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Abstract 

 

Wildfires are significant environmental threats, requiring precise and prompt assessment to mitigate damage and guide recovery 

efforts. Remote sensing, mainly through satellite imagery multispectral data, provides practical tools for monitoring and evaluating 

wildfire impacts.  Canada experiences significant wildfires each year, causing substantial damage to the country’s environment, 

particularly its vegetation. This study proposed a fast and efficient method using Google Earth Engine (GEE) cloud-based computing 

to rapidly assess burned vegetation following a wildfire in Canada in 2023,  utilizing Sentinel-2 imagery data. This method computed 

NDVI, GNDVI, and EVI spectral indices for classifying pre-fire vegetation cover and NBR, dNBR, and MIRBI for classifying post-

fire burn severity. These spectral indices served as input data for machine learning models, including K-Nearest Neighbors (KNN), 

Random Forest (RF), Gradient Boosting Decision Trees (GBDT), and Support Vector Machine (SVM). Ultimately, the results of 

vegetation cover and burn severity classifications, performed separately by these models, were combined using a decision-level 

fusion with a weighting approach based on an accuracy approach to produce integrated and final classifications. Subsequently, by 

overlapping the results of these fused classifications, the burned vegetation was assessed, and its area was estimated. According to 

the study's results, significant damage was observed in the vegetation after the wildfire. 4489 km2 of the study area, which was a 

Military Grid Reference System (MGRS) tile with an area of 12,000 km2, was burned due to the wildfire. 34.06% of this area was 

specifically burned vegetation, equating to approximately 4,088 km2. 
 

1. Introduction 

Wildfires, along with other common natural disasters such as 

floods, earthquakes, and droughts, continuously occur across 

various regions of the world (Seydi et al., 2021). The frequency 

of these destructive events, driven by climate change, has 

significantly increased, surpassing nature's capacity to mitigate 

their negative impacts (Sobrino et al., 2019). In addition to 

potential loss of life, wildfires can disrupt the ecological 

balance, cause soil erosion, destroy wildlife habitats, increase 

future flood risks (Chuvieco et al., 2020), degrade vegetation 

quality, reduce soil moisture (Soverel et al., 2010), and 

contribute to global warming through the release of carbon 

dioxide and methane gases (Srivastava and Senthil Kumar, 

2020). Furthermore, wildfires are recognized as one of the 

primary disruptors of vegetation phenology (Wang and Zhang, 

2020). Long-term wildfires, in particular, can significantly 

impact and damage large portions of vegetation, especially 

forests (Priya and Vani, 2024). For instance, a recent wildfire in 

2021 destroyed approximately 400 km2 of forests in northern 

Evia Island, Greece (Gemitzi and Koutsias, 2022). These factors 

have made wildfires an increasing concern for humans and the 

environment (Salvoldi et al., 2020). Therefore, acquiring the 

necessary information and mapping burned areas, particularly 

assessing the damage to vegetation following a wildfire event, is 

crucial. Remote sensing techniques are far more efficient than 

traditional methods for examining burned areas and assessing 

wildfire damage. Although traditional methods may offer higher 

accuracy, they are often limited by high costs and time 

consumption. Remote sensing overcomes these limitations by 

covering large surface areas and providing essential information 

for monitoring and managing natural disasters (Seydi et al., 

2021; Priya and Vani, 2024; Pérez-Cabello et al., 2022; Izadi et 

al., 2017). Many researchers have confirmed remote sensing 

data's use and practical application in wildfire-related studies 

(Aksoy et al., 2023; Amos and Ferentinos, 2019; Huot et al., 

2022; Ismailoglu and Musaoglu, 2023; Kulinan et al., 2024; 

Leblon, 2001; Lee et al., 2024). These studies utilize diverse 

optical, thermal, radar, and LIDAR sensors (Vandansambuu et 

al., 2023). 

