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ABSTRACT: 

In the paper, a novel Intersecting Cortical Network Model (ICM) based adaptive pansharpening algorithm is proposed to solve the 

deficiency of spectral distortion and texture detail missing in the remote sensing image fusion. The Shuffled Frog Leaping Algorithm 

(SFLA) is used in the proposed method to adaptively optimize the ICM model parameters. The fitness function of SFLA is constructed 

by fusion evaluation index Q4 and SAM, which can generate the irregular optimal segmentation regions. Then, these regions are used 

to adaptively extract the detail information of the panchromatic image. Finally, the sharpened higher resolution image is obtained with 

the weighted details and the multispectral upsampling image. Experiments are carried out with the WorldView-2 and GF-2 high- 
resolution datasets. The experimental results shown that the proposed algorithm performs better compared with the existing 

pansharpening fusion methods both in the spectral preservation and spatial detail enhancement, which verifies the effectiveness of the 

algorithm. 

1. INTRODUCTION

Due to the limitation of the signal-to-noise ratio of remote 

sensing satellite sensors, it was difficult to obtain remote sensing 

images with both the high spatial resolution and the high spectral 

resolution. However, for the high precision applications, spectral 

information of the multispectral images (MS) and spatial 

information of the panchromatic images (PAN) need to be fused. 

Pansharpening is a commonly used remote sensing image fusion 

technology, which injects the spatial information of the PAN into 

the low-resolution MS images to acquire a fusion image with 

both high spatial and spectral resolutions (Yong et al., 2017). As 

an important part of the remote sensing image processing, 

pansharpening is of great significance for the subsequent 

interpretation, recognition and classification of remote sensing 

images (Li et al., 2019). 

The pansharpening methods of the remote sensing images are 

mainly divided into three categories: multiresolution analysis 

(MRA) methods (Li et al., 2021), component substitution (CS) 

methods (Li et al., 2021) and sparse representation (SR) methods 

(Wang et al., 2011). The MRA methods extract the spatial details 

by using multiresolution analysis, and inject them into the MS 

images to improve the spatial resolution of the MS images. The 

MRA methods include Laplace pyramid decomposition 

(Alparone et al., 2008), wavelet transform (Vivone et al., 2020), 

nonsubsampled contourlet transform (Restaino et al., 2016). The 

CS methods transform the MS images into the transform domain, 

and then replace the spatial structure of the PAN images. 

Classical CS methods include intensity hue saturation (IHS) 

method (Bai et al., 2019), principal component analysis (PCA) 

(Li et al., 2021), gram schmidt (GS) transform methods 

(Alparone et al., 2007). Another pansharpening method is the SR 

method, which represents the image as a sparse signal with the 
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least coefficients in a complete space. Compared with the other 

traditional methods, SR method has higher robustness with the 

noise, but it is also time-consuming at the same time (Li et al., 

2021). However, the traditional pansharpening methods take no 

account of the optimization of the fusion results, which will lead 

to the poor spectral preservation and spatial detail injection. The 

intersecting cortical model (ICM) is an improved single-layer 

neural network model based on pulse coupled neural network 

model (PCNN). Its unique biological background can enhance 

the details of the image, while retaining the contours of it. 

Therefore, the ICM model is beneficial for the pansharpening 

fusion tasks. However, the parameters of the ICM model is also 

determined and fixed by experience. Different parameters will 

result in the different fusion effects. 

The paper proposes a novel pansharpening algorithm for remote 

sensing images. The proposed method takes advantages of the 

synchronization pulse segmentation characteristics of ICM and 

the global search ability of the Shuffled Frog Leaping Algorithm 

(SFLA), where the binary sub image information from the 

segmentation is used as details of the fusion result. The 

comparisons with the other classical fusion methods show that 

the proposed method not only achieves better spectral 

preservation, but also increases spatial texture details in the 

fusion result. 

2. REMOTE SENSING IMAGE SEGMENTATION

BASED ON ICM 

2.1 ICM Network 

Each neuron of ICM model is composed of input part, nonlinear 

pulse modulation part and pulse output part (Ma et al., 2006). The 

framework of a single ICM neuron model is shown in Figure 1. 
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When ICM model is applied to remote sensing image processing, 

a pixel represents a neuron (Pu et al, 2012). Its mathematical 

description is as follows: 

Figure 1. Neural model of ICM. 

