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ABSTRACT: 
 
Accurate crime prediction plays an important role in public safety, providing technical guidance and decision support for the police 
and government departments. Due to the dynamics and imbalance of crime distribution, it is difficult to build predictive models for it. 
Specifically, the fine-grained and non-linear spatiotemporal dependencies of crime data cannot be captured accurately. In this paper, 
a neural network model ST-ACLCrime based on ConvLSTM and SE block was proposed to predict the number of theft crimes in 
hotspot areas. By overlaying ConvLSTM layers, fine-grained spatiotemporal dependencies are captured while preserving spatial 
location information. To further enhance the global channel feature representation, SE block is used to recalibrate the channel 
features and enhance the channel inter-dependencies. In addition, the closeness and the period components are set to dynamically 
capture the dependence of different time trends. We choose the city of Chicago as the study case, and use a multi-level spatial grid to 
divide the whole city area. The experimental results show that the proposed model exceeds all baseline model, such as HA, CNN, 
LSTM, CNN-LSTM and ConvLSTM. It was effectively capturing spatiotemporal dependence and improving prediction accuracy. 
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1. INTRODUCTION 

Crime prediction has been a hot topic in modern research and 
business (Wang et al., 2019). Timely crime prediction can 
prevent the loss of physical life and property, while providing 
guarantees for urban operations, public security, and sustainable 
development. Theft crimes are related to the victims' property 
loss and order of life, presenting a high frequency, and the 
police department will always maintain a strict attitude toward 
such property crime (Chen et al., 2015; Ye et al., 2021). 
Therefore, it is great importance to deeply explore the 
spatiotemporal patterns for specific types of crime.  
 
Crimes as a geography-based spatiotemporal event data, which 
has distinct information about the occurrence time and 
geographical location (Lin et al., 2018). Interestingly, hotspot 
areas are constantly changing over time. Some theoretical 
foundations, such as the routine activity theory and crime 
pattern theory, provide a foundation for the distribution pattern 
and hotspot patterns of criminal activity (Bernasco et al., 2012; 
Cohen and Felson, 1979). However, it is difficult to reflect the 
intrinsic mechanisms of crime in the short term. Tapping into 
the periodic patterns and spatiotemporal dependence in the short 
term for crime number prediction becomes a focus of attention. 
 
Existing predictive methods are mainly based on historical data 
to predict the conditions at future moments or locations. Early 
time series models, such as autoregressive integrated moving 
average (ARIMA), tended not to accurately depict 
spatiotemporal patterns (Chen et al., 2008). The reason was that 
ARIMA models can easily fit linear and smooth time series, 
while non-linear and dynamic features could not be accurately 

depicted. The vector autoregressive (VAR) required to set 
parametric variables along with extensive sample support, 
resulting in difficult parameter estimation (Zivot and Wang, 
2006). With the rapid development of deep learning, prediction 
models such as LSTM and GRU have led to a significant 
improvement in predictive capability (Cortez et al., 2018; Su 
and Jiang, 2020). However, this focuses only on the time 
dependence of events, where these models ignore the impact of 
the spatial dependence. In another research direction, 
forecasting using spatiotemporal sequence also becomes of 
increasing interest. Convolution-based models captures spatial 
dependence at different distances for crowd flow prediction 
(Zhang et al., 2016). A deep residual network architecture called 
ST-ResNet, was implemented on crime datasets based grid 
division (Wang et al., 2017). However, they model temporal 
dependence through timestamps of different properties, which 
cannot capture continuous time-stamps within a property. In 
addition, some models use large spatial units in order to avoid 
problems caused by data sparsity. 
 
Considering the deficiencies of existing studies, a neural 
network called ST-ACLCrime was proposed for crime 
prediction. It combines a Convolutional LSTM (ConvLSTM) 
layer and a Squeeze-and-Excitation (SE) block with channel 
attention to obtain fine-grained and non-linear spatiotemporal 
dependencies. In this paper, it is explored on a multi-level 
spatial division while being able to identify crime hotspot areas 
and quantities. The dependencies of different time properties are 
also dynamically fused in considering various properties. The 
contributions are as follows. 
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(1) A model called ST-ACLCrime has been proposed with the 
aim of improving the prediction accuracy and hotspot hit rate. It 
takes into account spatiotemporal pattern interaction, global 
channel information and temporal periodicity.  
 