 

Among the open-access satellite imagery data, such as Sentinel-

2, Landsat series, and MODIS data (Mandanici and Bitelli, 

2016; Song et al., 2021), Sentinel-2 data offers significantly 

higher spatial and temporal resolution compared to Landsat 

series data (Claverie et al., 2018). Sentinel-2 mission provides 

researchers with excellent potential for examining burned areas 

and monitoring wildfires (Gibson et al., 2020; Seydi et al., 

2021). Additionally, its spatial resolution is much higher than 

that of MODIS. However, with an almost daily temporal 

resolution, MODIS data can be more practical for monitoring 

post-wildfire vegetation phenology and seasonal changes in 

large areas (Pérez et al., 2022).  Freely available remote sensing 

data from the GEE data catalog is accessed and processed 

through the platform, which simplifies remote sensing data 

processing via cloud-based computing, eliminating the need for 

personal hardware (Brovelli et al., 2020). The GEE applications 

are expanding across multiple research fields, including disaster 

management (Mutanga and Kumar, 2019). Various methods are 

commonly employed to assess burned areas and wildfire-

induced damage using remote sensing data. Some of these 

methods focus primarily on classification techniques 

(Palandjian et al., 2009), while others utilize Principal 

Component Analysis (Hudak and Brockett, 2004) and can be 

effective in this context. Additionally, many methods for 

mapping burned areas rely directly or indirectly on spectral 

indices as complementary approaches (Bastarrika et al., 2011; 

Loboda et al., 2007).  Spectral indices are more common due to 

their operational simplicity and higher efficiency than other 

methods (Veraverbeke et al., 2011).  Spectral indices are 

essential for understanding surface processes. They are derived 

from various combinations of spectral bands. Previous research 
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has explored many applications for these indices across diverse 

fields, such as agriculture, water resource management, urban 

development, forest ecology, vegetation analysis, etc (Prasad et 

al., 2022).  Wildfire impacts can be detected utilizing spectral 

indices sensitive to Red, Shortwave-Infrared (SWIR), and Near-

Infrared (NIR) bands. These indices effectively assess burned 

vegetation (Fassnacht et al., 2021; Petropoulos et al., 2014).  For 

example, the simple Normalized Burn Ratio (NBR) index can 

be cited as a widely used example with extensive applications in 

various related studies (Veraverbeke et al., 2010; French et al., 

2008). Although spectral indices, due to their simple and 

understandable computational structure, can effectively address 

needs in analyzing various phenomena and features on the 

earth's surface, they cannot always be relied upon exclusively. 

Therefore, more advanced methods are required that not only 

leverage the effectiveness of these indices but also offer greater 

generalizability across different conditions. In this context, 

machine learning methods have increasingly gained attention. In 

recent years, numerous studies have been conducted using 

spectral indices derived from various spectral bands and 

machine-learning methods. Many of these studies have utilized 

cloud-based computing technologies such as Google Earth 

Engine (GEE) and Colab as effective tools for data access and 

open-source processing. 

 
For instance, a study proposed an automated approach for 

global burned area mapping in 2015 using Landsat 8 data. This 

method utilized spectral indices and a Random Forest algorithm 

for the burned pixels detection, and after applying several 

filters, the final burned area map was generated. The high 

correlation between the results of this method and similar 

existing products demonstrated its effectiveness (Long et al., 

2019). In another study, the potentials of the GEE and Colab 

services were utilized simultaneously to Iran burned areas 

mapping across the entire Iran using Landsat 8 data. In this 

study, 13 spectral indices were calculated and, along with the 9 

spectral bands, were used as input data for Neural Network and 

Random Forest classifiers. The results showed classification 

accuracies of 94% and 96%, respectively, demonstrating the 

effectiveness of the proposed approach in burned areas mapping 

(Gholamrezaie et al., 2022). In a similar study, various spectral 

indices derived from Sentinel-2 imagery bands were calculated 

within the GEE platform to assess burned areas following 

wildfires in northern Morocco. These indices, used in different 

combinations along with the original bands, were applied in a 

Random Forest classifier. Although some of these combinations 

did not yield satisfactory results in several regions and even led 

to decreased accuracy with the inclusion of additional spectral 

bands, combinations utilizing the dNBR index demonstrated 

remarkable accuracies of 96% and above (Badda et al., 2023). 

