2018). Among them, the ResNet 
network pre-trained on ImageNet is used to remote sensing image 
classification, and it is compared with classical machine learning 
models such as random forests. The results show that 
convolutional neural networks have better classification effects 
on remote sensing images. 
 
However, deep learning requires a large number of training 
samples, and currently there are few public datasets about 
construction land, and manual labelling requires a lot of human 
and material resources. Aiming at the problem that deep learning 
requires a large number of training samples, this paper proposes 
a method to generate a sample dataset on a large scale using the 
spectral information of remote sensing images. 
 
In summary, the main contributions of this paper are as follows. 
1) A method for urban expansion monitoring is proposed. The 
use of construction bare land can show the intermediate state of 
urban expansion, which provides a new idea for studying the 
spatiotemporal evolution of urbanization. 
2) A classification method AFCNet is proposed for the 
recognition of construction bare land scenes. Fuzzy samples can 
be used as auxiliary datasets to extract deep features of remote 
sensing images through fuzzy classification network. 
3) A prior fuzzy sample set generation method based on spectral 
index is proposed. The soil index is used to generate fuzzy 

samples of suspected construction bare land from an easily 
available unlabeled data set to solve the problem of insufficient 
construction bare land samples. 
 

2. METHODOLOGY 

2.1 Overview 

In this paper, the construction bare land (or the construction land) 
refers to the bare land with civil construction activities or pre-
construction foundation work. Different from the general bare 
land, the construction bare land has obvious traces of human 
activities. 
 
This paper proposes a construction bare land detection method, 
which uses the fuzzy set generated by the soil index and the 
manually labeled data set for joint training, then extracts the deep 
features of the scenes through a neural network and converts 
them into classification ambiguity, and finally uses the 
parameterized fuzzy weight vector to convert the classification 
ambiguity into a predicted probability, so as to achieve the effect 
of scene classification. 
 
The AFCNet classification method consists of three main parts, 
namely, the generation of fuzzy sample sets, the backbone 
network and the proposed fuzzy classification module. The fuzzy 
sample set is generated to introduce more prior information into 
the network (refer to section 2.2 for details). The backbone 
network is used to extract high-level features (refer to section 2.3). 
Fuzzy classification methods based on spectral features are used 
to improve the performance of scene classification (refer to 
section 2.4). Furthermore, to fit the model, we design a two-stage 
loss function, which not only optimizes the training process of 
the network, but also significantly reduces detection dropouts 
(refer to section 2.5). 
  
2.2 Generation of Fuzzy Sample Sets 

In 1965, Zadeh expounded the fuzzy theory in his book "Fuzzy 
Sets", which was later widely used in the field of land use remote 
sensing classification. It is a multi-valued logic system that 
quantitatively states uncertainty. Boolean logic statement, any 
value between 0 and 1 can be used to represent the transition state 
between yes and no. By avoiding hard boundaries, fuzzy logic 
can describe the real world better than Boolean logic with binary 
semantics. 
 
In this paper, the soil index is used to generate the fuzzy dataset 
required for joint training, and the ambiguity is initialized 
according to the change of the soil index of each sample.Studies 
have shown that soil has different spectral response 
characteristics in the near-infrared (NIR) and short-wave infrared 
(SWIR) bands from other ground objects. In order to 
quantitatively describe this characteristic, Nguyen et al. (2021) 
proposed a soil index called MBI. Its calculation method is as 
follows: 

MBI =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑁𝑁𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑁𝑁𝑆𝑆𝑆𝑆

+ 𝑓𝑓 (1) 

where MBI is the soil index, SWIR1 is the reflectivity in the 
short-wave infrared band with a center wavelength around 1600 
nm, SWIR2 is the reflectivity in the short-wave infrared band 
with a center wavelength around 2200 nm, NIR is the reflectivity 
in the near-infrared band with a center wavelength around 850 
nm, f is a parameter used to adjust the exponential distribution, 
which is artificially set through experiments. 
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Since the training datasets (GID, SYSU-CD, samples from 
Google Earth, etc.) used by the neural network in this paper do 
not have the short-wave infrared band (SWIR), the two-phase 
images of Landsat-8 and Sentinel-2 are used and sliced to obtain 
the difference of MBI. The slices are sorted and grouped by the 
quantile according to their difference of MBI in the histogram. A 
fuzzy set with initial ambiguity parameters is thus generated. The 
difference of the soil index is recorded as d-MBI. 
 
