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Abstract 

 

Malaria, a severe disease transmitted by Anopheles mosquitoes, presents a substantial public health concern. Since Anopheles 

mosquitoes thrive in water-rich environments, accurately mapping surface water is essential for assessing malaria risk and managing 

mosquito populations. This study seeks to identify areas prone to water accumulation, which create habitats conducive to mosquito 

breeding. Initially, high-risk months were extracted using precipitation and temperature data. Subsequently, the Sentinel-1 Water 

Index (SWI) was utilized to analyse seven years of monthly Sentinel-1 time-series images via Google Earth Engine (GEE). To 

enhance our findings, we integrated monthly surface-water maps using a weighted majority voting strategy. Validation efforts 

included collecting 520 samples, half of which were water bodies identified through field observations and Google Earth Pro, with 

masks generated using the Segment Anything Model (SAM) algorithm. Object-based evaluation was employed, treating each water 

body as a distinct entity. The results revealed an overall accuracy of 96.1% and a kappa coefficient of 92.2% in water body detection, 

underscoring the method's effectiveness. This method, which outperformed other approaches in the domain and machine learning 

classifiers, is straightforward to implement, rapid, and does not require training data. Furthermore, while field monitoring may be 

challenging, the findings of this study could aid health authorities in identifying high-risk areas for disease control and prevention 

efforts. 

 

 

1. Introduction 

Malaria is an important mosquito-borne disease caused by 

Plasmodium species, is globally responsible for causing 

mortality of one people per minute and has a devastating impact 

on people’s health and livelihoods (Abbasi et al., 2023; Wang et 

al., 2023). It is estimated that 41% of the world population live 

in the areas at risk of malaria (Catry et al., 2018). According to 

the latest report released by World Health Organization (WHO), 

there was an estimated 249 million cases around the world 

resulting in approximately 608,000 deaths across over 80 

countries in 2022 (World Health Organization, 2023). The 

heterogeneity in malaria incidence and mortality has remained 

critical in the WHO’s global efforts to control and eradicate 

malaria that led to the ambitious Global Malaria Program 

(GMP) with the vision of eliminating 90% of the world malaria 

burden by 2030 (Wang et al., 2023). 

 

Surface water bodies are important breeding habitats of 

mosquitoes and the species is strongly dependent on the 

presence of water for its survival and dissemination (Catry et 

al., 2018; Ovakoglou et al., 2021). Therefore, providing timely 

and accurate surface water body maps together with other 

meteorological parameters is valuable for mapping malaria risk 

and targeting disease control interventions (Hardy et al., 2019; 

Ovakoglou et al., 2021). 

 

Remote Sensing techniques have been applied to epidemiology 

for decades (Catry et al., 2018). Radar-based remote sensing 

methods seem to be more suitable for monitoring water areas, 

offering the advantage of uninterrupted data supply, whether 

day or night, and under any weather conditions. Besides, the 

principle of using side-looking radar images in mapping water 

bodies is based on the smooth water surface that act as a 

specular reflector which is distinct from the surrounding area 

that act as diffuse reflectors. 

 

The most common environmental predictors of malaria 

incidence are precipitation, air temperature, humidity and 

vegetation, of which temperature and precipitation are generally 

reported as being the most influential (Kalthof et al., 2023; 

Salahi Moghadam et al., 2015). Precipitation itself does not 

increase malaria transmission; it leads to pool forming 

depressions, a factor which is further mediated by the hydrology 

and geomorphology of an area. The resultant surface water 

pools increase vector abundance which leads to higher rates of 

malaria transmission (Kalthof et al., 2023). Additionally, the 

growth and development of insects rely on environmental 

temperature, which affects the insect vector's ability to transmit 

pathogens (Abbasi et al., 2023). The suitable temperature range 

for Anopheles mosquito spans from 15 to 35°C, as indicated by 

previous studies (Abbasi et al., 2023; Youssefi et al., 2022). If 

temperature goes beyond the tolerability thresholds, the insect’s 

growth and development stops and its population decreases 

(Salahi Moghadam et al., 2015). 

 

Data/information fusion can occur at three levels: data-level, 

feature-level, and decision-level. Also, there are three stages of 

aggregation which are measurement level, rank level, and 

abstract level. Weighted majority voting is one of the methods 
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of abstract level. In weighted majority voting, each classified 

map is assigned a weight based on its reliability or performance. 

