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Abstract  
 

Floods are considered among the most destructive natural disasters, requiring precise and timely management. Remote sensing, 

utilizing diverse satellite imagery data, enables effective monitoring and assessment of flood impacts. In this context, machine 

learning and deep learning methods, as effective and scalable approaches, can significantly enhance the accuracy of flood detection 

and management by analyzing remote sensing data, thereby playing a crucial role in mitigating flood-related risks.  In this study, to 

flood detection using Sentinel-1 SAR data, machine learning algorithms, including Random Forest (RF) and Histogram-based 

Gradient Boosting Decision Tree, were employed, along with two metaheuristic algorithms, Harris Hawks Optimization (HHO) and 

Ant Colony Optimization (ACO), for hyperparameter optimization. Additionally, to enhance the models' ability to detect flooded 

pixels and improve overall performance accurately, a pre-trained VGG-16 Neural Network was used as a deep feature extractor. 

Finally, four ensemble flood detection models—RF-HHO, RF-ACO, HGBDT-HHO, and HGBDT-ACO—were implemented, and 

their performance was evaluated and compared based on statistical metrics.  Based on the obtained results, all four ensemble flood 

detection models demonstrated excellent performance in the validation and testing phases. The overall accuracy of these models 

reached over 95% in the validation phase and exceeded 97% in the testing phase. However, the HGBDT-ACO model achieved the 

highest accuracy and the lowest error rate in detecting flood pixels, making it the best-performing model in this study. Generally, 

HGBDT models showed a relative advantage over RF models, as they required significantly less time for training while achieving 

comparable results. Therefore, they were efficient and performed better in terms of computational complexity. 

 

1. Introduction 

Recently, the frequency of natural disasters worldwide has 

significantly increased (Munawar et al., 2022). Among these, 

floods stand out as one of the most prevalent water-related 

calamities, directly or indirectly affecting approximately 23% of 

the global population, equivalent to 1.8 billion individuals 

(Amitrano et al., 2024). The United Nations Office for Disaster 

Risk Reduction (UNDRR) reports that the occurrence of flood 

events has seen a remarkable rise across the globe over the past 

two decades (Sadiq et al., 2023). Climate change, intense 

rainfall, snowmelt, glacier retreat, and dam breaches are among 

the primary triggers for flooding (Jeyaseelan, 2004). 

Additionally, rapid urbanization and increased human activities 

pose an even more significant threat of floods to human 

communities (Alidoost and Arefi, 2018). Floods can severely 

damage agricultural lands, residential areas, and transportation 

infrastructures such as roads and railways (Lamovec et al., 

2013).  

 

Despite the seemingly insurmountable challenge of preventing 

floods, effective management can reduce the risks and mitigate 

the damages they cause (Rahman and Di, 2017). Access to 

essential flood-related information is crucial for achieving such 

a goal. Satellite imagery, particularly through remote sensing 

(RS) methods, is essential for gathering and providing accurate 

data, for flood mapping and monitoring. (Amitrano et al., 2018; 

Giustarini et al., 2016; Klemas, 2014; Martinis et al., 2015). The 

continuous advancements in optical and radar satellite sensor 

technologies in recent years have made remote sensing a more 

cost-effective and rapid method compared to traditional 

approaches for flood detection or monitoring (Islam et al., 

2020). Radar sensors such as ALOS PALSAR, TerraSAR-X, 

RADARSAT-1, RADARSAT-2, ENVISAT, and Sentinel-1, 

along with optical sensors like Landsat and Sentinel-2, have 

become prominent in this regard (Anusha and Bharathi, 2020). 

