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Abstract 

 

Conservation of the Amazon rainforest is essential because it plays an important role in global biodiversity and climate stability. In 

this work, python was used in data modeling, visualization and remote sensing for analysis of fire hotspots generated from the region 

where Santana do Araguaia is located. With the use of shapefiles and csv data and different Python libraries, like pandas, geopandas 

for geographical functions and libraries with graphics packages such as matplotlib, seaborn and rasterio. Methodology encompasses a 

series of analytical techniques to explore the relationships between environmental variables and fire risk. These techniques include 

generating linear regression models to study specific correlations, creating choropleth maps to visualize spatial patterns, mapping fire 

hotspots to identify high-risk areas and using 2d regression graphs for detailed analysis. In addition, time series analyses are conducted 

using static visualizations to track changes in fire risk over time, offering a comprehensive approach to understanding fire dynamics. 

Remote sensing techniques are used to produce normalized difference vegetation index maps and detect changes in vegetation and 

land cover. This research demonstrates how Python tools can reinforce fire risk analysis and support forest management blueprint, 

providing relevant information for conservation efforts. 

 

1. Introduction 

The Amazon is the largest continuous tropical rainforest on the 

planet, it serves as a home for an enormous biodiversity of plants 

and animals, is important for carbon sequestration and climate 

regulation (Rosa et al., 2013; Andela et al., 2022; Silva et al., 

2005). It occupies roughly 60% of Brazil's territory and also plays 

a fundamental economic role for the region's inhabitants, marked 

by low socio-economic development, high agriculture, 

extractivism, and livestock activity (Silva Junior et al., 2022; 

Gomes et al., 2020; Rappaport et al., 2018). However, this region 

faces increasing threats from climate changes and human-driving 

activities, particularly fire occurrences (Qin et al., 2019). Forest 

fires in the region have serious consequences, including the loss 

of biodiversity, the release of excess carbon dioxide and the 

disruption of indigenous and local communities (Silveira et al, 

2022; Andela et al., 2022; Tyukavina et al., 2017). Underlying 

causes of these fires are complex, usually linked to changes in 

land use, agricultural expansion and climate variability (Oliveira 

et al., 2013; Andela et al., 2022). Understanding the spatial and 

temporal patterns of these fires is key to developing effective fire 

management strategies and informing policy decisions aimed 

(Cheng et al., 2024; Mohd Said et al., 2017). 

 

Santana do Araguaia, located in the southeast of Pará state has an 

area of 11.591,441 km² and its population is estimated to be 

around 32.000 thousand people with it accounts for populational 

growth projection by IBGE (Brazilian Institute Geography 

Statics). The municipality has been part of the Araguaia 

Integration Zone, composed by fifteen other municipalities 

(Oliveira et al., 2016). Although the region has had an historic 

occupation, it is the one with the highest levels of environmental 

alteration and loss of biodiversity (Becker, 2001). Historically, it 

has been marked by public and private initiatives for integration, 

colonization and the creation of road networks that have altered 

the socio-economic and political structures, as well as the natural 

landscape of the region (Penteado, 1967; Botelho et. al., 2022). 

 

This research is based on free data provided by the National 

Institute for Space Research (INPE), Mapbiomas and Landsat 

satellite imagery. Python's extensive libraries facilitate data 

processing, geospatial analysis and visualization, enabling an 

evaluating the potential of these tools in environmental 

management (Lopes et al., 2021; Stancin and Jovic, 2019). 

Analysis methodology involves the collection and pre-processing 

of data sets, including satellite images and geospatial data on land 

cover. These datasets are utilized to form models which analysis 

associations among variables similar precipitation, vegetation 

indices and fire hotspots with their distribution. Visual and spatial 

analysis, for instance through maps or graphs, is employed to 

identify patterns of the data which enhance understanding 

(Zahran et al. 2020). 2018, 2021 and 2023 will be used to 

demonstrate the techniques and the changes that have taken place 

in this region. 

 

Its conclusions and approach are also to be considered one 

amongst many forms of data analysis, contributing towards the 

broader endeavor in maintaining Amazon region through 

science-based governance and resource management. 