The final decision is determined by a majority vote, with each 

map's vote weighted according to its assigned weight. This 

method ensures that the final decision is influenced by both the 

number of votes and the weights assigned to those votes (Kittler 

et al., 1998). 

 

The Segment Anything Model (SAM), recently introduced by 

Meta AI, is a promptly segmentation system that offers zero-

shot generalization to unfamiliar objects and images. This 

approach has made a substantial impact on various computer 

vision tasks (Osco et al., 2023), enabling accurate predictions 

with minimal or no training data. SAM's zero-shot capability 

allows it to perform segmentation tasks with minimal human 

input, such as bounding boxes, points, or text-based prompts, 

thereby reducing the labor-intensive nature of previous 

segmentation methods (Osco et al., 2023). SAM can be applied 

to various datasets such as Unmanned Aerial Vehicle (UAV), 

airborne, and satellite imagery. 

 

Google Earth Engine (GEE) is a powerful cloud-based 

computing platform that includes massive amounts of open 

access earth observation dataset and also algorithms that 

simplifies access and processing for experts and non-experts. 

Besides, it helps to do time-series analysis by providing fast 

processing and easy downloading data (Youssefi et al., 2022). 

Due to the large size of study area, GEE is the best option that 

will help us with the process load of this large data. GEE 

provides two APIs to interact with; first is JavaScript API which 

is accessible through web and the second one is Python API 

which needs an installation. The method presented in this paper 

is implemented in JavaScript API of this platform.  

 

The aims of the present study are: 1) To extract high-risk 

months of malaria outbreak by employing precipitation and 

temperature parameters for the study region; 2) To detect 

surface water bodies in the extracted study period for each 

month individually; and 3) To Merge classification maps by 

implementing weighted majority voting to benefit from 

capacities of each classification map and identify high risk areas 

that has the potential to be Anopheles habitat. 

 

The rest of the paper is structured as follows. In Section 2 we 

give an overview of some of the related works in this area 

before outlining our materials and proposed method in Section 

3. Section 4 shows the results and accuracy evaluation of our 

method. Finally, in Section 5, conclusions are reached and 

outlined. 

2. Related works 

Previous studies have demonstrated that remote sensing 

imagery can be used to map spatial variations in transmission 

risk. In 2021, Ovakoglou et al. proposed a method for automatic 

and regular mapping of surface-water bodies in rice fields and 

wetlands using Sentinel-1 to control mosquito larvae 

effectively. Four methods as Otsu valley-emphasis algorithms, 

classification based on textural feature of entropy, a method 

using K-means unsupervised classification and a method using 

the Haralick’s textural feature of dissimilarity and fuzzy-rules 

classification were adapted. Among the above methods Otsu 

valley-emphasis technique resulted in higher overall accuracy 

(0.835). The approach of Hardy et al. in 2019 was based on 

mapping both open and vegetated water bodies using Sentinel-1 

to detect malaria vector mosquito breeding habitats for western 

Zambia. They applied open-source segmentation and extra trees 

classifier to training data that were automatically derived from 

JRC Global Water Occurence and SRTM DEM. The result 

indicated mean overall accuracy of 92%. In 2018, Catry et al.  

assessed vectors, malaria and the environment in the Amazon 

region using Sentinel-1. They focused on the potential of SAR 

capabilities and techniques to optimize vector control and 

malaria surveillance by detecting man-made water collections 

and natural wetlands. Finally, they proposed a framework for 

the production of spatialized indicators and malaria risk maps 

based on the combination of SAR, entomological and 

epidemiological data to support malaria risk prevention and 

control actions in the field. In 2023, Kalthof et al. aimed to 

investigate whether novel surface water exposure indices, 

considering malaria dispersal mechanisms, derived from high-

resolution surface water data, could serve as stronger predictors 

of malaria prevalence compared to precipitation. The research 

involved creating 180 candidate predictors by combining three 

surface water malaria exposures from high-accuracy and high-

resolution water maps of East Africa. By utilizing Boosted 

Regression Tree models and variable contribution analysis, they 

identified a subset of strong predictors from the novel surface 

water exposure indices. The results highlighted the importance 

of incorporating spatial resolution and specific dispersal 

mechanisms in surface water predictors to enhance malaria 

prediction accuracy. Few studies in the field of malaria disease 

and habitat detection are conducted through GEE. In one 

research published in 2022, Youssefi et al. estimated high-risk 

times for three regions in Iran by employing a series of 

environmental factors affecting the growth and survival of 

Anopheles, including precipitation and air temperature through 

GEE.  