(2) The ConvLSTM captures the spatiotemporal dependencies 
of fine-grained and non-linear features. The SE block that 
follows ConvLSTM immediately provides effective control to 
the global information. 
 
(3) The Chicago theft dataset was selected and validated in two-
level of spatial resolution, 2000 and 1000 meters, respectively. 
The experimental results show that proposed model outperforms 
the baseline models. 
 
The article is organized as follows. The related work on crime 
prediction is reviewed in Section 2. The details of the proposed 
model are described in Section 3. We show the study area and 
crime dataset in Section 4, and the training procedure in Section 
5. The experimental results are discussed in Section 6, and 
Section 7 summarizes the full work. 
 
 

2. RELATED WORK 

Prediction of the spatial and temporal patterns of crime 
occurrence is essential. According to the existing research based 
on, we classify crime prediction models into three categories: 
statistical approaches, machine learning approaches and deep 
learning approaches. 
 
2.1 Statistical Approaches 

ARIMA was used for short-term prediction of crime time series, 
and its results outperformed the two methods of Exponential 
Smoothing (Chen et al., 2008). Different crime types are 
considered as predictable, such as robbery, murder, burglary 
and total 8 crime types, as well as Linear Regression model 
approach was utilized in the crime data provided by Bangladesh 
police department (Awal et al., 2016). ARIMA and Linear 
Regression would be more suitable for linear relations, and the 
prediction performance is deficient for the crime of imbalanced 
feature distribution. To explore the spatial patterns of crime, 
Kernel Density Estimation (KDE) has been investigated to 
identify hot crime areas and explore their parameter settings 
(Hart and Zandbergen, 2014). Twitter data incorporated into the 
crime prediction model through thematic modeling, the KDE 
method for prediction and decision support for the city of 
Chicago (Gerber, 2014). KDE does not require a priori 
knowledge, but the fixed bandwidth will lead to a large gap 
between the probability density and the reality. Most 
importantly, the time-dependent relationships are ignored. To 
address the temporal deficiency, Spatio-Temporal Kernel 
Density Estimation (ST-KDE) was proposed (Brunsdon et al., 
2007), where temporal weights and spatial kernels are combined 
to express three-dimensional data feature. It was employed for 
spatiotemporal analysis and prediction tasks, such as crime 
hotspot and medical service demand. For instance, a ST-KDE 
approach was applied to predictive hotspot maps of crime data, 
which spatiotemporal features are integrated (Hu et al., 2018b). 
Self-exciting point processes (SEPP) also help to understand 
crime patterns by spatial covariate information and parameter 
inference, improving the robustness by isotropic triggering 
(Reinhart and Greenhouse, 2017; Rosser and Cheng, 2019). 
Summarize the above, statistical-based methods require a lot of 
debugging to find the optimal parameters, which also results in 
a huge workload. 

2.2 Machine Learning Approaches 

With the enhancement of computer hardware and software 
devices, machine learning methods are gradually used to handle 
prediction tasks for big data. Common approaches include: 
Support Vector Machine (SVM), Random Forest (RF), K-
Nearest Neighbor (KNN), Decision Tree and Bayesian. SVM 
have been proposed to predict crime hotspots, and identify 
locations with high levels of crime hotspot classes by binary 
classification (Kianmehr and Alhajj, 2008). In a cyber-crime, 
where eight machine learning methods were studied, SVM was 
considered the most productive method for predicting the type 
of cyber-attacks and achieving high prediction accuracy (Bilen 
and Özer, 2021). This general framework can also be used for 
other spatial data tasks. KNN was used to observe crime rates 
and even possible locations and times of occurrence (Kumar et 
al., 2020). Spatiotemporal Bayesian approach were established 
to model the trend of property crime over time at small areas, 
providing new insights into prediction of hot and cold spots 
(Law et al., 2014). Decision Tree and Naive Bayesian classifier 
were compared to predict future crimes at specific times, and 
the results showed that Naive Bayesian has better accuracy 
(Almanie et al., 2015). In addition, demographic data were 
combined to capture future factors that may affect the 
occurrence of crimes. But in another Chicago crime study, 
decision trees were superior to the Naive Bayesian algorithm 
(Aldossari et al., 2020). 
 