 

2. Data 

2.1 Data collection 

Different types of datasets were collected to be modeled using 

Python libraries to analyze fire hotspots and environmental 

conditions in Santana do Araguaia, Brazil. 

 

2.1.1 Shapefiles: Were used to represent vegetation cover. A 

land use mask from Mapbiomas was applied to the shapefile of 

Santana do Araguaia to classify natural forest. 

 

2.1.2 CSV Files: Including details such as time, location, 

latitude and longitude were collected in CSV format from the 

National Institute for Space Research (INPE).  

 

2.1.3 Satellite Images: Were downloaded from the United 

States Geological Survey (USGS) website.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W3-2024 
Geo-information for Disaster management (Gi4DM) 2024  

“Geospatial Intelligence: Bridging AI, Environmental Management, and Disaster Resilience”, 2–3 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W3-2024-27-2024 | © Author(s) 2024. CC BY 4.0 License.

 
27



 

2.2 Preprocessing 

2.2.1 Cleaning: Cleaning data enabled efficient selection and 

filtering of relevant columns and rows. This reduced the need for 

extensive data cleaning, as only the necessary data was extracted 

for analysis. 

 

2.2.2 Reprojection: For Santana do Araguaia was reprojected 

using QGIS to the SIRGAS 2000 coordinate reference system. 

This reprojection was essential for aligning the shapefile with 

other spatial datasets, ensuring consistency in geographic 

analysis. 

 

2.2.3 Image processing: Landsat 8 satellite images were 

manipulated to compose bands and generate a normalized 

difference vegetation index (NDVI) image was obtained. Bands 

composition was done with rasterio library to make the images 

more applicable for vegetation analysis. The NDVI was 

calculated using the raster calculator equation (1). This indicator 

is crucial for monitoring vegetation indices and greenhouse 

ecosystems (Ma et al., 2023). 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
,                            (1) 

 

where  NDVI = normalized difference vegetation index 

 NIR = reflection in the near-infrared spectrum 

 RED = reflection in the red spectrum 

 

2.2.4 Mapbiomas mask: In order to generate a shapefile of 

Santana do Araguaia that contained information on the natural 

forest cover present in the municipality for later use, the 

Mapbiomas overlay tool was applied in QGIS. 

 

2.3 Python libraries and tools 

2.3.1 Pandas: Is an easy-to-use licensed open-source data 

analysis library for the Python programming language (Sial et al., 

2021; Ramalho, 2015). It is essential for managing and 

manipulating tabular data. Its powerful data structures and 

functions enabled efficient cleaning, filtering, and aggregation of 

data from the CSV files (McKinney, 2022). 

 

2.3.2 Geopandas: It is an open-source project that facilitates 

the manipulation of geospatial data in Python. It extends the data 

types used by pandas by allowing geometric spatial operations 

(Lopes et al., 2021). Can support spatial operations such as 

merging datasets, performing spatial joins and reprojection. 

 

2.3.3 Matplotlib: Is a graphical library for data visualization 

in Python, supported by other libraries such as pandas and numpy 

(Hunter, 2007; Lemenkova, 2020; Lopes et al., 2021). Can 

creating static visualizations of the data (Sial et al., 2020). Its 

extensive capabilities allowed for the generation of a wide range 

of plots, including histograms, scatter plots, and line graphs 

(Ramalho, 2015). 

 

2.3.4 Rasterio: Is a widely used raster data processing tool to 

writing and manipulating raster files, such as resampling and 

compositing bands. 

 

2.3.5 Seaborn: Was built on top of matplotlib, enhanced the 

ability to generate statistical visualizations (Lopes et al., 2021; 

Lemenkova, 2020). Has advanced plotting functions such as 

correlation heatmaps and regression plots for analyzing variable 

relationships and presenting statistical findings clearly and 

aesthetically. 

 

2.3.6 Numpy: Is a numerical computation library consisting 

of multidimensional array objects and a collection of procedures 

used to process equal types of arrays, is used to build efficient 

computational models and numerical perspectives (Sial et al., 

2020; Lemenkova, 2020).  