 

This study aims to test the capability of rapidly assessing 

burned vegetation after the 2023 wildfires in Canada using 

Sentinel-2 multispectral data processed in the GEE cloud 

computing environment. Several spectral indices with different 

applications, detailed in the methodology section, were utilized 

as input data for K-Nearest Neighbors, Random Forest (RF), 

Gradient Boosting Decision Tree (GBDT), and Support Vector 

Machine (SVM) classifiers. The KNN is a non-parametric 

method for classifying data based on the proximity of new 

samples to existing training data. KNN assigns a new sample to 

the most common class among its k closest neighbors (Pacheco 

et al., 2021). RF is one of the most popular and widely used 

machine learning algorithms and is renowned for its 

effectiveness. An ensemble learning method utilizes many 

decision tree models to provide a final prediction. Models based 

on this algorithm have high accuracy in performing 

classification and regression tasks  (Breiman, 2001). In contrast, 

The GBDT builds a strong predictive model by iteratively 

adding small decision trees, each aimed at correcting the errors 

of the previous ones. This process continues until maximum 

accuracy is achieved or a set number of iterations is reached 

(Rao et al., 2019). The SVM identifies the optimal hyperplane 

to separate two data classes by focusing on the closest data 

points, called support vectors. It handles large, complex datasets 

effectively, prevents overfitting, and offers flexibility in 

selecting similarity functions (Kalantar et al.,  2020). All four 

algorithms are among the most well-known machine learning 

algorithms, whose advantages are utilized in classifications 

through a decision-level fusion approach to assessing burned 

vegetation. 

 

2. Study Area 

Canada emerged as the epicenter of wildfires in 2023. While 

significant fire seasons are common, the total burned area that 

year reached 15.0 million hectares (Jain et al., 2024), surpassing 

the annual average of 2.1 million hectares by over seven times 

and doubling the previous record of 6.7 million hectares set in 

1989. Notably, the largest single fire covered 1.14 million 

hectares, exceeding the previous largest wildfire of 858,000 

hectares in 1995 (Kolden et al., 2024).  The 2023 wildfires in 

Canada were selected as a case study for this research to 

examine the damage inflicted on vegetation cover following the 

fires. This study focuses exclusively on a single Sentinel-2 

imagery tile where a significant wildfire occurred, and only 

images from this specific tile, identified as 12VVM, are utilized. 

Each tile in the tiling system corresponds to a Military Grid 

Reference System (MGRS) based on UTM, covering an area of 

approximately 12,100 km² of the Earth's surface. The central 

coordinates of this tile are approximately 59.921°N latitude and 

-111.7763°W longitude. Tile 12VVM Images, used for the rapid 

post-wildfire assessment of burned vegetation, includes Fort 

Smith Town, situated in the southern Slave region within the 

northern half of this tile. The area covered by this tile's images 

primarily features natural surface characteristics such as soil, 

vegetation, rocky outcrops, and water bodies, with vegetation 

cover being a significant portion of the landscape. 
 

3. Methodology 

3.1 Data 

This study utilized Sentinel-2 level-2A data from May 1, 2023, 

to November 1, 2023, encompassing pre-wildfire and post-

wildfire. Sentinel-2 Multi-Spectral Instrument (MSI) data, 

available through the GEE data catalog, is widely used for both 

global and regional analyses due to its comprehensive 13 

spectral bands providing 10-meter spatial resolution (Meer et 

al., 2014; Q. Wang et al., 2017), also with a high temporal 

resolution of approximately five days (Drusch et al., 2012) . 
Most necessary preprocessing steps, such as atmospheric, 

radiometric, and geometric corrections, were conducted in GEE, 

and the preprocessed data are provided as ready-to-use 

products. From May 1, 2023, to November 1, 2023, 68 Sentinel-

2 images from the 12VVM tile were available for this study. 