2.3 Deep Learning Approaches 

Deep learning simplifies the workflow of machine learning, 
relying on its powerful temporal and spatial feature extraction 
capabilities to become the mainstream approach. Long Short-
Term Memory (LSTM) was established for emergency event 
prediction that provided a response for unexpected events 
(Cortez et al., 2018). Its performance exceeds that of time series 
models such as Moving Average and ARIMA. Gated Recurrent 
Unit (GRU) was used for the prediction of important news 
events and incorporated the effect of prior knowledge (Su and 
Jiang, 2020). However, these models treat historical data as 
time series that ignore the effect of spatial dependence.  
 
In the European space, the temporal and spatial factors are also 
captured at the same time. Crime data were mapped to the grid, 
and CNN and LSTM were combined to predict crime number, 
with prediction accuracy exceeding that of independent CNN 
and LSTM (Stec and Klabjan, 2018). It is suggested that the 
models have different levels of impact for different crime types, 
and CNN having a higher impact on theft crimes than narcotic 
drug crimes. Convolution-based deep neural network (DNN) 
models were designed to predict the occurrence of crimes, and 
the feature-level fusion approach preserves the non-linear 
dependencies from different domains (Kang and Kang, 2017). 
However, temporal and spatial are independent components 
ignoring their interactivity, and more importantly are not 
adapted to areas where data are not sufficient. Considering that 
crime data was sparsely distributed, ST-ResNet was 
implemented to predict when and where crimes would occur 
(Wang et al., 2019). However, more attention is paid to fine-
grained temporal units rather than fine-grained spatial units. 
Three deep learning architectures, such as ST-ResNet, DMVST-
Net and STD-Net, were compared for the prediction of Chicago 
crime (Matereke et al., 2021). Hetero-ConvLSTM framework 
performed the prediction of traffic accidents and solved the 
problem of spatial heterogeneity (Yuan et al., 2018). However, 
it is still a coarse-grained spatial division unit. 
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Attentional mechanisms assign weights based on the importance 
of elements, which is also a major direction of prediction 
research. A model called DeepCrime was proposed by adding 
attention to the residual neural network (Huang et al., 2018). 
The importance of across time was learned through the attention 
mechanism while dynamic spatiotemporal dependencies were 
obtained. The dual self-attention network (DSANet) for 
multivariate time series prediction (Huang et al., 2019). Multi-
level attention networks, named GeoMAN, for time Series 
Prediction (Liang et al., 2018). In addition, there are 
applications of graph-based structured data under non-Euclidean 
spaces. A gated localised diffusion network (GLDNet) for 
sparse data prediction in network-level hotspot mappings, 
validated on a small region of the crime dataset (Zhang and 
Cheng, 2020). Temporal Graph Convolutional Neural Network 
(T-GCN) captured the dynamics of crime in temporal and 
spatial terms, and likewise proved to be effective for prediction 
tasks (Jin et al., 2020). 
 
 

3. METHODOLOGY 

3.1 Problem Definition 

Encouraged by existing studies (Wang et al., 2019), the study 
area was divided into H W  grid with equal spatial intervals, 
where H  is the number of rows and W is the number of 
columns. Grid location was defined as , 0,0 0,1 1, 1[ , ,..., ]h w H WL l l l   . 
All crime information is divided according to time intervals, 
and represent as 1 2[ , ,..., ]nT t t t . Crime incidents falling into 
each grid was counted, and the data distribution is given by 

1 1 2 2[[ , ],[ , ],...,[ , ]]t n nX t x t x t x . Learning from historical multi-
day crime data { 0,1,..., 1}mX m n   and predicting crime 
data for the coming day nX .  
 
3.2 Model Architecture 

This paper is an exploration of the spatiotemporal distribution 
patterns of theft crimes, predicting the number of crimes within 
each grid unit for a city scale. A deep neural network model 
with attention was defined to extract the spatiotemporal 
dependence features of crime incidents. The general architecture 
of the ST-ACLCrime model is shown in Figure 1. It consists of 
three sections: dataset construction, spatiotemporal dependency 
modeling and parameter matrix fusion. The details of the 
methodology are as follows.  
 