 

3. Data modeling 

3.1 Regression analysis 

A linear regression model is a statistical method used to 

understand the relationship between a dependent variable and one 

or more independent variables (Faraway, 2014). It finds the best-

fitting linear equation to predict the dependent variable based on 

the values of the independent variables. The basic form of a 

simple linear regression equation is: 

 

𝑌 =  𝛽0 + 𝛽1𝑋 + 𝜖,                            (2) 

 

where  Y = dependent variable 

 X = independent variable 

 β0 = intercept 

                β1 = slope 

                ϵ   = error term 

 

By using Python, a linear regression model can be defined for the 

data for the years 2018 and 2023, we can understand how changes 

in rainfall and days without rain influence the risk of fire. 
Importing libraries LinearRegression from 

sklearn.linear_model is used to create and train the 

linear regression model. The pandas is employed for data 

manipulation and loading. Data for the years 2018 and 2023 are 

loaded from CSV files into DataFrames for analysis. X_2018 

and X_2023 contain the independent variables (precipitation 

and rainless days) for 2018 and 2023, respectively. y_2018 

and y_2023 are the dependent variables (fire risk) for the same 

years. Two linear regression models are created, one for each 

year. The models are trained using the fit method, which adjusts 

the model parameters to minimize the error between predicted 

and actual fire risk values. 

 

 2018 2023 

Coefficient 1 -0.04627345 -0.00654461 

Coefficient 2 0.01071018 0.01497931 

Intercept 0.54746460 0.28018222 

R² 0.37641113 0.63368071 

Table 1. Values found for linear regression  

 

Regression results (Table 1) provide statistical metrics that 

describe the relationship between independent variables 

(precipitation) and the dependent variable (fire risk).  

 

This coefficient measures the amount of change in a dependent 

variable for each unit change in the independent variable. For 

example, if the coefficient for precipitation is 0.5, then an 

increase of one unit in precipitation results in an increase of 0.5 

units in fire risk. The higher the coefficients, the stronger the 

effect of the independent variable on the dependent variable.  
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Intercept is the value that the dependent variable would have 

when the independent variable is equal to zero. It sets a base 

measure for changes. 

 

R² value describes how well the independent variables explain 

the variation in the dependent variable. An R² close to 1 means a 

good fit; the independent variables describe most of the variation 

in fire risk. 

 

For both years, the coefficients show the impact of each predictor 

on fire risk. By comparing these coefficients and R² values across 

years, we can assess if and how the relationships between 

precipitation, rainless days, and fire risk have changed over time. 

 

3.2 2D regression plot 

 

 
 

Figure 1. 2018 regression: Precipitation vs. fire risk. 

 

(Fig. 1) was used to visualize the relationships between two key 

variables in a two-dimensional space. For instance, plotting 

Precipitation against Fire Risk helps us understand 

how changes in precipitation might impact the fire risk. These 

plots reveal the trend or relationship between the variables. For 

example, if the plot shows a positive slope, it indicates that higher 

precipitation is associated with increased fire risk. Conversely, a 

negative slope would suggest that higher precipitation is linked 

to reduced fire risk. Slope, or steepness, and direction of the 

regression line in the plot are informative vis-à-vis the strength 

and nature of the relationships between variables. The steeper the 

slope, the stronger the relationship; the flatter the slope, the 

weaker it is. 

 

4. Visualization 

4.1 Choropleth maps 

 
 

Figure 2. Natural forest cover in Santana do Araguaia in 2021. 

 

(Fig 2) represents the forest cover data of the Santana do 

Araguaia study area with data from Mapbiomas Collection. The 

map helps in visualizing the extent and distribution of different 

forest covers. 

 

The shapefile containing the forest cover data 

sta_flo_nat.shp is loaded using the geopandas library. The 

information contained in this shapefile includes geographic and 

attribute data related to forest cover in the study area. The 

shapefile data is loaded and combined with its existing attributes. 
The df.columns are updated to the expected format, 

containing the forest cover data along with geometry 

information. Using Matplotlib.pyplot, a figure and axis is 

created. The plot method of geopandas is applied to the map 

variable. This visualizes the forest cover data column 

parameter: flo_nat uses a column made up of the different 

levels of forest cover. cmap = 'Greens' creates a green 

gradient for these varying levels of forest coverage. 