Data from Sentinel missions, such as Sentinel-1 and Sentinel-2, 

are accessible at no cost to the public through the European 

Space Agency (ESA), and the United States Geological Survey 

(USGS) provides Landsat data (Nyamekye et al., 2021; 

Solórzano et al., 2021). Flood detection  and Flood mapping 

using optical imagery presents challenges due to its reliance on 

sunlight for imaging and high sensitivity to adverse weather 

conditions. Conversely, radar sensors, with their ability to 

acquire Synthetic Aperture Radar (SAR) images day and night 

and in adverse weather conditions, along with dense cloud 

cover, are recognized as more effective tools for flood detection 

(Cao et al., 2019). Nevertheless, multi-temporal optical imagery 

can sometimes mitigate the impact of clouds, thereby enhancing 

the performance of optical sensors (Priyatna et al., 2023; Uddin 

et al., 2019). 

 

Flood detection can be achieved through various methods 

utilizing remote sensing data. For example, floods and other 

surface water can be detected through multiple spectral indices 

(Albertini et al., 2022) and automatic thresholding techniques 

(Moharrami et al., 2021; Tran et al., 2022) such as Otsu (Otsu, 

1979). However, these methods are often time-consuming and 

require specialized knowledge and skills. Moreover, they are 

typically tailored to specific case studies and may not apply to 

different scenarios with varying scales and conditions (Tanim et 

al., 2022). Machine learning-based methods offer a promising 

alternative to traditional flood detection methods using remote 

sensing data. Various machine learning algorithms, including 

Random Forests (RF), Convolutional Neural Networks (CNN), 

and Support Vector Machines (SVM), are employed for flood 

detection and other surface water extraction tasks (Vongkusolkit 

et al., 2023).  A significant obstacle in deep learning is the 

necessity of training models on vast amounts of data. This 

requirement not only extends the duration of the training 
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process but also amplifies the computational resources needed, 

making the process more demanding and time-consuming. 

Several approaches address these limitations; one is using 

transfer learning techniques, such as employing pre-trained 

models, which can significantly reduce the time and 

computational resources required for training models (Tulasi et 

al., 2019). 
 

The following briefly reviews several studies on flood detection 

and surface water identification using various remote sensing 

techniques. In a study, four methods were employed for flood 

detection in urban areas: automatic thresholding using the 

OTSU algorithm, change detection, supervised classification 

using the Random Forest algorithm, and unsupervised 

classification using the K-means algorithm. Various Sentinel-1 

polarization combinations were used as inputs for all four 

methods. Additionally, to enhance the accuracy of the results, 

the zero-depth method was applied with the SRTM DEM. The 

findings indicated that all four methods provided satisfactory 

accuracy and performance. (Tazmul Islam and Meng, 2022). In 

another study, Sentinel-1 mission data from 5,296 tiles were 

used to train several deep learning-based models for flood 

detection in the Yangtze River Basin. The results of this study 

demonstrated that neural network models exhibited significantly 

higher accuracy and efficiency than thresholding methods. 

Additionally, the impact of VV and VH polarizations was 

evaluated, revealing that VH polarization was more effective 

than VV polarization in flood detection (Wu et al., 2023). In a 

study, neural network algorithms were employed for permanent 

and temporary water mapping during flood events. This study 

utilized fusion techniques to leverage the advantages of 

Sentinel-2 multispectral and Sentinel-1 SAR images for water 

detection and differentiation from non-water areas. According 

to the results, the models performed well, achieving an overall 

accuracy of over 92%, and demonstrated significant 

generalizability (Bai et al., 2021). In a study, Sentinel-1 and 

Sentinel-2 missions data were used simultaneously to monitor 

floods in northeastern Bangladesh and assess the resulting 

damages, aiming to maximize the advantages of these datasets. 

Two classification methods, Random Forest and Maximum 

Likelihood, were applied to flood detection and evaluate the 

associated damages. The results indicated that the Random 

Forest algorithm performed better in flood detection, achieving 

a classification accuracy of 90%, while the Maximum 

Likelihood method reported a classification accuracy of 74% 

(Billah et al., 2023). In a study, the capabilities and 

performance of four pre-trained models, including ResNet18, 

ResNet50, EfficientNet, and VGG16, were evaluated for flood 

detection using Sentinel-2 MSI data. The results of this study 

indicated that pre-trained models with different convolutional 

neural network architectures can exhibit highly significant 

performance in flood detection using remote sensing data and 

be effective in this regard (Jain et al., 2020). In another study, 

the VGG-16 model was utilized alongside two machine learning 

models, Random Forest, and Gradient Boosting, to develop 

several advanced flood detection models using Sentinel-1 data. 

