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Abstract 

  

In disaster management, land-use land-cover (LULC) maps are vital for real-time situational awareness and coordinated responses. 

These maps aid in coordinating field operations, guiding rescue teams, and identifying high vulnerability areas. They ensure accurate 

spatial information sharing and management during disaster response efforts. Deep transfer learning models have emerged as 

powerful tools for LULC classification, addressing challenges like insufficient training data and complex classification tasks. 

In this research instead of building networks from scratch, pre-trained networks that used EuroSAT benchmark dataset are employed. 

Several deep learning models including 1-layer CNN, 4-layers CNN, VGG16 and an improved ResNet-50 network as proposed 

method are considered and compared in this study. The results were analyzed in both quantitative and qualitative ways. In the 

quantitative mode, the measurement criteria such as Overall Accuracy (OA), F1Score, Precision and Recall were calculated, and in 

the qualitative mode, the class diagram was drawn in the feature space to check the separability of the classes. Finally, the results 

show high overall accuracy score of 95.9% indicating the high potential of our proposed network for ResNet-50. The proposed 

method has resolved insufficient training dataset by implementing data augmentation that it can be solved the problem of lack 

dataset. 

 

 

1. Introduction 

The number and consequences of natural disasters have shown a 

dramatic development in past decades (Thenkabail, 2015). 

Natural disasters are events which are caused by purely natural 

phenomena and bring damage to human societies (Van Westen, 

2000). Disasters – from earthquakes and storms to floods and 

droughts – kill approximately 40,000 to 50,000 people per year. 

This is the average over the last few decades. While that’s a 

relatively small fraction of all deaths globally, disasters can 

have much larger impacts on specific populations. Single 

extreme events can kill tens to hundreds of thousands of people. 

In the 20th century, more than a million deaths per year were 

not uncommon. Disasters have other large impacts, too. 

Millions of people are displaced – some left homeless – by them 

each year. And the economic costs of extreme events can be 

severe, and hard to recover from. This is particularly true in 

lower-income countries (Ritchie and Rosado, 2022). Therefore, 

it is necessary to develop models that performs Disaster Risk 

Management (DRM) elements, including identification, 

monitoring, management and mitigation strategies (Kumar et 

al., 2024).  

 

Disaster risk with all its components is a spatial phenomenon. 

Therefore, it can only be addressed with spatial data. The main 

source of feeding DRM models is remote sensing information 

and without such meaningful information, mentioned DRM 

components would simply not possible (Thenkabail, 2015). 

During the last decades, remote sensing has become an 

operational tool in disaster preparedness and warning phases 

(Van Westen, 2000). Remote sensing images enable providing 

efficient information about earth’s surface over a large area at a 

low cost (Ali and Johnson, 2022). In this regard detailed LULC 

map which categorizes and characterizes the earth’s terrestrial 

surface (Rangel et al., 2024), is essential in monitoring and 

planning. 

Machine Learning (ML) algorithms has significantly improved 

the ability to generate LULC maps. These algorithms identify 

patterns with exceptional accuracies by means of learning from 

large amounts of data and building model upon that (Rangel et 

al., 2024). These methods ranging from conventional methods 

based on image statistics such as Bayesian and Maximum 

Likelihood to more complex and advanced methods, such as 

Support Vector Machine (SVM), Random Forest (RF), K-

nearest neighbours (KNN), Decision Trees (DTs) and etc (Ali 

and Johnson, 2022). 

 

Meanwhile, Deep Learning-based (DL) models have also 

achieved excellent performances in the field. Notably, these 

DL-based models have often outperformed the ML methods 

when there is sufficient amount of training data available (Ali 

and Johnson, 2022). Also, a major advantage of DL approaches 

is their ability to automatically learn spectral and contextual 

patterns and hierarchical features from training set to distinguish 

between different LULC classes (Ali and Johnson, 2022; 

Pushpalata et al., 2024). Despite the increased complexity that 

comes with training deep-learning models from the beginning, 

this approach can sometimes result in overfitting. To avoid this, 

deep transfer learning has emerged as a novel methodology 

within ML. Through the utilization of transfer learning, it 

becomes feasible to substantially lessen both the necessity for 

extensive training data and the duration required for training 

within the target domain. This is achieved because the model 

doesn't need to start its training anew in the target domain, nor 

do the training and testing datasets need to be entirely separate 

or identically distributed. The core aim of transfer learning is to 

enhance the performance of specific learners within particular 

domains by applying the insights acquired from various yet 

related source domains. The versatility of transfer learning has 

positioned it as a notable and intriguing topic within the broader 

field of machine learning. (Dastour and Hassan, 2023).  
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Convolution Neural Network (CNN), has been widely used in 

tasks such as image classification, object detection and 

segmentation. The architecture consists of convolution layer, 

pooling layer, activation function and fully connected layer. 