Then, slice the result map generated by the above method, 
calculate the average d-MBI statistics of each slice to obtain a 
histogram, and then sort these slices according to the size of d-
MBI, and divide them into four groups according to quantiles, 
and each group is divided into four groups according to the 
quantile. The number of digits marks the fuzzy interval μ(x). 

μ(x) =

⎩
⎨

⎧
{μ ∣ 𝑎𝑎1 ≤ μ < 𝑏𝑏1}
{μ ∣ 𝑎𝑎2 ≤ μ < 𝑏𝑏2}
{μ ∣ 𝑎𝑎3 ≤ μ < 𝑏𝑏3}
{μ ∣ 𝑎𝑎4 ≤ μ < 𝑏𝑏4}

𝑥𝑥 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃1)
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃2) ≤ 𝑥𝑥 < 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃1)
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃3) ≤ 𝑥𝑥 < 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃2)
𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃4) ≤ 𝑥𝑥 < 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃3)

(2) 

where μ(x) represents the ambiguity interval of the sample group, 
𝑎𝑎𝑖𝑖(𝑖𝑖 = 1,2,3,4) represents the lower bound of the fuzzy interval 
of the corresponding sample group, and 𝑏𝑏𝑖𝑖(𝑖𝑖 = 1,2,3,4) 
represents the ambiguity of the corresponding sample group, the 
upper bound of the interval. 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑖𝑖)(𝑖𝑖 = 1,2,3,4) represents the 
𝑃𝑃𝑖𝑖 percentile of the sample group means of d-MBI in all samples. 
In this way, a fuzzy set is generated using the spectral information 
of the image, and the fuzzy parameter is initialized. 
 
2.3 Backbone 

ResNet is a type of deep residual network. In order to create 
multi-scale hierarchical features, we design a backbone network 
based on ResNet as an encoder, remove the final fully connected 
layer, and perform a down sampling operation before integrating 
the AFC module suggested in this paper. To categorize the fuzzy 
sets, we make use of a fuzzy classification module as a decoder. 
The AFC module uses the initial value of the fuzzy quantile as 
the weight to train the network model to update these weight 
parameters, and finally, the result can be obtained after hard 
classification to the fuzzy data. The feature extraction network 
provides the probability that the training sample belongs to the 
sample group. 
 
As DCNN consists of multiple trainable layers that can extract 
expressive features at different levels, including low-level and 
high-level feature information, high-level features are more 
suitable for the extraction of easily confused objects that have 
semantic characteristics. Low-level features mainly reflect 
spatial structural information of objects, such as the material or 
surface characteristics, and boundary information. Remote 
sensing image and natural image have similar low-level features; 
therefore, using this pretrained strategy can reduce overfitting to 
a certain extent. Different from other studies using pretrained 
networks, we removed the last fully connected layer and down-
sampling operations.  
 
First, we construct a backbone network to generate multi-scale 
deep features. The backbone network consists of a convolutional 
layer, a pooling layer, and three residual blocks. Fig. 3 shows the 
illustration of a residual block. Each residual block contains three 
convolutional layers. Batch normalization and rectified linear 
unit (ReLU) activation layer are followed by each convolution 
layer. 
 
Let F(X) be the underlying function to be learned by a residual 
block. X denotes the input of the first layer of a residual block. 
The residual function is expressed as R(X)=F(X)−X, and F(X) 

can be written as F(X)=R(X)+X. The bias term in convolutional 
layers is not used. R(X) can be expanded as 

R(X) = σ(σ(σ(X ∗𝑆𝑆1) ∗ 𝑆𝑆2) ∗ 𝑆𝑆3) (3) 
where W1, W2, and W3 represent the convolutional kernels of 
three convolutional layers of a residual block, and σ refers to the 
ReLU activation function. 
 