 

By analyzing (Fig 2), researchers and conservationists can 

pinpoint areas of high forest cover that may require protection or 

areas with reduced cover that could be targeted for restoration 

efforts. This information is critical for making informed 

decisions about forest management and conservation strategies. 

 

 
 

Figure 3. Fire hotspot data superimposed on natural forest. 
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In addition, the forest cover map can be used in conjunction with 

fire hotspot data to provide a comprehensive view of forest cover 

and fire risk in Santana do Araguaia (Fig 3). 

 

Forest cover data is loaded from a shapefile 

(sta_flo_nat.shp) using geopandas. This shapefile 

contains geographic information about different levels of forest 

cover. Fire hotspot data is loaded from a CSV file 

(sta_focos_2021.csv) using pandas. This file includes 

longitude, latitude, and fire risk information for various fire 

incidents. The fire hotspot data is converted into a 

GeoDataFrame using geopandas, with points created from the 

longitude and latitude columns. This step allows for the spatial 

representation of fire hotspots. The coordinate reference system 

(CRS) of the fire hotspot data is set to EPSG:4326 (WGS 84) and 

then transformed to EPSG:4674 (SIRGAS 2000), aligning it with 

the CRS of the forest cover shapefile. A spatial join 
(gpd.sjoin) is performed between the forest cover 

GeoDataFrame and the fire hotspots GeoDataFrame. This 

join matches fire hotspots with corresponding forest cover areas 

based on their spatial intersection. Duplicate entries are removed 

to ensure each geographic location is represented only once. The 

plot method is used to display this combined data, with fire 

hotspots represented in shades of orange based on their risk level. 

 

(Fig 3) shows both forest cover and fire hotspots, allowing for the 

assessment of how fire incidents relate to forest density. Areas 

with high fire risk are overlaid on the forest cover map, providing 

a visual representation of the interaction between fire risk and 

forested areas. 

 

4.2 Spatial analysis 

 
 

Figure 4. Monthly fire hotspots maps 2018. 

 

 

(Fig 4) presents a series of small maps that illustrate the fire 

hotspots for each month of 2018. These maps allow for a visual 

analysis of how fire risk fluctuates over time and across different 

regions within the study area. 

 

2018 data is loaded from a CSV file. The DataHora column is 

converted to datetime format to extract the month (Mes) for 

grouping. Fire hotspots data is grouped by month to prepare for 

visualization. The data is filtered for each specific month. Scatter 

plots are created for each month. The color intensity of 

points represents fire hotspots, and maps are displayed in a grid 

format. Maps are arranged side by side in a grid layout to 

facilitate easy comparison. The plots are shown with the months 

labeled as abbreviations (e.g., Jan, Feb, Mar) and the intensity of 

fire visualized. 

 

(Fig 4) provide a visual representation of the fire risk distribution 

throughout 2018.  

 

4.3 Time series analysis 

The data that contained datetime information is parsed to extract 

month and year when needed as these can be very useful in 

understanding how different achievements vary seasonally. 

Finally, it is visualized with seaborn, where a line plot will be 

drawn for fire risks over every month of different years, 

represented through different lines. Due to the lack of 

information for 2023, the corresponding line stops in July. 

 

 
 

Figure 5. Variation of fire risk over the months of 2018, 2021 

and 2023 

 

With pandas library, the code load data from CSV files for the 

years 2018, 2021 and 2023. These files contain fire hotspot data, 
including information about fire risk (RiscoFogo), the date and 

time of occurrence (DataHora), and other relevant variables. 

The DataHora column is converted to a datetime format to 

enable the extraction of the month and year, which are stored in 
new columns Mes and Ano, respectively. This step is essential 

for the time series analysis, as it aligns the data along a common 

temporal axis (months of the year). 