The results of this study demonstrated that the models 

performed very well, with the VGG-16 model playing a 

significant role in enhancing the accuracy and performance of 

the models in detecting flood-affected pixels by extracting deep 

features (Ebadati et al., 2023). 

 

Given the increasing importance of floods and the need for 

more effective management of this natural disaster, remote 

sensing data, particularly SAR images, has significantly 

improved in recent years with advanced machine learning and 

deep learning methods. The primary goal of this study is to 

design and develop advanced models for flood detection using 

Sentinel-1 data. Additionally, this research provides a 

comprehensive comparison of these models in terms of 

accuracy, performance, and computational efficiency during the 

training process, aiming to offer optimized solutions for flood 

detection with minimal human intervention.  To accomplish this 

objective, a hybrid approach has been adopted, integrating deep 

learning methods, machine learning techniques, and 

metaheuristic algorithms to develop ensemble flood detection 

models. 

 
2. Methodology and Materials 

The first step toward achieving this goal involves feature 

extraction employing the VGG-16 model through a transfer 

learning approach.  In the next step, Random Forest (RF) and 

Histogram-based Gradient Boosting Decision Tree (HGBDT) 

algorithms are used to train the classification models. Two 

metaheuristic algorithms, Harris Hawks Optimization (HHO) 

and Ant Colony Optimization (ACO), are utilized for 

hyperparameter optimization. Therefore, ensemble models are 

implemented using two machine learning-based classifiers and 

two metaheuristic algorithms, referred to in this study as RF-

HHO, RF-ACO, HGBDT-HHO, and HGBDT-ACO. Figure 1 

presents a flowchart of the steps taken in this study. 

 

2.1 Dataset 

This study used the "Sen1Floods11" dataset to train and develop 

flood detection models. This dataset consists of 4,831 raw 

Sentinel-1 Imagery data, along with classified images of floods 

and permanent water bodies used as ground truth labels.  The 

data in this dataset are all provided as georeferenced image 

patches in 512×512 pixels size. The Sen1Floods11 covers 2018-

2019 flood events across six continents, encompassing an area 

of approximately 12,400 km² in various geographical regions 

(Bonafilia et al., 2020).  Table 1 shows an overview of Sentinel-

1 SAR data acquired during flood events in multiple locations 

worldwide. These data are available in the Sen1Floods11 as 

512x512 image patches in Geotiff file format. This dataset was 

generated by "Cloud to Street," a Public Benefit Corporation  
with access provided via their GitHub repository at 

https://github.com/cloudtostreet/Sen1Floods11. 
 

Region Acq. date Orbit Polarization 

Bolivia 2018-02-15 Descending VV/VH 
Paraguay 2018-10-31 Ascending VV/VH 

Ghana 2018-09-18 Ascending VV/VH 
Somalia 2018-05-07 Ascending VV/VH 
Nigeria 2018-09-21 Ascending VV/VH 

Pakistan 2017-06-28 Descending VV/VH 
Cambodia 2018-08-05 Ascending VV/VH 

India 2016-08-12 Descending VV/VH 
Sri Lanka 2017-05-30 Descending VV/VH 

Spain 2019-09-17 Descending VV/VH 
USA 2019-05-22 Ascending VV/VH 

 

Table 1. Flood events data overview. 

 

2.2 Data Preparation 

Data cleaning is a crucial step to perform before model training. 

In this study, the data underwent thorough and repeated 

reviews.  
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This process prevented the inclusion of corrupted, low-quality 

data or unreliable ground truth labels, which could cause errors 

in model training. Figure 2 shows examples of data removed 

from the dataset because it contains null pixels. 