For the last two residual blocks in the backbone network, the 
convolution kernel of the first convolutional layer has a stride of 
2. The size of features is reduced by half after each residual block. 
Therefore, the backbone network generates a feature hierarchy 
consisting of feature maps at three scales with a scaling step of 2. 
The multiscale hierarchy features are fused in the latter fusion 
network. 
 
2.4 Ambiguity Module 

We apply the fuzzy classification method using spectral features 
to improve accuracy of scene classification. The classification 
procedure is described as follows. 

F(x) = [𝑝𝑝1  𝑝𝑝2  𝑝𝑝3  𝑝𝑝4  𝑝𝑝5  𝑝𝑝6] (4) 
where 𝑝𝑝𝑖𝑖 (i=1, 2, …, 6) represents the probability that the training 
sample given by the model belongs to the corresponding sample 
group. F(x) will be the input to the ASF module. 
In the ASF module, we calculate 

P(X) = F(x)G(x) (5) 
Where 

G(x) = [𝑤𝑤1  𝑤𝑤2  𝑤𝑤3  𝑤𝑤4  𝑤𝑤5  𝑤𝑤6]𝑇𝑇 (6) 
𝑤𝑤𝑖𝑖 (i=1, 2, …, 6) is a set of parameters initialized according to 
μ(x), which will be updated with the iteration of the model. 
The final obtained P(x) is the ambiguity that the sample predicted 
by the model belongs to the first category. 
 
2.5 Two-stage Loss 

To fit the model, we design a two-stage loss function. 
ℒ = 𝑎𝑎ℒ1 + 𝑏𝑏ℒ2 (7) 

When epoch≤𝑒𝑒0 is called the first stage, at this time a=1, b=0; 
when epoch>𝑒𝑒0 is called the second stage, at this time a=0, b=1; 
𝑒𝑒0 is the hyperparameter of this network model. 
 
In the first stage, we update F(X) using the cross-entropy loss 
function 

ℒ1 =
1
𝑁𝑁�  

𝑖𝑖

𝐿𝐿𝑖𝑖 = −
1
𝑁𝑁�  

𝑖𝑖

�  
𝑀𝑀

𝑐𝑐=1

𝑦𝑦𝑖𝑖𝑐𝑐 log(𝑝𝑝𝑖𝑖𝑐𝑐) (8) 

where M represents the number of sample groups, where 𝑦𝑦𝑖𝑖𝑐𝑐 
represents the label of sample i, 1 when the predicted value falls 
within the fuzzy interval of the corresponding sample group, 0 
otherwise, and 𝑝𝑝𝑖𝑖𝑐𝑐  represents the probability that sample i is 
predicted to be class c. 
 
In the second stage, we lock the value of F(X) and update G(X) 
using the conditional cross-entropy loss function 

ℒ2 = �ℒ1 𝑦𝑦𝑖𝑖𝑐𝑐 = 0 𝑜𝑜𝑜𝑜 1
0 𝑦𝑦𝑖𝑖𝑐𝑐 ≠ 0 𝑜𝑜𝑜𝑜 1 (9) 

That is, when the sample is a fuzzy sample, the gradient is no 
longer updated. 
 

3. EXPERIMENTS 

We test our algorithm and analyze the experimental results in this 
section. For performance comparison, several neural network 
classification models that have demonstrated better performance 
are used to compare with our method. Section 3.1 presents the 
experimental data, Section 3.2 presents the experimental 
platform performance, and Section 3.3 presents the comparison 
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method and evaluation metrics. Section 3.4 tests our algorithm 
and compares it with several existing neural network 
classification models. 
 
3.1 Experimental Data 

At present, there are relatively few public datasets on the 
identification of construction bare land in high-resolution remote 
sensing images. Therefore, we processed Google Earth images, 
SYSU-CD dataset (Shi et al., 2022), and GID dataset (Tong et al., 
2020) by manual interpretation, and finally 9060 images were 
obtained as the experimental data set of this paper, including 
1089 image samples of the construction site and 7971 samples 
not including the construction site. 
 