Only 11 images with the minimum cloud cover percentage were 

selected, and the rest were filtered out. A Median filter was 

applied to reduce noise and the impact of clouds, shadows, and 

thick smoke during and after the wildfire. Considering that the 

final assessment of this study is based on calculating the area of 

burned vegetation after the complete end of the wildfire and 

comparing it with the conditions before the wildfire, at least two 

images from pre-wildfire and post-wildfire were needed. By 
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applying the Median filter and reducing or eliminating the 

effects of noise, clouds, shadows, and smoke, pre-wildfire and 

post-wildfire composite images were obtained.  Figure 1 shows 

these two composite images. 

 

 
 

Figure 1. Pre-wildfire and post-wildfire composite images. 

 
3.2 Spectral Indices 

In this study, the Normalized Burn Ratio (NBR), differenced 

Normalized Burn Ratio (dNBR), and Mid-Infrared Burned 

Index (MIRBI) were computed to examine burned areas and 

burn severity classification. The Normalized Difference 

Vegetation Index (NDVI), Green Normalized Difference 

Vegetation Index (GNDVI), and Enhanced Vegetation Index 

(EVI) were computed to assess pre-wildfire vegetation cover. 

Also, the Normalized Difference Water Index (NDWI) was 

computed to extract water bodies such as rivers and small lakes 

in the study area.   
 

Index Equation Reference 

 

NBR 

 

dNBR 

 

 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 
𝑑𝑁𝐵𝑅𝑃𝑟𝑒−𝐹𝑖𝑟𝑒 − 𝑑𝑁𝐵𝑅𝑃𝑜𝑠𝑡−𝐹𝑖𝑟𝑒  

 

 

Lee et al., 2024 

 

Lee et al., 2024 

MIRBI 

 

10 × 𝑆𝑊𝐼𝑅2 − 9.8 × 𝑆𝑊𝐼𝑅1 + 2 

 Zidane et al., 2021 

NDVI 

 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

 

Huang et al., 2021 

GNDVI 

 

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

 

Espinoza et al., 2017 

EVI 

 
2.5 ×

 𝑁𝐼𝑅 − 𝑅𝑒𝑑 

(𝑁𝐼𝑅 + 6 − 7.5 × 𝐵𝑙𝑢𝑒 + 1)
 

 

Son et al., 2014 

NDWI 𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

 

Liu et al., 2024 

 

Table 1. Spectral Indices 

 

3.3 Random Samples 

To speed up processing and avoid computational complexity 

due to the large number of pixels, not all pixel values from the 

calculated spectral indices are used as input data for training and 

testing in classification. Instead, a limited number of them are 

randomly selected as samples. Therefore, 1,000 random points 

were distributed across pre-wildfire and post-wildfire composite 

images. Figure 2 shows the distribution of these random points. 
The pixel values from these random points were used for 

training and testing the classification process as sample input 

data.  
 

 
 

Figure 2. Random points dispersion in the study area . 

 
3.4 Machine Learning Classifiers 

This study employs K-Nearest Neighbor (KNN), Random 

Forest (RF), Gradient Boosting Decision Trees (GBDT), and 

Support Vector Machine (SVM) algorithms for the two separate 

classification tasks. The first task aims to classify vegetation 

cover into four classes using NDVI, GNDVI, and EVI spectral 

indices. The second task involves classifying burn severity into 

four classes using NBR, dNBR, and MIRBI spectral indices. 

80% of the 1,000 random samples are used for training the 

classifiers, while the remaining 20% are used as test samples for 

evaluating their performance. 