Considering the periodicity of theft crimes, there were two 
temporal components with the same structure constructed: daily 
closeness and weekly periods. In each temporal component, the 
spatiotemporal dependencies are extracted by Convolutional 
layers, ConvLSTM layer, Squeeze-and-Excitation (SE) block. 
Convolutional layer for transforming feature dimensions. 
ConvLSTM network uses convolutional structure instead of the 
fully-connected structure of LSTM (FC-LSTM) (Shi et al., 
2015), which can establish both temporal sequence relationships 
and retain spatial information. As a lightweight CNN 
architecture, SE block can be adaptively recalibrated for 
channel features and obtained global information inter-
dependencies (Hu et al., 2018a). Spatiotemporal dependencies 
are captured simultaneously more fine-grained and non-linear, 
and improving the accuracy of crime prediction. The parameter 
matrix approaches were used for the dynamic fusion of 
closeness and period components (Zhang et al., 2016). 

 
 

Figure 1. The framework of ST-ACLCrime. 
 
3.3 Time Components 

In the case where the input sequence is too long, the training 
time is too long and more difficult. To address this gap, the 
model chooses highly correlated timestamp sequences. This is 
to ensure the best prediction performance on the one hand and 
to reduce the input dataset on the other hand. Some timestamps 
are highly dependent compared to others and play a decisive 
role in crime incidents prediction. Therefore, the closeness 
dependence and period dependence of crime were considered to 
establish two different time trend components. They were 
denoted as cX and dX , respectively. The specific formulas are 

as follows.  
 
                          ( 1) 1[ , ,..., ]c cc t l t l tX X X X                           (1) 

                          ( 1)[ , ,..., ]d t l p t l p t pd dX X X X                           (2) 

 
Where cl and dl denote the length of the closeness component 

and the periodic component, respectively, and p is the time 
interval of the periodic component.  
 
3.4 Convolutional LSTM 

ConvLSTM was proposed to solve the prediction problem of 
spatiotemporal sequences. The fully connected operation of FC-
LSTM is replaced by the convolution operation in the state 
transition process, due to the FC-LSTM is insufficient for 
spatial information. We consider stacking multiple layers of 
ConvLSTM to form a prediction structure. Unlike focusing only 
on the temporal or spatial dimensions, simultaneously acquiring 
spatiotemporal dependencies has better performance in 
prediction task. The formula of ConvLSTM is as follows. 
 

1 1( )t xi t hi t ci t i i W X W H W C b        ; 

1 1( )t xf t hf t cf t f f W X W H W C b        ; 

     1tanh( )t t t-1 t xc t hc t cC f C +i W X W H b      ;      (3) 

1( )t xo t ho t co t o o W X W H W C b       ; 

tanh( )t t tH o C   
 
Where tX denotes input, 1 2, ,..., tH H H denotes cell output, 

1 2, ,..., tC C C  denotes the hidden states, , ,t t ti f o the gates, ‘  ’ 
indicates convolution operator and ‘ ’ indicates Hadamard 
product. 
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3.5 Squeeze-and-Excitation Block  

CNNs have proven to be useful in capturing spatial 
dependencies, with success in the field of vision and event 
prediction. However, its receptive field is limited and can only 
capture local spatial information. Therefore, the channel 
attention mechanism is incorporated, which improves the 
perception of global information by modeling the inter-
dependencies between channels. The SE block is made up of 
two parts: squeeze and excitation. Squeeze portion gets the 
global information of the feature map, while the excitation 
portion learns the feature weights of each channel. Details are 
shown in Figure 2. 

 
Figure 2. The structure of SE block. 

 
Where W  and H  indicate the width and height of the input 
feature, respectively. C  denotes the channel number of features,  

sqF and exF  denote the squeeze and excitation operations, 
respectively. trF denote the convolutional operator. scaleF  
denote the channel-wise multiplication. 
 
3.6 Spatiotemporal Feature Fusion 

To better capture the temporal dependence, the closeness and 
periodicity of temporal trends are considered. They are highly 
correlated with the occurrence of crime and are more likely to 
influence the prediction results. However, the degree of 
influence varies significantly across components. A parametric-
matrix approach is employed to dynamically fuse the temporal 
dependence of different temporal trends. Unlike the manual 
parameter setting, dynamic learning achieves better effects. 
 
                                L L

o c c d dX =W X +W X                               (4)                                                                       

 
Where oX  are the output, and the cX  and dX  are the closeness 
and period sequence, respectively; cW  and dW  represents the 
learnable parameters; and ‘’ represents Hadamard product. 
 