 

 

 

 

 

In binary classifications, such as flood detection by classifying 

flooded and non-flooded pixels, the presence of these null pixels 

can introduce errors in the classification results or decrease the 

accuracy. 

Figure 1. Methodology flowchart. 
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Figure 2. Examples of corrupted data and labels (contain null 

pixels). 

 

Due to hardware limitations and to avoid excessive costs and 

time, not all cleaned data from Dataset Sen1Floods11 were 

used. Instead, the best samples were selected as the training, 

validation, and testing sets. This approach aimed to overcome 

limitations while ensuring high-quality model training. After 

thorough final reviews and verification of data quality and 

ground truth labels, 287 image patches with their corresponding 

labels were chosen for the training and validation set. 

Additionally, 60 new image patches were chosen for the testing 

set to ensure the models' effectiveness with entirely new and 

unseen data. Table 2 shows the selected image patches overview 

and final for each count geographical region for the models' 

training, validation, and testing. 

 

Region Training and Validation Set Testing Set 

Bolivia 18 6 
Colombia 20 0 
Paraguay 34 4 

Ghana 19 5 
Somalia 14 0 
Nigeria 27 3 

Pakistan 11 4 
Cambodia 34 10 

India 27 6 
Sri Lanka 24 6 

Spain 27 11 
USA 32 5 

SUM 287 60 

 

Table 2. Geographic distribution of selected data. 

 

2.3 Feature Extraction Using VGG-16 

In this study, A transfer learning approach utilizing the VGG-16 

deep neural network model was employed as an auxiliary tool 

for feature extraction. VGG-16, introduced in 2015, is a pre-

trained Convolutional Neural Network (CNN) model renowned 

for its effectiveness in various image-related tasks such as 

machine vision. (Simonyan and Zisserman, 2015). VGG-16 has 

been trained based on the ImageNet database by the Visual 

Geometry Group (VGG). (Deng et al., 2009; Theckedath and 

Sedamkar, 2020). The ImageNet database contains millions of 

images belonging to various classes.  The VGG16 network 

architecture employs 3x3 convolutional layers stacked for 

depth, initially processing 224x224 RGB images. It comprises 

13 convolutional layers with subsequent 2x2 max-pooling 

layers. The network ends with three fully connected layers of 

varying depths  and configurations. (Tune et al., 2021). Due to 

its extensive training regimen, VGG-16 showcases exceptional 

accuracy, even when confronted with limited image datasets 

(Theckedath and Sedamkar, 2020). 

 
Figure 3. VGG-16 network architecture 

 

2.4 Machine Learning Classifiers 

For training flood detection models using features extracted by 

the VGG-16 model, classifiers are needed to achieve the highest 

accuracy rate and lowest error, overcome challenges such as 

overfitting, and exhibit acceptable computational performance. 

This issue is not limited to flood detection but is also crucial for 

all classification tasks in other studies. This study employed 

Random Forest (RF) (Breiman, 2001) and Histogram-based 

Gradient Boosting Decision Tree (HGBDT) (Guryanov, 2019) 

that was developed to enhance  the Gradient Boosting Decision 

Tree (GBDT) (Friedman, 2002) to train classifier models based 
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on features extracted from 287 images using the VGG-16 

model. 70% of the training and validation set was used 

exclusively for model training, while the remaining 30% was 

allocated for validation. 

 