 

3.5 Hyperparameter Tuning 

Hyperparameter tuning plays a crucial role in the training 

process and significantly impacts the final results to improve the  
classification accuracy results (Manafifard, 2024). Although 

many hyperparameters for commonly used classification 

algorithms in GEE are set to default values and do not require 

manual adjustment, a grid search approach was employed to 

achieve more accurate results in the classifications performed 

by the KNN, RF, GBDT, and SVM classifiers. The K value for 

the KNN, the number of trees for the RF and GBDT, and the C 

value for SVM were identified as key hyperparameters. The 

grid search approach was employed within a restricted search 

space to find the best values for these hyperparameters, which 

improved the results' accuracy.  
 

3.6 Decision-Level Fusion (Late Fusion) 

Decision-Level Fusion, also known as Late Fusion, integrates 

the results obtained from the classifications performed by the 

KNN, RF, GBDT, and SVM classifiers. Decision-level fusion 

involves combining the outputs of multiple independent models 

after the classification process has been completed to derive a 

final decision with enhanced accuracy and reliability.  Late 

fusion facilitates more robust decision-making by synthesizing 

the final outputs of different classifiers (Le Bris et al., 2019). 

Among the various decision-level fusion methods, the accuracy-

based weighting technique was chosen to integrate the 

classification results for this study. In this technique, the 
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classification results are weighted based on the overall accuracy 

rates of the classifiers to ensure a more precise final 

classification. In other words, more accurate classifications have 

a greater influence on the final result. This approach was 

applied to the vegetation cover and burn severity classifications 

performed by the KNN, RF, GDBT, and SVM classifiers.  To 

apply decision-level fusion with a weighting approach based on 

accuracy, the sum of the accuracies  of the classifications must 

equal 1 or 100%. Since the sum of the multiple classifications 

accuracies typically exceeds this value, it is necessary to 

normalize the accuracy of all classifications to be considered 

their effective weight. To do this, the overall accuracy rate of 

each classification is divided by the sum of the overall accuracy 

rates of all classifications to calculate the normalized weight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.7 Burned Vegetation Detection 

In the final step, to assess post-wildfire burned vegetation, it is 

necessary to distinguish burned vegetation pixels from other 

burned surface features pixels, such as soil, so that the focus can 

be on burned vegetation. The results of both fused vegetation 

cover and burn severity classifications were overlaid for burned 

vegetation detection. Vegetation pixels in vegetation cover 

classification that overlapped with burned pixels were 

considered burned vegetation, while the remaining pixels that 

did not meet this criterion were considered unburned vegetation 

and other surface features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Methodology flowchart. 
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4. Results 

4.1 Fine-Tuned Classifiers Evaluation   

After hyperparameters tuning through Grid Search, the fine-

tuned classifiers achieved overall accuracies of 97.36%, 

99.45%, 97.95%, and 98.53% for vegetation cover classification 

and 98.08%, 94.79%, 92.38%, and 98.16% for burn severity 

classification, respectively. Figure 5 shows the accuracy 

progression of the classifiers for vegetation cover and burn 

severity classification tasks during the hyperparameter tuning 

process, demonstrating how the models' performance improved 

as best hyperparameters were identified. The KNN classifier 

experienced a decrease in overall accuracy after reaching its 

peak as the K value increased. Therefore, KNN performed 

better with a lower K value. In contrast, the overall accuracy of 

the RF and GBDT classifiers improved with the exponential 

increase in the number of trees. The SVM classifier achieved 

higher accuracies as the value of the C parameter increased. The 

kernel type in the SVM classifier was consistently set to RBF in 

all iterations. 

 

 

 

 

 
 

4.2 Normalized Weights 

These values were calculated by dividing the overall accuracy 

of each classifier by the sum of the accuracies of all the 

classifiers. In Equation 1, the normalized weight for vegetation 

cover classification using the KNN classifier model is 

calculated; 

 

 

 

 
 

Figure 4. Classifiers' overall accuracies. 