Various types of architecture can be applied to CNN and among 

these architectures, VGG-16 and ResNet-50 are two of them. 

VGG-16 is consisted of 16 convolution layers and fully 

connected which is usually used to recognize and classify 

images.  The architecture has 13 convolutional layers with 3x3 

filters and 3 fully connected layers (Hartatik and Anam, 2023). 

ResNet is a CNN network architecture that can use hundreds or 

even thousands convolution layers. Due to the network depth, it 

is easy to optimize and has better performance in terms of 

accuracy. 

 

The aim of this paper is to examine different deep learning 

networks for high-accuracy classification, improving networks 

through modifying parameters related to deep learning and 

achieving the best accuracy with less epochs and short training 

times. 

 

The rest of paper is as follows: Section 2 describes related 

works in the field, Section 3 highlights the materials and 

employed methodology, in Section 4 results are illustrated and 

finally, in Section 5, the conclusion is presented. 

 

2. Related works 

In the field of risk management, particularly within the context 

of LULC mapping, the integration of advanced ML techniques 

has emerged as a pivotal strategy for enhancing predictive 

capabilities and decision-making processes. Among these 

techniques, transfer learning stands out as a promising approach 

due to its ability to leverage pre-existing knowledge from 

related domains, thereby significantly reducing the need for 

extensive datasets and computational resources typically 

required for training models from scratch. This section aims to 

explore the existing body of literature surrounding the 

application of transfer learning in LULC mapping, highlighting 

its potential benefits and challenges, and setting the stage for a 

deeper discussion on how these methodologies can be optimized 

for effective risk management strategies. 

 

In 2021, Naushad et al. investigated the performance of deep 

transfer learning architectures in LULC classification. Their 

study was based on two potential architectures, namely, VGG16 

and Wide ResNet-50. Their findings illuminate the broader 

implications of transfer learning within the domain of risk 

management, suggesting that such methodologies can 

significantly enhance the accuracy and efficiency of LULC 

classification efforts. This, in turn, has the potential to inform 

more precise and effective risk assessment strategies, enabling 

stakeholders to better anticipate and mitigate environmental 

risks associated with land use changes. 

 

In 2022, Alem et al. applied deep transfer learning techniques to 

the UC Merced dataset. Their models achieved OA of 92.46%, 

94.38%, and 99.64% using Resnet-50V2, InceptionV3, and 

VGG-19, respectively. 

 

In 2022, Sobhana et al. marked a significant advancement in the 

use of ML for disaster management by employing a CNN 

enhanced with data augmentation techniques to classify the 

images related to natural disasters such as earthquakes, floods, 

cyclones, and wildfires. The study's novelty lies in its approach 

to overcoming the limitations of traditional datasets through 

data augmentation, which involves manipulating images to 

create variations that improve the model's learning capability. 

This method not only addresses the issue of limited labelled 

data but also enhances the model's ability to recognize disasters 

under different conditions, thereby improving classification 

accuracy. 

 

In 2023, Dastour and Hassan evaluated thirty-nine deep transfer 

learning models were systematically alongside multiple deep 

transfer learning models for LULC classification using a 

consistent set of criteria. Among their models, ResNet-50, 

EfficientNetV2B0, and ResNet-152 were the top performers in 

terms of kappa and accuracy scores. ResNet-152 required three 

times longer training time than EfficientNetV2B0 on their test 

computer, while ResNet-50 took roughly twice as long. ResNet-

50 achieved an overall F1Score of 0.967 on the test set. 

 

In 2023, Kunwar and Ferdush focused on classifying LULC 

using transfer learning with the ViT model pre-trained on 

ImageNet-21k. Two datasets were utilized, one with data 

augmentation and one without. The ViT, VGG-16, and ResNet-

50 models were compared in terms of accuracy, F1Score, and 

training time. The ViT model outperformed the other models in 

accuracy but required more training time. Data augmentation 

significantly improved the ViT model's performance, especially 

in classes like Forest and Sea Lake, although the Pasture class 

had the lowest accuracy. The study highlighted the importance 

of hyperparameter tuning and advanced training techniques like 

learning rate optimization and regularization to achieve optimal 

results. By fine-tuning the ViT model, the study achieved a 

remarkable 99.19% accuracy on the EuroSAT RGB dataset, 

showcasing the effectiveness of transfer learning in LULC 

classification. The results indicated that the ViT model had 

higher accuracy and training time compared to VGG-16 and 

ResNet-50. The ResNet-50 model, on the other hand, exhibited 

better accuracy than VGG-16 and required less training time for 

both augmented and non-augmented datasets. Data 

augmentation techniques were found to be crucial in mitigating 

overfitting and enhancing dataset diversity, leading to improved 

model performance. By incorporating model enhancement 

techniques and careful hyperparameter tuning, the developed 

model not only achieved exceptional accuracy but also 

demonstrated its efficiency in mapping class distributions and 

providing insights into geospatial imagery for environmental 

conservation and urban development planning. 