 

Code concatenates data from all three years into a single 

DataFrame called data_total. This combined dataset 

allows for a unified analysis of fire risk trends across different 

years. The data is then filtered to remove any rows where the fire 

risk (RiscoFogo) is negative, ensuring the analysis focuses 

only on valid data points. 

 

Using the seaborn library, a line plot is created to visualize the 

fire risk across different months, with separate lines for each year. 
The hue parameter differentiates the years, allowing for easy 

comparison. The plot is customized with labels for the x-axis 

(Months) and y-axis (Fire risk), and the x-axis ticks are labeled 

with month abbreviations (e.g., Jan, Feb). A legend is added to 

indicate which line corresponds to which year. Finally, the (Fig 

5) is displayed, showing how fire risk varies across months and 

between years. 
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5. Remote sensing 

5.1 NDVI calculation  

A 2018 image from the Landsat 8 satellite was used, which did 

not cover the entire municipality, but can be used in our example, 

and can be replaced by an image from any other year. It was used 

bands 4 (red) and 5 (near-infrared). 

 

Code imports the necessary libraries such as rasterio for 

manipulating raster data, numpy for numerical operations, and 

matplotlib.pyplot for visualization. It opens the TIFF 

files containing the red and near-infrared (NIR) bands of Landsat 

8 using rasterio.open(). The red and NIR bands are read 

into arrays. The (1) ensures accurate values, reflecting the 

difference between NIR and red band intensities relative to their 

sum. 

 

Metadata from the red band is used to maintain spatial resolution 

and other properties. The array is saved as a new TIFF file, 

ensuring correct data type (float32) and single-band format. 

 

NDVI data is visualized with matplotlib.pyplot, using 

imshow() with a “inferno” color map. This colormap provides 

a vivid representation of values, where areas with higher 

vegetation health appear in brighter colors, while lower 

vegetation or barren areas are shown in darker colors. The color 

bar accompanying the plot offers a scale for interpreting values. 

 

 
 

Figure 6. NDVI generated from bands 4 and 5. 

 

5.2 Comparison and change detection 

After creating (Fig 6), a section was cut out of the area that is part 

of the case study, which is the westernmost part of the 

municipality. The code was used to generate a TIFF file for 2021 

as well, so that a comparison process could be carried out in this 

interval to verify the change that had occurred. 

 

Using rasterio.open() for 2018 and 2021, it extracts the 

NDVI data along with the image's spatial transformation and 

coordinate reference system (CRS). To ensure that both images 

are comparable, it checks if the dimensions of the images match. 

If not, it reprojects the 2021 image to the CRS and resolution of 
the 2018 image using calculate_default_transform 

and reproject. This step aligns the spatial attribute of the 

images for accurate comparison. By replacing background values 

(zeros) in both images with NaN to avoid distortions in the 

analysis. Difference between 2021 and 2018 is computed to 

feature changes in vegetation health over the period. Positive 

values indicate an increase in vegetation, while negative values 

suggest a decrease. 

 

Three subplots are created (Fig 7) to display the images for both 

years, along with the variation between the two. Images are 

plotted using a green colormap, with background values set to 

white for better visibility of vegetation. The variation map is 

visualized with the "oranges" colormap to emphasize the extent 

and magnitude of changes in vegetation health. 

 

 
 

Figure 7. Vegetation indices clipped for the relevant area. 

 

6. Results and discussion 

6.1 Statistical analysis 

Statistical analysis, including regression models, provides 

valuable information on the relationships between the main 

variables affecting fire risk, such as precipitation, rainless days 

and fire hotspots indices. For example, a negative correlation 

between rainfall and fire risk suggests that lower rainfall is 

associated with higher fire danger, a common trend in fire-prone 

regions. 
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Regression models further quantify these relationships, providing 

coefficients that indicate how changes in variables such as 

rainfall and the number of dry days affect fire risk. By applying 

these models to data from different years, such as 2018 and 2023, 

it is possible to compare how these links may evolve over time. 