 

 

 

 

 

 
𝑲𝑵𝑵 𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝑾𝒆𝒊𝒈𝒉𝒕 =

𝑨𝟏

𝑨𝟏 + 𝑨𝟐 + 𝑨𝟑 + 𝑨𝟒

=
𝟎. 𝟗𝟕𝟑𝟔

𝟎.𝟗𝟕𝟑𝟔 + 𝟎. 𝟗𝟗𝟒𝟓 + 𝟎.𝟗𝟕𝟗𝟓 + 𝟎. 𝟗𝟖𝟓𝟑
 = 𝟎. 𝟑𝟐𝟑𝟗 

 
(1) 

where  A1 = KNN overall accuracy rate 

 A2 = RF overall accuracy rate 

                A3 = GBDT overall accuracy rate 

 A4 = SVM overall accuracy rate 

 

Figure 5. Classifiers' hyperparameter tuning. 
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Therefore, the KNN classifier played a 41% role in the fused 

vegetation cover classification. Table 2 shows the normalized 

weights based on the fine-tuned classifiers. 
 

Classifier Classification Normalized Weight 

KNN Vegetation Cover 0.2475 

RF Vegetation Cover 0.2529 

GBDT Vegetation Cover 0.2490 

SVM Vegetation Cover 0.2505 

KNN Burn Severity 0.2580 

RF Burn Severity 0.2472 

GBDT Burn Severity 0.2409 

SVM Burn Severity 0.2560 

 

Table 2. Calculated normalized weights 

 

4.3 Fused Classifications 

After determining the contribution of each classification result 

through the calculation of normalized weights, these results 

were fused to generate the final vegetation cover and burn 

severity classifications. Figure 4 shows these fused 

classifications. The vegetation cover classification includes 

Non-Vegetated, Low Vegetation, Moderate Vegetation, and 

Dense Vegetation classes. Surface features such as rocks, bare 

soil, river sands, built-up, and water bodies are all classified 

under the Non-Vegetated class. 

 

 
 

Figure 6. Fused classifications. 

 

Vegetation, such as grasslands, shrubs, forests, etc, is also 

classified into the remaining three classes based on the density 

level and sensitivity to chlorophyll. Table 3 presents the 

calculated area for the vegetation cover classes. 

 

ID Class Coverage Area (km2) 

1 Non-Vegetation 1437.472 

2 Low Vegetation 1691.852 

3 Moderate Vegetation 6554.430 

4 Dense Vegetation 2554.207 

- Total Vegetation Cover Area 10800.489 

 

Table 3. Calculated area of vegetation cover. 

 

All burned surface features are classified based on burn 

severity, and burn severity is classified into Unburned, Low-

Moderate Severity, Moderate-High Severity, and Very High 

Severity classes. This classification includes burned vegetation 

and other burned surface features such as bare soil and built-up. 

Table 4 presents the calculated area for burn severity classes.  

ID Class Coverage Area (km2) 

1 Unburned 7569.291 

2 Low-Moderate Severity 1117.502 

3 Moderate-High Severity 1832.028 

4 Very high Severity 1539.864 

- Total Burned Area 4489.394 

 

Table 4. Calculated area of burn severity. 

 

4.4 Detected Burned Vegetation  

Figure 7 shows the pixels detected as burned vegetation after 

overlapping the fused vegetation cover and burn severity 

classifications. This figure does not include other burned 

surface features such as soil, rocks, river sands, and built-up. 

 

 
 

Figure 7. Detected burned vegetation visualization. 

 
The total area of post-wildfire burned vegetation is obtained by 

calculating the total area of these pixels. Table 4 presents the 

calculated area of burned vegetation. 

 

ID Class Coverage Area (km2) 

1 Low-Moderate Severity 991.756 

2 Moderate-High Severity 1663.941 

3 Very high Severity 1432.582 

- Total Burned Vegetation Area 4088.279 

 

Table 4. Calculated area of burned vegetation . 
 