𝑂𝑃 =∑ 𝑊𝑖𝑗𝑝𝑞
𝑝𝑞

{𝑌𝑝𝑞[𝑛 − 1]} (1) 

𝐹𝑖𝑗[𝑛] = 𝑓𝐹𝑖𝑗[𝑛 − 1] + 𝑆𝑖𝑗 + 𝑂𝑃 (2) 

𝑌𝑖𝑗[𝑛] = {
1 ∙∙∙ 𝐹𝑖𝑗[𝑛] > 𝐸𝑖𝑗[𝑛 − 1]

0…𝑒𝑙𝑠𝑒
(3) 

𝐸𝑖𝑗[𝑛] = 𝑔𝐸𝑖𝑗[𝑛 − 1] + ℎ𝑌𝑖𝑗[𝑛] (4) 

Where S is the external activity stimulus. F represents the 

feedback input, and E denotes the dynamic activity threshold. f

and g are the attenuation coefficients of F and E respectively. The 

coefficient h determines the increment of the threshold after the 

neuron is stimulated. The neuron of the ICM model is stimulated 

to generate the output pulses, when the feedback input F is 

greater than the dynamic threshold E. Then the threshold E 

greatly increases. After that, the threshold E continuously 

decreases with the attenuation factor g. The neuron will fire again, 

when the threshold E decreases until less than the feedback input 

F. 

OP is the influenced by the neighbor neurons, which is composed 

of the pulse output Ypq and weighting coefficient Wijpq. In ICM 

iteration, neurons (i, j) will be affected by neighboring neurons 

(p, q), causing the neuron to accelerate activation or inhibit 

activation. Y is the binary matrix output of ICM network, which 

can be used as the segmentation result of each iteration. 

2.2 Image Segmentation with ICM 

Each neuron of the ICM is connected to its neighboring neurons 

by Wijpq, forming a single-layer 2D local connection network (Dai 

et al., 2015). The fired neurons will cause the synchronous 

release pulse of its neighboring neurons. Therefore, the output 

synchronous pulse sequence includes similar areas, edges, and 

texture information of the remote sensing images. The binary 

pulse sequences constitute the different segmentation images. In 

our proposed algorithm, the dynamic threshold is generally set to 

a large value to ensure each neuron will not be stimulated only 

once, thus ensure that each pixel belongs to a unique 

segmentation region (Li et al., 2019). 

In Remote Sensing image fusion, the segmentation characteristic 

of ICM is mainly used. ICM divides the image into irregular 

regions, and the irregular statistical regions are easier to count the 

relevant pixel features with similar features and neighborhood 

relationships (Li et al., 2019). In ICM, different parameters will 

lead to different segmentation results. 

3. ADAPTIVE REMOTE SENSING PANSHARPENING

ALGORITHM BASED ON ICM 

The paper proposes an ICM based adaptive remote sensing 

pansharpening algorithm. The step chart of the algorithm is 

shown in Figure 2. The proposed algorithm includes two main 

parts, ICM parameter adaptive design part, spatial detail 

extraction and injection part. 

3.1 ICM Parameter Adaptive Design 

In the paper, the SFLA is used to optimize the parameters of the 

ICM model to obtain the combined the optimal parameters f and 

g. SFLA imitates the process of the frog population distribution

in the food searching, mainly includes two parts: local search and

global information exchange (Zhang et al., 2018). The algorithm

first performs a local search, and then uses the information

sharing among subgroups to search for a global search. Here, we

use it to find out the global optimal solution.

The method is to divide a frog population into several subgroups, 

and each frog only belongs to a specific subgroup (Zhang et al., 

2018). Firstly, the fitness rules is set up to get the frog Xb with the 

best fitness, and the frog Xw with the worst fitness in the subgroup, 

and the best frog Xm among all frogs in the whole population. 

According to Eq. (5) and Eq. (7), the worst frog in the subgroup 

learns from the best frog, where Dj represents the leaping step 

size. The symbol rand represents a random number between 0 

Figure 2. Schematic diagram of algorithm flow. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W2-2022 
Urban Geoinformatics 2022, 1–4 November 2022, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W2-2022-97-2022 | © Author(s) 2022. CC BY 4.0 License.

 
98



and 1 (Zhang et al., 2018). If the fitness value of the optimized 

frog Xw1 is still lower than frog Xw in the atomic population, frog 

Xw1 needs to be updated again through the global optimal method, 

as shown in Eq. (6) and Eq. (7). 

𝐷𝑗 = 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑏 − 𝑋𝑤) (5) 

𝐷𝑗 = 𝑟𝑎𝑛𝑑 ∗ (𝑋𝑚 − 𝑋𝑤) (6) 

𝑋𝑤1 = 𝑋𝑤 +𝐷𝑗 (7) 

In our proposed method, each frog X is set as the ICM parameters 

f or g, and the process of searching for food means finding the 

optimal configuration of ICM parameters. The frogs in the 

population are divided into r subgroups. The quality evaluation 

(Q4) and the spectral angle mapping (SAM) are taken as the 

fitness function (Javan et al., 2021). With the optimization 

process of the parameters f and g in subgroups, its fitness is 

continuously improved. The value with higher fitness forms a 

new population, and then subdivides the new subgroup, until the 

fusion index achieves the optimal. The SFLA based ICM 

parameter optimization process is shown in Figure 3. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
[𝑄4 + 𝑐𝑜𝑠(𝑆𝐴𝑀)]

2
(8) 

Figure 3. Process of ICM parameter optimization. 