 

In 2024, Fayaz et al. focused on land-cover classification using 

deep learning techniques, specifically transfer learning with 

Inception-v3 and DenseNet121 architectures, to enhance urban 

planning, agricultural zoning, and environmental monitoring. 

The study strategically fine-tuned versions of Inception-v3 and 

DenseNet121 networks, enabling the models to adapt to the 

intricacies of land-cover classification by improving pre-

existing knowledge from extensive datasets. Through 

experiments on the UC-Merced_LandUse dataset, the approach 

achieved impressive results, including 92% accuracy, 93% 

recall, 92% precision, and a 92% F1Score. 

 

3. Materials and method 

3.1 Dataset 

The EuroSAT dataset is a comprehensive resource designed for 

LULC classification, improving advanced satellite imagery. The 

dataset is based on Sentinel-2 satellite imagery, which provides 

high-resolution images across multiple spectral bands. This 

allows for detailed analysis of land cover types. The dataset 

categorizes land cover into 10 distinct classes. These classes 
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represent various types of land use, such as forests, urban areas, 

agricultural land, and water bodies, facilitating diverse 

applications in environmental monitoring and urban planning. 

There are two versions of the dataset available which are RGB 

and Multispectral (Helber et al., 2018). In this study the 

multispectral version of the dataset is used to generate LULC 

maps. 

 

3.2 Method 

Figure 1 illustrates the workflow of the methodology used in 

this study.  

 

 

Figure 1. The methodology flowchart. 

3.2.1 Train and test data collection: A total of 27,000 

images in the database were used to train and test the network. 

Eighty percent of the data was used for training networks, with 

21600 images being used. As mentioned, we dedicated 20 

percent of the total data, which represents a total of 5,400 

images, for testing the models. These are data that were not 

present in the training process and are actually new images for 

the network. 

 

3.2.2 Data augmentation: Data augmentation in data 

analysis is a technique used to increase the amount of data by 

adding revised versions of existing data or newly created 

artificial data from existing information. This method acts as a 

regularizer and helps to reduce overfitting in training models. In 

addition, image recognition algorithms are improved when 

transferring images presented in virtual environments to real-

world data. In fact, using data augmentation, it is possible to 

extract multiple images from one image, which actually 

increases the performance of the training process of the model. 

The study used a random rotation of 0.2, random zoom and a 

random flip horizontally and vertically on the training data. 

 

3.2.3 Models: Four models have been considered for this 

study. 1-layer CNN, 4-layers CNN, VGG-16 and finally an 

improved ResNet-50 model. 1-layer CNN model consists of one 

Conv2D layer. In 4-layers CNN, unlike simple CNN, four 

Conv2D layers are used. Dropout is used in both CNN models. 

Two other methods, VGG-16 and ResNet-50 are pre-trained 

models whose weights are updated using imagenet and 

finetuning in the model. In improved ResNet-50 model, 

dropout, learning rate schedule, and kernel regularizer are 

employed in the architecture. Also, unfreezing last 10 layers is 

done with the aim of improving performance of the model 

training and fine-step. 

 

To achieve this goal, Tensorflow and Keras libraries, which are 

the most popular deep learning frameworks, have been used. 

Also, the process of coding and running the code in the Google 

Colab environment has been done with GPU, which accelerates 

the implementation process. Also, the optimizer, Adam, with a 

learning rate of 0.000001, and the sparse categorical cross 

entropy loss function were used. All models are trained with 50 

epochs. 

 

3.2.4 Accuracy validation: The evaluation of the models 

has been done both quantitatively and qualitatively or visually. 

Quantitative evaluation includes calculating OA, Precision, 

Recall and F1Score and visual evaluation is conducted by 

comparing the output of classes through intra-class and inter-

class criteria. 

 

4. Results 

As mentioned earlier, the results and evaluations have been 

examined in both quantitative and qualitative ways. The results 

of each model are illustrated and discussed below. 

It should be noted that for convenience, the names of the classes 

are coded as shown in Table 1. 