2.5 Hyperparameter Optimization   

Hyperparameters refer to parameters used either for configuring 

a machine learning model, such as the C parameter and kernel 

type for SVM models, or the learning rate for CNN models 

(Diaz et al., 2017). Hyperparameter optimization is crucial for 

improving machine learning classification models' performance 

and accuracy rate. Recently, this task has been pursued more 

vigorously by employing metaheuristic algorithms  (Morales-

Hernández et al., 2023; Yang and Shami, 2020; Elshawi et al., 

2019)  In this study, the Harris Hawks Optimization (HHO) and 

Ant Colony Optimization (ACO) algorithms were employed to 

optimize and tune the hyperparameters of the RF and HGBDT 

classifiers. The HHO (Heidari et al., 2019)  and ACO (Dorigo et 

al., 1996) algorithms, representing the new and traditional 

generations of population-based metaheuristic algorithms, have 

been widely used by researchers for optimization tasks in 

various studies. These algorithms repeatedly search for the best 

hyperparameters to train models with the highest possible 

performance. These algorithms in this study aim to identify the 

optimal configurations that enhance classifier models 

performance. To ensure identical conditions and create a fair 

benchmark for comparing the final performance of the models, 

a limited and equal search space was defined to find the best 

hyperparameters for each model.  In other words, for both 

algorithms, similar parameter values common to each 

algorithm, such as the number of Hawks, Ants, and iterations, 

were set to be limited and uniform. This was done to ensure 

equal conditions for hyperparameter search while also 

preventing significant time loss due to extended iterations. 

 

2.6 Models Evaluation Methods 

In this study, common statistical metrics were employed to 

evaluate and compare the performance of the ensemble flood 

detection model. The statistical metrics used include overall 

accuracy, Mean Squared Error (MSE), and Root Mean Squared 

Error (RMSE). Additionally, the kappa coefficient and Receiver 

Operating Characteristic (ROC) curve were utilized to provide a 

more detailed assessment of the models' performance. The 

Kappa coefficient, or Cohen's Kappa, measures the reliability of 

categorical data by assessing agreement between two raters or 

classifications beyond chance. It ranges from -1 (disagreement) 

to 1 (strong agreement) and 0, indicating no agreement beyond 

chance (Cohen, 1960), while The ROC curve offers a visual 

representation of the trade-off between the true positive rate 

(TPR) and the false positive rate (FPR) for both training and test 

datasets (Termeh et al., 2018). By analyzing this curve and 

calculating the Area Under the Curve (AUC), the model's 

overall performance can be effectively assessed, reflecting the 

balance between the true positive and false positive rates. (Luu 

et al., 2021). 

 

3. Results 

3.1 Extracted Features 

To prevent computational complexity and reduce the risk of 

overfitting, only the first two layers out of the 16 layers of the 

VGG-16 network were selected to search for and extract deep 

pixel features in 64 channels. Figure 4 shows a sample of the 

data in these 64 channels. In total, 14,714,688 parameters are 

involved across all layers of VGG-16, which are reduced to 

38,720 parameters by selecting only the first two layers. With 

the reduction in parameters, the final number of extracted 

features was significantly decreased, resulting in models being 

trained with fewer and more manageable features. 

 

 
 

Figure 4. Sample data representation in 64 distinct channels. 

 

3.2 Models Evaluation Results 

In the first stage of comparing trained models, the 

computational speed, or in other words, the required time for 

training these models, is examined.  Under the identical 

conditions set for all four models in this study, HGBDT models 

demonstrated a remarkable advantage in terms of speed and 

efficiency over RF models.  

 

Model Hyperparameter Time Spent (Sec) 

 

RF-HHO 

 

n of trees 

max depth 

 

50 

7 

 

38,449.6567 

 

RF-ACO 

 

n of trees 

max depth 

 

67 

6 

 

36,528.4194 

 

HGBT-HHO 

 

 

max iteration 

max depth 

learning rate 

 

50 

8 

0.038 

 

842.733 

 

HGBDT-ACO 

 

 

max iteration 

max depth 

learning rate 

 

56 

6 

0.037 

 

 

843.375 

 

Table 3. Best hyperparameters and training duration. 