 

4. STUDY AREA AND DATASET 

The city of Chicago, USA, was chosen as the study area. As the 
third largest city in the United States, Chicago is highly 
prosperous in transportation, economy, and education. However, 
behind the high prosperity of Chicago, it breeds a large number 
of urban crimes. It is much higher than the national average. 
Theft crimes, which directly involve the security of citizens' 
property, have a high frequency of occurrence. In addition, due 
to the fact that crime data is officially collected, managed and 
made public, it is of great investigative value and practical 
meaning to consider it as a case study. The study area and theft 
distribution are shown in the Figure 3. 
 
The acquired crime dataset was downloaded through the Open 
Data Portal to be developed by the Chicago government 
(https://data.cityofchicago.org/). The dataset spans a total of 731 
days and contains a total of about 124,620 theft records from 
January 1, 2016 to December 31, 2017. This collects complete 

crime information, including incident number, crime type, time 
of reporting, geographic location, brief background description 
and so on. The daily number of crimes is displayed in Figure 4. 

 
Figure 3. The study area and the distribution of theft crimes in 

1000 meters. 
 

 
Figure 4. The daily number of theft crimes from January 1, 

2016 to December 31, 2017. 
 
 

5. EXPERIMENT 

5.1 Grid Division 

The grid can combine the attribute characteristics of crime (e.g., 
numbers) and geographic location which compensates for the 
coarse granularity of existing administrative areas. Based on the 
existing studies, 2000 meters and 1000 meters were considered 
as division units (Wang et al., 2021; Gerber, 2014). At each 
temporal granularity T , the two-dimensional tensor of response 
spatial location was constructed. The rasterized dataset 
( , , )T H W  was used for the training of the model, where T  is 
denoted as the timestamp, H  and W  are the number of rows 
and columns of dividing grid. 
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Gird Size H (Rows) W (Columns)  
2000 meter 21 18 
1000 meter 42 35 

Table 1. Two-level spatial unit division. 
 
5.2 Model Training 

All models follow the PyTorch framework for training. To 
avoid the influence of objective factors, they use the same 
training parameters, as detailed below. The number of incidents 
falling into the grid is counted on a daily basis. The length of 
the closeness sequence and period sequence are 3 and 4, and 
time interval of the periodic is 7. The training and test sets are 
divided according to 9:1, i.e., the last 70 days as test sets. MSE 
is used as the loss function with Adam optimizer. The learning 
rate of 0.0001 and Batch size is 32. All models are terminated 
after 100 iterations. The number of convolution channels is 64. 
 
5.3 Baseline Models 

Considering the learning ability of the models in temporal and 
spatial terms, a total of five baseline models were selected for 
comparison and analysis in the experiment. 
 
HA (Smith and Demetsky, 1997): Historical Average Model. 
The average of historical moments is used as the result of the 
prediction. 
 
CNN (Fukushima, 1980): Convolutional Neural Networks. 
Spatial dependence of events captured by relying on 
convolution operations. 
 
LSTM (Hochreiter and Schmidhuber, 1997): Long Short-Term 
Memory network. It is used for prediction of long sequences, 
avoiding gradient disappearance and explosion. 
 
CNN-LSTM: CNN is used to capture spatial dependence and 
LSTM to capture temporal dependence. 
 
ConvLSTM (Shi et al., 2015): Replacing the fully-connected 
operation of LSTM with convolution and having better 
performance in capturing spatiotemporal dependencies. 
 
5.4 Model Evaluation 

In order to evaluate the error between the predicted and true 
values, three evaluation metrics were chosen for our model and 
the baseline model: Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), and Mean Hit Rate. The smaller the 
result of the evaluation metric indicates the stronger the 
predictive ability of the model for MAE and RMSE. As shown 
in Eq. 5, Eq. 6 and Eq. 7 below. 
 

                                   
1

1 ˆ| |
c

i
MAE x x

c 
                                (5) 

21 ˆ( )
c

i=1
RMSE x x

c
                            (6) 

                      
1

1
( ) 100%

c
t

t t

n
Mean Hit Rate = 

c N
                  (7) 

 
Where x and x̂ denote the true values and the predicted values, 
respectively, and c  denotes the number of values. tn and tN  
denote the number of events in the hotspot area and the total 
study area, respectively. 