Furthermore, a final map is generated by overlaying the burned 

vegetation pixels, vegetation classification classes, and water 

bodies extracted using the NDWI index. The final map provides 

a more comprehensive visual understanding of the extent of the 

damage caused by the wildfire. Figure 8 shows the final map. 

 

 
 

Figure 8. Final map. 
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Based on the information provided in Tables 3, 4, and 5, the 

vegetation cover of the study area was 10,766.754 km2, of 

which 4,087.765 km2 were burned after the wildfire events. In 

other words, out of the total burned area of 4,489.394 km2, 

which includes all burned surface features, only 4088.279 km2 

burned was vegetation cover. This accounts for 34.06% of the 

entire study area and 91.06% of the affected burned area. 

Therefore, the vegetation in this area has sustained significant 

damage following the wildfire. 
 

5. Discussion 

This study demonstrates that using Sentinel-2 MSI data and 

processing them on the GEE platform can aid in rapidly and 

accurately assessing burned vegetation following a wildfire. The 

KNN, RF, GBDT, and SVM classifiers, trained using random 

samples from the NDVI, GNDVI, and EVI spectral indices, 

effectively classified pre-fire vegetation and post-fire burn 

severity. Utilizing different vegetation indices for examination 

and classification can enhance the accuracy of the results, as 

each spectral index, due to its unique structure and use of 

different spectral bands, can yield distinct results. Consequently, 

integrating these results with methods like machine learning, as 

used in this study, can lead to more precise analysis. 

Additionally, Fusing the classification results from different 

classifiers through decision-level fusion resulted in a more 

comprehensive outcome, as the advantages of all three machine 

learning algorithms were leveraged. Moreover, using the GEE 

has enabled faster and more efficient data processing. This is 

particularly important in emergencies such as large wildfires 

requiring rapid and accurate assessment. Overcoming hardware 

limitations due to cloud-based processing is another advantage 

of this platform.  
 

6. Conclusion 

Wildfires are among the most destructive natural events, 

capable of causing significant damage to ecosystems, 

particularly the vegetation of a region. In some parts of the 

world, the frequency of large wildfires is higher than in other 

areas; an example of this can be seen in Canada’s forests and 

grasslands. Fortunately, with advancements in remote sensing 

satellites and the increased diversity and capabilities of these 

technologies, it has become increasingly possible to monitor 

and manage wildfires, assess damages, and even predict them to 

a large extent. This allows affected and threatened communities 

to respond more effectively to such incidents. Among free 

multispectral data sources such as Sentinel-2, Landsat series, 

and MODIS, utilizing Sentinel-2 data can enhance the accuracy 

of classification results and provide more precise assessments of 

burned areas compared to Landsat and MODIS data, which 

have lower spatial resolution. 

 

In this study, Sentinel-2 MSI data effectively demonstrated the 

damage to vegetation cover following the wildfires. The high 

accuracy of the machine learning models, which classified 

vegetation cover and burn severity, was achieved using spectral 

indices such as NDVI, GNDVI, EVI, NBR, dNBR, and MIRBI, 

each with different sensitivities to features. Applying a 

decision-level fusion approach combined these classification 

results to enhance the more accurate final result. This study 

revealed that the 2023 Canada Wildfires significantly damaged 

the study area's vegetation cover, represented by just one 

Sentinel-2 imagery tile. Over 90% of the burned areas consisted 

of burned vegetation. This result indicates that the damage 

across different regions of Canada after the wildfires must be far 

more devastating. It is recommended that future research 

explore more applications of this method in other areas and 

under various climatic conditions. The results of this study can 

aid in management decision-making and future planning to 

mitigate the negative impacts of wildfires and even assist in 

planning the recovery and restoration of burned vegetation 

areas. Additionally, using more advanced machine learning 

techniques and higher spatial resolution satellite imagery data 

can help improve the assessment accuracy. Investigating the 

long-term impacts of wildfires on vegetation cover and its 

recovery is also an important research avenue. 
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