 

6.2 Fire hotspot distribution 

Examining the distribution of fire hotspots provides valuable 

information on the spatial dynamics of fire incidents (Mohd Said 

et al., 2017). The maps depicting the distribution of fire outbreaks 

in Santana do Araguaia reveal the geographical patterns of fire 

occurrences. Areas of high intensity, where fire incidents are 

more frequent, are clearly highlighted. This spatial representation 

not only identifies regions with significant fire activity, but also 

helps to understand how different types of land cover are 

affected. For example, areas with dense vegetation may show 

different fire patterns compared to other regions. By overlaying 

fire data with land cover types, the analysis facilitates targeted 

interventions and resource allocation, which are crucial for 

mitigating fire risks and improving forest management strategies. 

 

6.3 Time series 

Time series analysis of fire risk in 2018, 2021 and 2023 provides 

a temporal perspective of fire activity. Monthly graphs illustrate 

how fire risk fluctuates throughout the year, showing periods of 

increased or decreased fire incidents. This analysis helps identify 

seasonal trends and patterns, such as peak fire seasons or months 

with exceptionally high or low fire risk. Choropleth maps provide 

a detailed overview of the intensity of fire hotspots on a yearly 

basis, offering a clearer understanding of how fire risk varies over 

time. This temporal insight is essential for developing seasonal 

fire management plans and predicting future fire risks based on 

historical data. Uniform with Viana et al. (2024) understanding 

these trends can inform preventative measures and improve 

response strategies during periods of high risk. 

 

6.4 Remote sensing 

According to Holmgren and Thuresson (1998) remote sensing 

data, especially from satellite images, plays a key role in 

assessing vegetation health and detecting changes in land cover. 

Normalized difference vegetation index products provide a 

measure of vegetation health by comparing the reflectance of red 

and near-infrared light. (Fig 7) reveal areas with healthy, stressed 

or degraded vegetation, offering information on how fire 

incidents and other factors affect plant health over time. The 

change detection maps also illustrate how land cover has evolved, 

displaying areas of deforestation, forest regrowth or other 

important alterations. 

 

6.5 Discussion 

Rosa et al. (2013) indicated that by integrating statistical analysis, 

spatial maps, time series analysis and remote sensing data 

provides a comprehensive framework for understanding fire risk 

and its environmental impacts. Statistical correlations and 

regression models offer a quantitative grasp of how key variables 

influence fire risk, enabling predictive modeling and the 

development of targeted mitigation strategies. Spatial maps of 

fire hotspots reveal critical areas of high fire intensity, allowing 

for targeted conservation efforts and better fire management. 

Time series analyses offer a dynamic view of how fire risk 

fluctuates over time, enabling the development of seasonal and 

long-term strategies to manage and mitigate fire risks. Remote 

sensing data enriches this depth of understanding by providing 

detailed information on vegetation health and land cover 

changes, presenting the ecological consequences of fire activity. 

 

Findings emphasize the importance of employing an assortment 

of analytical tools to address complex environmental challenges, 

enhance data-driven and improve fire management practices. The 

integration of these methods underscores the need for continuous 

innovation and adaptation in environmental monitoring to 

address evolving challenges and support sustainable land 

management practices. 

 

7. Conclusion 

This study headlining the importance of employing a range of 

analytical methods to tackle the intricate challenges of fire risk 

management in the Amazon region. The use of statistical 

techniques, spatial mapping, temporal analysis and remote 

sensing has provided a nuanced understanding of fire dynamics, 

revealing the main drivers and patterns of fire activity. 

 

Through statistical analysis, significant links were identified 

between variables such as rainfall and fire risk, offering 

predictive acumen. Spatial maps identified areas of significant 

risk effectively, aiding targeted conservation efforts. Temporal 

analyses revealed seasonal variations and trends, crucial for 

timely interventions. The remote sensing component, especially 

NDVI and change detection, offered a clear view of vegetation 

health and land cover changes, framing the broader 

environmental impacts of fire events. 

 

Ultimately, this work demonstrates the potential of analytical 

tools to inform fire management strategies and starring the need 

for continued innovation and collaboration in environmental 

research. The preservation of the Amazon will depend on our 

ability to adapt and refine these methodologies, ensuring that they 

evolve to meet the changing conditions and challenges facing this 

critical ecosystem. 
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