 

Code Class name 

1 Annual Crop 

2 Forest 

3 Herbaceous Vegetation 

4 Highway 

5 Industrial 

6 Pasture 

7 Permanent Crop 

8 Residential 

9 River 

10 Sea Lake 

Table 1. Encoding of class names 

 

4.1 1-layer CNN 

The separability diagram of the classes in the feature space is 

shown in Figure 2. 

 

 

Figure 2. Classification diagram in feature space for 1-layer 

CNN. 

As can be seen in Figure 2, 1-layer CNN was not a suitable 

classifier. Because, the model could not distinguish different 

classes well and the class diagram in feature space is mixed. 

However, it can be said that classes such as Forest, Industrial, 

Sea Lake and Annual Crop have been distinguished better. But 

in general, the network has not performed well in classification. 
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The confusion matrix for 1-layer CNN model is shown in 

Figure 3. 

 

According to Table 2, this network has an OA of 56.64%, which 

is not a good overall accuracy, although we cannot expect more 

from a simple CNN network with one layer. In general, as is 

evident in the Figure 2, The accuracy of residential class is 

lower than other classes and after that the highway class has the 

lowest value. Also, the highway class has the lowest precision. 

The highest accuracy is for the sea Lake class, which is a more 

distinct class, and this network has classified the distinct classes 

better. 

 

 

Figure 3. Confusion matrix for 1-layer CNN. 

The accuracy evaluation table for this network is below: 

 

Class Accuracy Precision Recall F1Score 

1 93.87% 0.60 0.76 0.67 

2 93.53% 0.87 0.64 0.74 

3 90.12% 0.57 0.54 0.56 

4 88.24% 0.19 0.40 0.26 

5 93.44% 0.54 0.71 0.61 

6 90.35% 0.47 0.45 0.46 

7 91.46% 0.33 0.58 0.42 

8 85.62% 0.85 0.42 0.56 

9 89.94% 0.37 0.39 0.38 

10 96.5% 0.78 0.88 0.82 

Table 2. Quantitative analysis of 1-layer CNN network 

4.2 4-layers CNN 

The separation of classes in the 4-layers CNN model is shown 

in Figure 4. 

 

This network has made a better distinction than the 1-layer 

CNN network. So that we have less mixed classes, but there are 

still some false classifications. For example, the highway class 

is one of the mixed classes whose pixels can be seen in other 

classes. Another mixed class is Permanent Crop, which is also 

present in its surrounding classes, such as Herbaceous 

Vegetation class. In the two classes Sea Lake and Pasture, we 

see the scattering and separation of pixels in groups in different 

places of the map, which represents the very inappropriate 

classification of these two classes. 

 

 

Figure 4. Classification diagram in feature space for 4-layers 

CNN. 

The confusion matrix and quantitative measures are shown in 

Figure 5 and Table 3. 

 

 
Figure 5. Confusion matrix for 4-layers CNN. 

 

Table 3 shows to accuracy measures for 4-layers CNN model: 

 
Class Accuracy Precision Recall F1Score 

1 97.1% 0.84 0.89 0.86 

2 98.57% 0.95 0.91 0.93 

3 95.13% 0.88 0.71 0.79 

4 96.15% 0.78 0.83 0.81 

5 97.32% 0.74 0.97 0.84 

6 98.34% 0.87 0.92 0.90 

7 95.96% 0.65 0.88 0.75 

8 96.63% 0.97 0.77 0.86 

9 97.52% 0.91 0.86 0.88 

10 99.03% 0.96 0.94 0.95 

Table 3. Quantitative analysis of 4-layers CNN network 

According to Table 3, the OA of the 4-layers CNN method is 

85.88%, which is much better than the simple CNN network. 

The lowest accuracy criterion of this network is related to the 

Herbaceous Vegetation class, although the difference with the 

Pasture class is also small. The highest accuracy criterion here 
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is also for the sea Lake class. Generally, the accuracy values for 

this network are close to each other. 

 

4.3 VGG-16 

As Figure 6 shows, this network has a better visual view than 

the 1-layer and 4-layers CNN. For example, the dispersion of 

the Pasture class in this network has completely disappeared 

and for the Sea Lake class it has also decreased so much that it 

can be considered a continuous class. In this network, the 

highway class has less mixed pixels that can be ignored. This 

network has actually provided a better output than the two first 

networks. There are fewer mixed pixels and false classification. 

Also, classes have better cohesion.  

 

 

Figure 6. Classification diagram in feature space for VGG-16. 

 

 
Figure 7. Confusion matrix for simple VGG-16. 