 

The HGBDT-HHO and HGBDT-ACO Models proved 

significantly more efficient in training speed than RF-HHO and 

RF-ACO and had substantially lower computational 

complexity; therefore, they required nearly 40 times less 

training time while maintaining overall accuracy levels close to 

those of RF models. Table 3 shows the best hyperparameters 

and the time spent for trained models. For further emphasis, it 
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should be noted that the time spent for each model, as presented 

in Table 3, is the total time required for training the models and 

the iterations needed for hyperparameter optimization using the 

HHO and ACO. The preliminary evaluation of the ensemble 

flood detection models was conducted using 30% of the training 

and validation dataset to provide an overview of these models' 

predictive capabilities and classification accuracy. Table 4 

presents the values for Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), and overall accuracy in this evaluation 

phase.  The RF-HHO, RF-ACO, HGBDT-HHO, and HGBDT-

ACO models recorded RMSE values of 0.1968, 0.2155, 0.2119, 

and 0.1739, respectively, along with overall accuracies of 

96.1280%, 95.3535%, 95.5233%, and 96.9740%. 

 

Model MSE RMSE Accuracy (%) 

RF-HHO 0.0378 0.1968 96.1280 

RF-ACO 0.0465 0.2155 95.3535 

HGBDT-HHO 0.0448 0.2119 95.5233 

HGBDT-ACO 0.0302 0.1739 96.9740 

 

Table 4. Initial evaluation using validation data. 

 

Subsequently, after the initial evaluation, the models were tested 

with 60 new image patches outside the training and validation 

set. This was done to evaluate the stability of the ensemble 

models' performance when confronted with new data and to 

demonstrate their generalizability for flood detection using 

unknown data.  Table 5 shows the evaluation results of each 

ensemble flood detection model in the testing phase., 

underscoring their improved performance and reliability. In the 

secondary evaluation, the RF-HHO, RF-ACO, HGBDT-HHO, 

and HGBDT-ACO models demonstrated enhanced 

performance, achieving RMSE values of 0.1531, 0.1607, 

0.1613, and 0.1490, respectively. Their overall accuracies were 

97.6552%, 97.4164%, 97.3951%, and 97.7789%. These results 

indicate that the models achieved higher accuracy and showed 

reduced RMSE compared to the initial evaluation 

 

Model MSE RMSE Accuracy (%) 

RF-HHO 0.0234 0.1531 97.6552 

RF-ACO 0.0258 0.1607 97.4164 

HGBDT-HHO 0.0260 0.1613 97.3951 

HGBDT-ACO 0.0222 0.1490 97.7789 

 

Table 5. Secondary evaluation using testing data 

 

 
 

Figure 5. Ensemble models’ Kappa coefficient values. 

Figure 5 shows the model's Kappa coefficient during each 

validation and testing phase, showcasing the models' 

performance and agreement levels. HGBDT-ACO model 

achieved the highest Kappa coefficients in both the validation 

and testing phases, making it the best performer according to 

this statistical metric among this study's ensemble flood 

detection models. The Kappa coefficient values for RF-HHO, 

RF-ACO, HGBDT-HHO, and HGBDT-ACO models were 

0.9094, 0.8906, 0.8915, and 0.9259 in the validation phase and 

0.9305, 0.9247, 0.9241, and 0.9348 in the testing phase, 

respectively. 

 

 
 

Figure 6. Ensemble models’ ROC Curves. 

 

Figure 6 shows the ROC curves for each ensemble flood 

detection model based on the training and validation set data. 

The AUC values for RF-HHO, RF-ACO, HGBDT-HHO, and 

HGBDT-ACO models were 0.9926, 0.9907, 0.9912, and 

0.9945, respectively. The HGBDT-ACO model, with the 

highest AUC value, demonstrated a better balance between the 

true positive rate (TPR) and the false positive rate (FPR) than 

the other models. Therefore, based on the ROC curve analysis, 

this model was the best-performing ensemble flood detection 

model. Figure 7 shows the classification output of a new image 

patch without any filtering by each of the four ensemble flood 

detection models. This figure shows how each model detected 

the flooded pixels within the image patch. Alongside these 

classification outputs, the ground truth label of the image patch 

is provided to facilitate comparison between the models' results 

and the actual data. This label, shown as a reference in Figure 7, 

provides a benchmark for assessing the models' performance. 
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Figure 7. Comparison of models in classifying flooded and non-

flooded pixels. 