6. RESULTS AND DISCUSSIONS 

Three evaluation metrics were used to evaluate the models. In 
addition, we show the mean hit rate at 10% and 20% coverage 
levels. The mean hit rate ranks the predicted results. The results 
of the predictive metrics for all models are shown in Table 2 
and Table 3. Figure 5 shows the trend of the mean hit rate with 
different coverage levels.  
 

Model MAE RMSE 10% 20% 
HA 0.5840 1.5121 41.73% 57.23% 

CNN 0.3783 0.8191 55.01% 76.65% 

LSTM 0.4795 0.8768 55.88% 78.53% 
CNN-LSTM 0.3687 0.8116 56.55% 80.16% 

ConvLSTM 0.3544 0.7774 58.51% 81.44% 

ST-ACLCrime 0.3449 0.7658 58.52% 82.01% 
Table 2. Comparisons the results of different models at 2000 

meters spatial resolution. 
 

Model MAE RMSE 10% 20% 
HA 0.2017 0.8822 42.51% 52.23% 

CNN 0.1438 0.4009 54.21% 72.20% 

LSTM 0.1977 0.4184 59.14% 77.38% 
CNN-LSTM 0.1455 0.3991 54.16% 72.16% 

ConvLSTM 0.1432 0.3838 59.55% 78.96% 

ST-ACLCrime 0.1409 0.3798 59.41% 80.57% 
Table 3. Comparisons the results of different models at 1000 

meters spatial resolution. 
 

 
Figure 5. Trend of mean hit rate at different coverage levels. 

 
The experimental results are as follows. At 2000 meters spatial 
resolution, the MSE and RMSE of ST-ACLCrime reached 
0.3449 and 0.7658, respectively, and the mean hit rate reached 
82.01% at 20% coverage level. The average hit rate is improved 
with a maximum of 24.78% compared to HA model. At 1000 
meters spatial resolution, the MSE and RMSE of ST-ACLCrime 
reached 0.1409 and 0.3798, respectively, and the mean hit rate 
reached 80.57% at 20% coverage level. Compare to ConvLSTM, 
ST-ACLCrime models have a 1.61% improvement of hit rate in 
at 20% level. 
 
HA ignored the temporal fluctuation and dynamic change of the 
events, and the prediction performance has significant 
shortcomings. In comparison, deep learning models have better 
performance. The CNN and LSTM were affected by the spatial 
unit division, so their performance was less stable with much 
room for improvement. Better prediction accuracy was obtained 
using the CNN-LSTM combination rather than focusing only, 
surpassing that of a single CNN and LSTM. ConvLSTM was 
superior to CNN-LSTM in terms of model architecture and thus 
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performed better in spatiotemporal prediction. ST-ACLCrime 
combines ConvLSTM and SE block, focusing on global channel 
features and fitting complex dependencies, with significantly 
improved fine-grained and non-linear capabilities. Its 
spatiotemporal performance exceeds all baseline models, 
achieving the best prediction accuracy. 
 
To further explore the performance of predictive performance, a 
specific day was chosen to visualize the crime data. Figure 6 
shows the predicted number of ST-ACLCrime on December 31, 
2017. The performance of the true and predicted values at 
different resolutions are compared respectively. In addition, the 
following conclusions are drawn from the visualized results by 
comparing them at different units. The proposed model obtained 
good prediction performance at 2000 meters and was able to 
significantly predict the area where the cases occurred. At 1000 
meters the performance is slightly lower than 2000 meters due 
to the sparse grid and low incidents values. Therefore, it is 
important to select the suitable grid units in order to obtain 
better performance.  

 
 
Figure 6. ST-ACLCrime predictions for December 31, 2017 at 

two-level spatial resolution, respectively.  
 
 

7. CONCLUSION 

In the paper, we propose an end-to-end neural network model, 
called ST-ACLCrime, to predict theft crimes at the urban scale. 
It combines ConvLSTM layer with SE block. ConvLSTM 
simultaneously captures spatial and temporal dependencies. The 
global channel-wise features are calibrated by the SE block 
immediately after the ConvLSTM. Theft crime in Chicago was 
selected as the experimental data for the study. ST-ACLCrime 
obtains more accurate prediction results through periodicity, 
spatiotemporal dependence and channel attention. Validation at 
multiple levels of spatial units to facilitate research on fine-
grained spatial units. It is hoped that patrol routes can be 
arranged for police departments and governments. In the future, 
external influences on crime and network-level expansion can 
be taken into account.  
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