 

In the field of water body detection, in 2017, Tian et al. 

introduced a new index based on Sentinel-1 using multiple 

stepwise regression analysis method. They proposed a simple 

but robust SWI-based water extraction model (SWIM) derived 

from Sentinel-1 imagery to extract the spatial distribution of 

water areas. The advantages of extracting water using Sentinel 

Water Index (SWI) are that it is quick and more efficient than 

the other machine learning methods. In addition, the SWI 

threshold classification method can be applied to different 

regions during different periods with high quantity accuracy. 

 

3. Materials and method 

3.1 Data 

3.1.1 Sentinel-1: In this study we used Sentinel-1 between 

2017 to 2023 for surface-water detection. The Sentinel-1 data 

collection in GEE is “COPERNICUS/S1_GRD” which includes 

interferometric wide swath (IW) mode of ground range detected 

(GRD) scenes. Also, GEE already preprocessed using Thermal 

noise removal, radiometric calibration and Terrain correction to 

generate a calibrated and ortho-corrected product. In this study, 

the ortho corrected backscattering coefficient product of the 

single VV and VH channels of Sentinel-1 at the spatial 

resolution of 10 m at both ascending and descending orbits was 

utilized. The only preprocessing that remains is the speckle that 

needs to be removed. To reduce the effects of coherent speckle 

noise, a median filter was used with a window size of 3 pixels 

by 3 pixels. 

 

3.1.2 PERSIANN-CDR precipitation dataset: 

PERSIANN-CDR has provided precipitation dataset for 40 

years starting from 1983. In the current study, the monthly 

PERSIANN-CDR datasets within the study are downloaded for 

the period of 2017 to 2023 and used to extract rainy months. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3/W3-2024 
Geo-information for Disaster management (Gi4DM) 2024  

“Geospatial Intelligence: Bridging AI, Environmental Management, and Disaster Resilience”, 2–3 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-W3-2024-63-2024 | © Author(s) 2024. CC BY 4.0 License.

 
64



 

3.1.3 Air temperature: To consider temperature factor, the 

seven-year time series of meteorological data obtained from the 

Iran Meteorological Organization (IMO) has been used. These 

data include daily average temperature synopsis data measured 

at synoptic stations in Sistan and Baluchestan province. Then 

the average monthly air temperature was calculated from the 

average temperature per day. 

 

3.2 Study area 

The study area, Sistan and Baluchestan Province, is located in 

the southeast of Iran (Figure 1). This province, due to its 

subtropical climate, is one of the provinces at serious risk of 

malaria. Additionally, according to health officials, several 

other factors caused the outbreak during recent years, including 

heavy rains and poor detection of new cases in the country 

(Khammarnia and Setoodehzadeh, 2023).  

 

 

Figure 1. Study area. 

 

3.3 Method 

The workflow presented in this paper entailed several steps: 

1. Identifying months with elevated risk due to rainfall and 

temperature patterns, utilizing PERSIANN-CDR and 

temperature datasets. 

2.  Gathering Sentinel-1 data to compute the SWI, and 

pinpointing water bodies by applying a SWI map threshold. 

3. Pinpointing high-risk locations by merging monthly water 

body maps over a period of seven years via weighted majority 

voting. 

4. Assessing the effectiveness of the approach by comparing it 

with water depression masks produced by the SAM model. 

 

Each of these four steps is explained separately below. Our 

workflow is illustrated in Figure 2. 

 

3.3.1 Extraction of high-risk periods: To predict potential 

breeding sites, we first determine the study period and 

concentrate on high-risk times of the year. By using effective 

environmental parameters, we can accurately forecast malaria 

outbreak periods. Precipitation and temperature are crucial in 

increasing Anopheles mosquito populations, influencing both 

larval stages and the risk of malaria transmission (Youssefi et 

al., 2022). Therefore, we utilize the monthly PERSIANN-CDR 

dataset from 2017 to 2023 to identify rainy periods for analysis. 

Moreover, the months that had the average temperature in the 

suitable range for the growth of Anopheles mosquito were 

extracted. Finally, by analyzing precipitation and temperature 

data from 2017 to 2023, we identify optimal periods for the 

growth and survival of Anopheles mosquitoes and use images 

from these periods for the water extraction model. 

 

3.3.2 Water body extraction model: After determining the 

study period, acquiring Sentinel-1 images is necessary. 