3.2 Spatial Detail Extraction and Injection 

After the fusion parameter optimization of ICM, the iteration of 

adaptive ICM is used to segment the MS image by irregular 

clustering. On each clustering segmentation result, the detail 

injection weight is calculated by the standard deviation and 

covariance of the MS upsampling image, and so does the low 

spatial resolution PAN image. The larger injection weight means 

the greater correlation between the MS image and the PAN image 

in the clustering segmentation region. The implementation 

details of the fusion part are described as follows: 

(1) Upsample the original multispectral image MS by the bicubic

nonlinear interpolation to obtain MSU with PAN size;

(2) Perform ‘à trous’ wavelet on panchromatic image, then

decompose it into high-frequency and low-frequency images. Set

high-frequency part to zero, and then perform inverse wavelet

transform to obtain image PL. The panchromatic image detail

DPAN is obtained according to Eq. (9) (Vivone et al., 2015), where

PAN is the original panchromatic image;

(3) Segment the k-band multispectral images with adaptive

parameter ICM. Calculate the gain weight wk through Eq. (10)

and Eq. (11). Where Cov (A, B) stands for the covariance

operation of A and B; Std (A) indicates the standard deviation of

A;

𝐷𝑃𝐴𝑁 = 𝑃𝐴𝑁 − 𝑃𝐿 (9) 

𝐶𝑅𝑘[𝑛] = {

𝐶𝑜𝑣 (𝑀𝑆𝑈𝑘(𝑖, 𝑗), 𝑃𝐿(𝑖, 𝑗))

𝐶𝑜𝑣(𝑃𝐿(𝑖, 𝑗), 𝑃𝐿(𝑖, 𝑗))
𝑖𝑓𝑌𝑖𝑗[𝑛] = 1

0

(10) 

𝑤𝑘[𝑛] = {

𝑆𝑡𝑑 (𝑀𝑆𝑈𝑘(𝑖, 𝑗))

𝑆𝑡𝑑(𝑃𝐿(𝑖, 𝑗))

0

𝑖𝑓𝐶𝑅𝑘[𝑛] > 0 (11) 

3.3 Fusion Rule 

Calculate the fusion result IFU by Eq. (12), the sharpened higher 

resolution image is obtained with the weighted details and the 

MS upsampling image. 

𝐼𝐹𝑈𝑘 = 𝑀𝑆𝑈 + 𝑤𝑘 ∗ 𝐷𝑃𝐴𝑁, 𝑘 = 1,… , 𝐾 (12) 

Where 𝐼𝐹𝑈𝑘is the fusion image, MSU is the upsampled MS image.

DPAN is the spatial detail of the PAN image. wk is the gain weight. 

k represents each spectral channel of the multispectral images and 

K is the total number of spectral channels. 

4 EXPERIMENTAL RESULTS 

4.1 Experimental Datasets 

The image datasets of the experiment are captured from the 

WorldView-2 and GF-2 remote sensing satellites. The first 

dataset represents the urban areas of Washington D.C. City with 

houses, roads, grassy areas and roads. The MS image of the 

dataset is characterized by four bands of blue, green, red and 

near-infrared with the space resolution 2m. And the space 

resolution of the PAN image is 0.5m. The second dataset is the 

suburban area of Lanzhou City, which is consists of the 

mountainous. The space resolutions of the MS image and the 

PAN image are 4m and 1m respectively. The size of the MS 

images of all datasets are normalized to 512512, and the size of 

the PAN images are cropped to 20482048.

4.2 Quality Assessment Criteria 

Four quality evaluation indexes are used to objectively assess the 

proposed method, the Q4 index; the SAM index; the relative 

dimensionless global error in synthesis (ERGAS), and the spatial 

correlation coefficient (SCC) (Garzelli et al., 2009, Javan et al., 

2021). The Q4 index takes into account both the spectral and the 

radiometric distortions; ERGAS is a normalized index based on 

the root mean square error of the kth fused band to the reference; 

while SCC is used to evaluate the spatial correlation between the 

reference image and the fused image; and SAM measures only the 
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spectral distortion and measured in degrees; (Vivone et al., 2015, 

Vivone et al., 2020). The optimum value of Q4, ERGAS, SCC, 

and SAM are 1, 0, 1, 0, respectively. 