 

According to Table 4, the values of Recall, F1Score and 

precision are in the range of 0.8 to 0.9, which indicates the good 

classification of this network. Also, the OA for this model is 

91.22%. In fact, our main goal is that the classifier can 

distinguish similar classes well. The VGG-16 network has been 

able to separate these similar classes to an acceptable extent. 

For example, it was able to classify Annual Crop and Permanent 

Crops, both of which have agricultural coverage, with the least 

mixed pixels. Also, two classes, Forest and Pasture, which have 

vegetation, are well separated. Also, the Highway and 

Residential classes, which may be similar, are well separated. In 

addition, this network has less false classification compared to 

previous networks. 

 

Below, in Table 4 the quantitative measures are shown: 

 

Class Accuracy Precision Recall F1Score 

1 98.61% 0.93 0.93 0.93 

2 99.24% 0.98 0.95 0.96 

3 98.24% 0.90 0.92 0.91 

4 96.77% 0.83 0.84 0.83 

5 98.39% 0.94 0.90 0.92 

6 98.4% 0.91 0.93 0.92 

7 97.34% 0.83 0.89 0.86 

8 98.73% 0.96 0.92 0.94 

9 97.31% 0.89 0.85 0.87 

10 99.42% 0.95 0.99 0.97 

Table 4. Quantitative analysis of VGG-16 

4.4 Improved ResNet-50 

According to Figure 8, it is clear that the classes are well 

separated and there are few mixed pixels. Some of these mixed 

pixels belong to Sea Lake and Forest classes. In other classes, 

this classification has been done well. 

 

 
 

Figure 8. Classification diagram in feature space for improved 

ResNet-50. 

 

The confusion matrix for this model is shown in Figure 9: 

 
Figure 9. Confusion matrix for improved ResNet-50. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W3-2024 
Geo-information for Disaster management (Gi4DM) 2024  

“Geospatial Intelligence: Bridging AI, Environmental Management, and Disaster Resilience”, 2–3 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W3-2024-1-2024 | © Author(s) 2024. CC BY 4.0 License.

 
5



 

 

Below, in Table 5 the quantitative measures are shown: 

 

Class Accuracy Precision Recall F1Score 

1 100% 1 1 1 

2 98% 0.83 1 0.91 

3 100% 1 1 1 

4 100% 1 1 1 

5 100% 1 1 1 

6 99% 1 0.90 0.95 

7 100% 1 1 1 

8 100% 1 1 1 

9 100% 1 1 1 

10 99% 1 0.90 0.95 

Table 5. Quantitative analysis of improved ResNet-50 

As it is clear from Table 5, a very good classification has been 

done quantitatively and the high values of accuracy and 

F1Score are proof of this claim. Also, the accuracy of the 

improved ResNet-50, is 95.9% which is the highest among all 

models considered in this study. Unlike the previous models, 

the accuracy of the Sea Lake class is lower compared to other 

classes. As showed in Figure 8 and discussed earlier, Sea Lake 

and Forest classes have mixed pixels and this has made them 

less accurate than other classes. On the other hand, it is clear 

that similar classes related to vegetation are well separated from 

each other. 

5. Conclusion 

In this research, we addressed the challenges related to disaster 

and risk management. One of the most important tools that help 

us in this field is the generating of LULC maps of the study 

area. For this, we used EuroSAT based on Sentinel-2 images. 

The proposed dataset consists of 10 classes covering 13 

different spectral bands with a total of 27,000 labeled images 

and reference ground. Deep CNNs have been used for this 

dataset. For the EuroSAT dataset, we analyzed the performance 

of RGB spectral bands. The purpose of this research was 

investigating how to implement learning transfer architectures 

for LULC classification. The results showed that transfer 

learning is a very reliable method that can produce the best 

overall results. Also, the use of data augmentation techniques 

increased the diversity of the dataset, because these techniques 

only enhanced the visual changes of each training image 

without creating new spectral or topological information. Model 

improvement techniques such as changing the optimizer, and 

learning rate, modifying loss functions, for more efficiency of 

the models, improves the performance and finally reduces the 

required computing time. Our improved ResNet-50 and VGG-

16 architectures produced better results than CNN architecture, 

since they used the pre-trained models. Generating datasets with 

inter and intra-class variability supported by strong deep 

learning architectures with data augmentation techniques can 

effectively increase the representation strength of deep learning 

network. Therefore, the proposed architecture is effective 

exploitation of existing satellite datasets and deep learning 

methods to achieve the best performance. These applications 

can be extended to several real-world Earth observation 

applications for remote sensing scene analysis. Finally, we 

reached an overall accuracy of about 95.9% for the proposed 

ResNet-50 network, which actually shows that the pre-trained 

networks are very suitable for classification. 
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