Multitemporal data improves the ability to detect temporary 

water bodies and reduces speckle noise. Also, instead of directly 

using time series images, median operator was implemented for 

temporal aggregation. After acquiring images, SWI index was 

applied on the images and water bodies were extracted. 

 

 

Figure 2. Proposed workflow. 
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3.3.3 Detection of high-risk breeding sites of Anopheles 

mosquito: After calculating the SWI index and extracting 

monthly water bodies over seven years (2017-2023), water body 

maps were generated. Then, these maps were fused at the 

decision level using weighted majority voting to identify high-

risk areas. These areas provide the surface water necessary for 

the growth and development of Anopheles mosquitoes. To 

assign weights, we use the monthly precipitation levels to 

influence the voting process. Precipitation levels, which indicate 

both sensitivity and specificity, serve as a relevant measure of 

algorithm performance. This enhances the impact of decisions 

with high sensitivity and specificity. The weights are calculated 

by dividing each month's precipitation value by the sum of all 

monthly precipitation values. 

 

3.3.4 Accuracy assessment: To identify water bodies, center 

of 260 water bodies were first marked in Google Earth Pro as 

points and subsequently exported as a shapefile. These points 

were chosen based on visual interpretation, with many 

representing depressions that accumulate water during the rainy 

season. In contrast, during the dry season, these depressions 

display distinct characteristics due to their silty clayey bed 

texture, which results from soil erosion caused by runoff, as 

confirmed by field assessments. Field observations were 

conducted on 31 of these 260 depressions. 

 

The satellite image was prepared for segmentation by 

downloading tiles and assembling large georeferenced images 

using Tile Map Service. The SAM model path was defined, and 

SamGeo was initialized with the specified parameters. The 

model type is specified as "ViT_H". The checkpoint file 

associated with this model is "sam_vit_h_4b8939.pth". The 

automatic setting is set to "False", indicating that automatic 

mode is disabled. Finally, the "sam_kwargs" parameter is set to 

"None", implying that no additional keyword arguments are 

provided for the model's configuration. The shapefile was then 

converted from a geodata frame to a list of point coordinates. 

Each point was predicted, segmented, and saved into a separate 

geotiff mask by iterating over the list of coordinates, creating a 

unique mask for each point. All masks were then resampled to a 

10m resolution, matching the Sentinel-1 resolution, and merged 

into a single file as a mosaic mask. 

 

To assess the accuracy of extracted high-risk sites from the 

proposed method, SAM-generated masks for 260 water 

depressions were used. Additionally, 260 non-water area 

samples were randomly selected using Google Earth Pro. The 

model's performance was evaluated using a confusion matrix 

(Table 1) and comprehensive indicators including Precision, 

Recall, F1-score, Overall Accuracy (OA), and Kappa. 

 

 Water Non-Water 

Water TP FN 

Non-Water FP TN 

Table 1. Confusion matrix for water body detection 

Also, in another evaluation, the results of the proposed method 

will be compared with the results of machine learning 

classifiers. 

4. Results 

4.1 Extraction of high-risk periods 

The graphs of monthly precipitation and monthly mean 

temperature in seven weather stations are shown in Figure 3 and 

Figure 4.  

 

Figure 3. Monthly precipitation. 

 

 

Figure 4. Monthly mean temperature. 

Finally, by aggregating the results of monthly precipitation and 

monthly mean temperature, we investigated the trend in the 

contribution of each month to annual precipitation and 

temperature. According to the results in most years, in the 

months of March, April, May and July, in terms of both 

precipitation and temperature, conditions were favorable for the 

formation of Anopheles mosquito larval habitats. 

 

4.2 Water body extraction model 

The SWI index was applied on Sentinel-1 images for the 

selected study period from 2017 to 2023. Figure 5 shows the 

detected water bodies at 10-m spatial resolution over a tiny area 

inside the study area for selected four months of 2023. 

 

Visual assessment clearly shows that this approach effectively 

delineates water areas, highlighting depressions with a high 

potential for water retention. Identifying these areas relies on 

the storage capacity of the depressions and the volume of water 

they hold, which are influenced by the dimensions of the 

depressions, the slope of the region, and their connectivity 

through waterways. The index also reveals fine details due to its 

high spatial resolution. By comparing water maps from different 

months, changes in surface water coverage can be observed, 

which could be attributed to variations in precipitation, 

evaporation, and infiltration. 
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Figure 5. Maps of extracted water bodies using SWI index 

during the study period for a tiny part in the study area in 2023: 

(a) March, (b) April, (c) May, and (d) July. 