Time1 Time2 Label 

   

   

   

   

   

   
Figure 1 Example of the SYSU-CD dataset 

 
The SYSU-CD dataset is a change detection dataset largely 
complements existing CD datasets in terms of image resolution, 
variation type, and data volume, and further provides a new 
benchmark for CD. The dataset contains 20,000 pairs of 0.5-
meter aerial images, taken between 2007 and 2014 in Hong Kong, 
which has long been a prosperous and densely populated 
metropolis in southern China. In addition, from 2007 to 2014, the 
construction and maintenance of ports, shipping routes, and 
ocean coastal projects in Hong Kong and major shipping hubs in 
the international and Asia-Pacific regions increased rapidly. 
Develop coastal economy and maritime transport. Thus, our 
dataset is greatly complemented with high-rise building change 
instances that are difficult to label in HRI due to bias and shadow 

effects, as well as port-related change information compared to 
previous datasets. 
 
A total of 20,000 pairs of aerial image patches of size 256×256. 
As shown in Figure 1, the main types of changes in the dataset 
include (a) new urban buildings; (b) suburban expansion; (c) pre-
construction foundation work; (d) vegetation changes; (e) road 
expansions; (f) offshore construction. The above 6 categories are 
only a rough description of the main types of changes in the data 
set, and do not mean that the samples are clearly divided into the 
above 6 categories. 
 
The GID dataset refers to the Chinese Land Use Classification 
Standard (GB/T21010-2017) to determine the classification 
system and labels five categories: buildings, farmland, forests, 
grasslands, and water bodies. Areas that do not belong to the 
above five categories and cluttered areas are marked as 
background, indicated in black. The fine-grained land cover 
classification set consists of 15 sub-categories: paddy field, 
irrigated land, dry land, garden land, arbor forest, shrub land, 
natural meadow, artificial meadow, industrial land, urban 
dwelling, rural dwelling, transportation land, river, lake and pond. 
Its training set contains 2000 samples per class, and validation 
images are labeled at the pixel level. 
 
They constructed a large-scale land-cover dataset with Gaofen-2 
(GF-2) satellite imagery. This new dataset, named Gaofen-2 
Image Dataset (GID), outperforms existing land cover datasets 
due to its large coverage, wide distribution, and high spatial 
resolution. GID consists of two parts: a large-scale classification 
set and a fine-grained land-cover classification set. The large-
scale classification set consists of 150 pixel-level annotated GF-
2 images, and the fine classification set consists of 30,000 multi-
scale image patches plus 10 pixel-level annotated GF-2 images. 
15 classes of training and validation data are collected and 
relabeled based on 5 classes of training and validation images, 
respectively. In this paper, the second part is mainly used. 
 

 
Figure 2 Example of the GID dataset (Tong et al., 2020) 

 
3.2 Experimental Setup 

All experiments were performed on a server computer with an 
AMD Ryzen 9 3950X 16-Core Processor CPU, 64GB RAM, and 
a Nvidia GeForce RTX 3090 GPU (24GB RAM). The 
implementation of the framework is based on the open source 
toolbox Pytorch. 
 
3.3 Experimental Evaluation Indicators 

This chapter evaluates the method based on the ISPRS standard 
evaluation method based on the computation of the confusion 
matrix on the test set, as well as the accumulated confusion 
matrix. Different metrics can be derived from the confusion 
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matrix: compute completeness (recall), correctness (precision) 
and F1-score (F1-score) for each class, overall accuracy (OA). 