4.3 Comparative Experiments 

In order to examine the effectiveness of the proposed algorithm, 

six traditional pansharpening methods are prepared for 

comparison, such as GS method (Alparone et al., 2007), PCA 

method (Li et al., 2021), Brovey method (Aiazzi et al., 2006), 

IHS method (Vivone et al., 2015), morphological operators based 

fusion method (MOF) (Restaino et al., 2016) and à trous wavelet 

decomposition method (ATWT) (Vivone et al., 2020). Figure 4(a) 

and Figure 5(a) are the original MS images of the datasets. Figure 

4(b) and Figure 5(b) are the pansharpening results of our 

proposed method. Figure 4(c) ~ (h) and Figure 5(c) ~ (h) are the 

fusion results of the other comparison algorithm. 

(a) reference image (MS) (b) proposed method (c) GS (d) PCA

(e) Brovey (f) IHS (g) MOF (h) ATWT

Figure 4. Comparison results of WorldView-2 dataset. 

(a) reference image (MS) (b) proposed method (c) GS (d) PCA 

(e) Brovey (f) IHS (g) MOF (h) ATWT 

Figure 5. Comparison results of GF-2 dataset. 

From Figures 4 and 5, it can be found that all the methods have 

improved the texture details of the original MS image. Figure 4(e) 

and Figure 5(e) show that Brovey method has large spectral 

distortions. The spectral distortion can also be seen in Figure 4(f). 

From Figures 5, we can see that all the methods can achieve an 

acceptable pansharpening fusion result. The green areas on the 

right side of the image are well preserved. 

The quantitative index assessments are shown in Table 1 and 

Table 2. Obviously, among the four criteria of the image quality 

evaluation, the proposed method is superior to the other six 

methods in all criteria. It can be seen from Table 1 and Table 2 

that the quality assessment criteria of the CS based methods are 

worse than those of the MRA based methods. This is due to the 

spectrum mismatch between the MS images transformation 

structure and the PAN images in the traditional CS method, 

during the process of transform the MS images into the transform 
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domain, and then replace the spatial structure of the PAN images. 

Furthermore, both the ATWT method and the proposed method 

extract the details of the PAN images based on the ‘à trous’ 

wavelet decomposition method, but the gain weight of the ATWT 

method is calculated through the whole image, while the 

proposed method adaptively calculates the gain weight based on 

irregular regions. Therefore, the fusion image obtained by the 

proposed method has less spectral distortion and richer spatial 

texture information. 

Criterion Proposed GS PCA Brovey IHS MOF ATWT 

Q4 0.8776 0.8212 0.8215 0.8177 0.8178 0.8670 0.8688 

ERGAS 4.9428 5.7373 5.7268 5.8837 5.9094 5.2343 5.0097 

SCC 0.7555 0.7549 0.7549 0.7475 0.7426 0.7495 0.7545 

SAM 5.9615 6.5101 6.5057 6.4115 6.7940 6.3267 6.1609 

Table 1. Quantitative comparative evaluation results of WorldView-2. 

Criterion Proposed GS PCA Brovey IHS MOF ATWT 

Q4 0.9131 0.8405 0.8404 0.8325 0.8336 0.9035 0.9017 

ERGAS 1.1845 1.6219 1.6229 1.5999 1.6332 1.3540 1.3033 

SCC 0.8206 0.7578 0.7578 0.7561 0.7591 0.8015 0.7914 

SAM 0.5633 0.6802 0.6809 0.6259 0.6953 0.6110 0.5795 

Table 2. Quantitative comparative evaluation results of GF-2. 

5 SUMMARY 

In the paper, a novel adaptive ICM based pansharpening 

algorithm is proposed. First of all, the SFLA is used to adaptively 

optimize the segmentation results of ICM model parameters, 

which solves the problem of difficult selection of ICM 

parameters. Then, the irregular regions segmented by ICM are 

used for the image details extraction of PAN. Finally, the fusion 

result is obtained by the weighted details. The comparative 

experiments between WorldView-2 and GF-2 high-resolution 

datasets show that the proposed algorithm performs better in 

spatial details and spectral preservation of fusion results than 

other six methods. For the reason that, the ICM model conforms 

to the characteristics of the human vision system, and the SFLA 

is used to further improve the fusion accuracy, the proposed 

method presents the less spectral distortion and better spatial 

texture details. Another advantage of the proposed method is that 

all the parameters of ICM model are acquired adaptively rather 

than set by experience in the traditional ICM. Furthermore, 

determining the strategy of the parameter configuration 

adaptively by the other advanced algorithms such as deep 

learning optimization algorithms is our future work.  
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