 

4.3 Detection of high-risk breeding sites of Anopheles 

mosquito 

As mentioned earlier, depressions with possibility of water 

accumulation during high-risk times of the year, have the 

potential to become the habitat of Anopheles mosquito larvae. 

Therefore, all 28 classification maps as for four months in seven 

years of study are considered. For this purpose, weighted 

majority voting is utilized, so that weights are calculated based 

on the amount of precipitation. The output map of this analysis 

will be used for accuracy evaluation. Results of this analysis for 

a tiny part of study area is shown in Figure 6. Areas delineated 

in blue color indicate depressions held water which was 

obtained using a decision fusion rule on the results of 28 months 

of study. 

 

 

Figure 6. High-risk areas of Anopheles breeding sites for a tiny 

part in the study area. 

4.4 Accuracy assessment 

By performing SAM on marked points represented high 

potential areas for Anopheles breeding habitats, 260 masks were 

generated using point-based approach. By focusing on a 

singular point, SAM was able to provide precise segmentation 

results. Result of masking a sample depression is shown in 

Figure 7. 

 

 

Figure 7. A sample of masked depression using SAM. 

To accurately validate the proposed methodology, and provide 

meaningful and reliable quantitative analysis of the final map, 

masks generated from SAM model and sample points of non-

water body areas were overlaid on the output map of weighted 

majority voting method. Then the confusion matrix was 

obtained by comparing the predicted results and the reference 

masks. The results are shown in Table 2. 

 

Evaluation measure Value 

Precision 98.7% 

Recall 93.4% 

F-1 score 96% 

OA 96.1% 

Kappa 92.2% 

Table 2. Accuracy of the proposed method 

As an alternative method, the results of this presented method 

have been compared with the results of machine learning 

methods. For this purpose, using two classifiers of Random 

Forest (RF) and Support Vector Machine (SVM), a land-cover 

classification with 4 classes has been done, one of those classes 

is the areas that have the possibility of water retention and 

habitat formation. The results of these classifications are shown 

in Table 3: 

 

Evaluation measure RF SVM 

Precision 79.6% 74.6% 

Recall 100% 97% 

F-1 score 88.6% 84.7% 

OA 96.1% 86.9% 

Kappa 78% 73.8% 

Table 3. Accuracy of machine learning models 

The model's high precision and recall highlight its effectiveness 

in accurately identifying water bodies. This balance minimizes 

false positives, which is essential for reliable water resource 

monitoring. The high F1 score further confirms the model's 

robust overall performance, with an overall accuracy of 96.1% 
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and a kappa coefficient of 92.2%. Key factors contributing to 

this success include the suitability of Sentinel-1 imagery for 

distinguishing water bodies from other land covers and the 

robustness of the proposed method. Additionally, object-based 

evaluation and the model's ability to adapt to temporal changes 

in water dynamics enhance its performance. Additionally, by 

comparing Table 2 and Table 3, unlike machine learning models 

with lower accuracy, our approach is a flexible and efficient 

solution for detecting water across extensive study areas, 

contributing to advancements in identifying Anopheles 

mosquito larvae habitats. 

 

5. Conclusion 

In the last two decades, the use of remote sensing for the control 

and prevention of diseases, including malaria, has become 

widespread. This paper presents a model to map high-risk water 

bodies as prone habitats of Anopheles mosquito larvae through 

monthly aggregated medium spatial resolution Sentinel-1 

imagery with considering temperature and precipitation 

elements of environmental parameters and employing weighted 

majority voting. The results indicated that the approach 

performed well in detection of water bodies with high risk of 

Anopheles larvae habitat formation. Since it is not easy to 

provide suitable features and sufficient training data, in the 

absence of classification machine learning models, this model 

overcomes the challenges associated with insufficient training 

data by providing a flexible way to accelerate the efficiency of 

water detection areas, so as to facilitate high-risk Anopheles 

habitats detection and monitoring in a large study area. This 

methodology stands as a valuable tool for detecting potential 

Anopheles mosquito habitats, especially in regions at high risk 

for vector-borne diseases. Our research outputs are able to 

support public health officials to control and predict malaria 

spread over extensive areas and finally the risk map can be 

beneficial for public warning and awareness. 
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