Precision =
𝑃𝑃𝑝𝑝

𝑃𝑃𝑝𝑝 + 𝑓𝑓𝑝𝑝
(10) 

Recall =
𝑃𝑃𝑝𝑝

𝑃𝑃𝑝𝑝 + 𝑓𝑓𝑛𝑛
(11) 

F1 =
Precision∙Recall

Precision + Recall
(12) 

𝑂𝑂𝑂𝑂 =
∑  𝑀𝑀
𝑖𝑖=1 𝑁𝑁𝑖𝑖𝑖𝑖
𝑁𝑁

(13) 

Where 𝑃𝑃𝑝𝑝, 𝑓𝑓𝑝𝑝, 𝑓𝑓𝑛𝑛 represent the number of true positive, false 
positive, and false negative samples, respectively. 𝑁𝑁 is the total 
number of samples, 𝑀𝑀 is the total number of categories of the 
samples. ∑  𝑀𝑀

𝑖𝑖=1 𝑁𝑁𝑖𝑖𝑖𝑖 is the sum of the number of samples on the 
diagonal of the confusion matrix, and N is the total number of the 
samples. 
 
3.4 Experimental Results and Discussion 

Based on the experimental evaluation indicators mentioned in 
Section 3.3, this section compares the final classification results 
from both qualitative and quantitative perspectives. Figure 3 and 
Table 1 show the qualitative comparison results of our method 
and other neural network classification methods, and Table 2 
shows the quantitative results of the experiments. 
 

  
(a) (b) 

  
(c) (d) 

Figure 3 Qualitative analysis sample examples (all of them are 
construction bare land scenes) 

 
Methods (a) (b) (c) (d) 

resnet(He et al., 2015)    ✓ 
googlenet(Szegedy, 2014) ✓ ✓  ✓ 
shufflenetv2(Ma et al., 2018)   ✓ ✓ 
nasnet(Zoph et al., 2018) ✓ ✓  ✓ 
densenet121(Huang et al., 2018)    ✓ 
mobilenetv2(Sandler, 2019)     
squeezenet(Iandola, 2016)     
stochasticdepth18(Xie, 2017) ✓ ✓  ✓ 
wideres(Zagoruyko, 2017)    ✓ 
AFCNet(Our Work) ✓ ✓ ✓ ✓ 

Table 1 The prediction results for the sample in Figure 3 
 

Qualitative comparison results are discussed. Figure 3 shows the 
excellent performance of our model. The 4 sample scenes given 
are all construction bare ground scenes. It can be seen from the 
figure that for the 4 typical construction bare ground samples, the 
method in this paper is correctly identified, and as the other 
models compared are not all correctly identified. 
 

Methods OA P R F1 
resnet 0.7500 0.7487 0.8938 0.8148 
googlenet 0.8000 0.7673 0.9688 0.8564 
shufflenetv2 0.8308 0.8671 0.8563 0.8616 
nasnet 0.8000 0.7621 0.9813 0.8579 
densenet121 0.8500 0.8457 0.9250 0.8836 
mobilenetv2 0.8538 0.8280 0.9625 0.8902 
squeezenet 0.8000 0.9355 0.7250 0.8169 
stochasticdepth18 0.8423 0.8251 0.9438 0.8805 
wideres 0.7654 0.7538 0.9188 0.8282 
AFCNet 0.8585 0.7923 0.9810 0.8766 

Table 2 The accuracy comparison of AFCNet and other neural 
network methods 

 
Quantitative comparison results are discussed. As shown in Table 
2, the results demonstrate that the OA of our method is higher 
than all other comparison methods. The OA, precision, recall and 
F1 scores of AFCNet are 85.9%, 79.2%, 98.1%, 0.8766, which 
are higher than the most typical model Nasnet’s 80.0%, 76.2%, 
98.1%, 0.8579. 
 
Experiments show that our method achieves high classification 
performance, which proves that this method can be used for tasks 
such as dynamic perception of urban expansion. 
 

4. CONCLUSION 

This paper proposed a novel construction land scene detection 
method based on fuzzy classification network to resolve the 
problem that the identification features of construction bare land 
in remote sensing images are not obvious. Different from 
traditional scene classification methods and existing deep 
learning scene classification methods, the main contribution of 
the proposed method is to introduce spectral prior information to 
generate pseudo-label data sets, which greatly reduces the need 
for manual labeling of data. From the detection results, the 
experimental results show that the OA of our method is higher 
than all other comparison methods. The proposed method can be 
used for the dynamic perception of urban expansion, which 
provides a new idea for studying the spatiotemporal evolution of 
urbanization. 
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