 

4. Discussion and Conclusion 

This study adopted a two-step assessment to ensure greater 

confidence in the models' accuracy and generalizability. These 

indices are critical metrics for evaluating the performance of 

ensemble flood detection models. According to Tables 4 and 5, 

the HGBDT-ACO model demonstrated the lowest error rate and 

the highest overall accuracy compared to the other models in the 

validation and testing phases. Therefore, the HGBDT-ACO 

model was the best in this study, and the RF-HHO model 

ranked second. Based on these results, all four models exhibited 

acceptable and closely aligned performance and accuracy. This 

indicates the high quality and efficiency of ensemble models for 

flood detection purposes using Sentinel-1 imagery data. 

 

The results of this study demonstrated that ensemble flood 

detection models, RF-HHO, RF-ACO, HGBDT-HHO, and 

HGBDT-ACO models achieved high accuracy, exceeding 95%, 

in detecting flood pixels from Sentinel-1 images. A simple 

visual comparison between the classification results of these 

models and the ground truth labels, as shown in Figure 7, 

clearly demonstrates the models' satisfactory performance in 

identifying flood pixels. Additionally, these models maintained 

their accuracy and low error rates and retained their stability and 

generalizability when faced with new data from the testing set 

in the secondary evaluation. This demonstrates that the 

approach of this study in implementing and enhancing the 

performance of flood detection models can effectively perform 

flood detection in various case studies, even with multispectral 

data or other classifiers. Although all four models achieved high 

accuracy, the overall performance of the HGBDT-HHO and 

HGBDT-ACO models was particularly noteworthy. These two 

models provided excellent performance and accuracy and 

completed the hyperparameter optimization and training 

processes in significantly less time than the RF models. One of 

the main reasons the HGBDT algorithm was used alongside the 

RF algorithm is their structural similarity and some shared 

hyperparameters. For instance, both algorithms utilize multiple 

decision trees, which leads to several common hyperparameters, 

such as the number of trees and maximum depth. However, in 

HGBDT, the number of trees is referred to as the maximum 

number of iterations. Despite these structural similarities, the 

two algorithms differ significantly in their operation and 

execution speed. The HGBDT models trained approximately 40 

times faster than the RF models under the same conditions. This 

highlights the HGBDT's ability to handle large datasets much 

more efficiently and sometimes more accurately than well-

known algorithms like RF in various machine learning 

applications. Additionally, the study underscored the 

importance of transfer learning techniques with pre-trained 

neural network models in improving feature extraction and 

overall model performance. Specifically, using the VGG-16 

neural network model with machine learning methods and 

metaheuristic algorithms significantly contributed to developing 

advanced flood detection models. This approach can be seen as 

an effective strategy for enhancing the detection of complex 

patterns and accurately classifying surface features. 

 

Ultimately, this study demonstrated that using optimized 

ensemble models could significantly enhance the accuracy and 

speed of flood detection. If the criteria for selecting the best 

models are logical performance and acceptable accuracy in the 

shortest time, the HGBDT-based models had an absolute 

advantage over the RF-based models. HGBDT models achieved 

higher efficiency by training a sequence of decision trees 

sequentially, continuously improving the performance by 

aggregating the results of weaker models. On the other hand, RF 

models, which operate based on a combination of independent 

decision trees, require more time. The findings highlight the 

potential for using HGBDT models in flood detection tasks, 

especially when combined with metaheuristic optimization 

techniques like HHO and ACO. Furthermore, implementing 

transfer learning with pre-trained models such as VGG-16 

proved highly effective in the feature extraction automatic 

process and the overall performance of the machine learning 

models used in this study. Pre-trained neural network models 

like VGG-16 can significantly enhance the overall performance 

of machine learning models by extracting deep features. 

 

Future studies should consider leveraging advanced pre-trained 

neural network models, such as VGG-19, and innovative 

machine learning methods and metaheuristic algorithms 

combinations. This approach can significantly enhance 

outcomes in flood detection, forest monitoring, agriculture, 

water resource management, and other machine learning 

applications using various remote sensing data. 
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