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Abstract

Climate variability is one of the main challenges for coastal communities, particularly in the Colombian Pacific, where phenomena
such as El Nifio and La Nifia significantly affect the environment and local livelihoods. This study analyzes sea surface temperature
(SST) in the department of Narifio between 2018 and 2023, combining satellite imagery with local meteorological records.

Using Landsat data and IDEAM observations, spatial and temporal patterns of SST were mapped. Geostatistical methods,
specifically ordinary and simple kriging, were applied to estimate temperature in areas without direct observations, with accuracy
assessed through cross-validation. The results show that SST responds clearly to ENSO events, with warming during El Nifio and

cooling during La Nifa.

Beyond technical outcomes, this work provides a practical tool to understand how ocean changes affect the region. The findings
offer valuable insights for territorial planning, climate risk management, and productive sectors such as fisheries and agriculture,

which depend directly on ocean dynamics.

1. Introduction

Climate change and climate variability are increasingly
recognized as phenomena that not only transform the natural
dynamics of ecosystems but also reshape the social and
economic structures of human communities. Their impacts are
particularly pronounced in coastal regions, where the direct
interaction between the ocean and the atmosphere renders these
territories highly sensitive. In the Colombian Pacific, the
recurrent presence of large-scale phenomena such as El Nifio
and La Nifia has historically altered water availability,
agricultural productivity, and food security, directly affecting
the daily lives of communities in the department of Narifio.

Within this context, Sea Surface Temperature (SST) emerges as
a fundamental indicator for understanding the magnitude and
direction of ocean—atmosphere interactions. SST regulates
processes as relevant as evaporation, cloud formation, and
precipitation patterns, and has become a critical parameter for
anticipating changes in climate dynamics. Numerous
international studies have demonstrated its usefulness in
characterizing spatial and temporal variability and in assessing
the influence of ENSO events across diverse regions of the
world (Hudson & Wackernagel, 1994; Cheng et al., 2019). In
Colombia, recent research has highlighted the role of SST in
regional climate analysis, although most studies have focused
on national scales or other areas of the country (Puertas &
Carvajal, 2008; Ocampo-Marulanda et al., 2022).

Nevertheless, a gap remains in the detailed spatio-temporal
analysis of SST in the Pacific region of Narifio, particularly
through the application of geostatistical techniques that can
more accurately model its behavior. Addressing this gap is
essential not only for understanding local climate dynamics but
also for generating inputs that support territorial planning,
environmental management, and climate change adaptation in a
region marked by high vulnerability.

To respond to this need, the present study seeks to answer the
following research question: How does the spatio-temporal
variability of SST behave in relation to large-scale climatic
phenomena (El Nifio and La Nifa) in the department of Narifio
between 2018 and 2023?

The general objective is to evaluate the relationship between
Pacific SST anomalies and climate variability in Narifio during
this period. This purpose is developed through a methodological
approach that integrates satellite and hydrometeorological data
with advanced statistical and geostatistical techniques, enabling
the identification of spatio-temporal patterns, the fitting of
spatial dependence models, and the validation of results against
ENSO events recorded in the study area.

2. Data and Methods

2.1. Data and Study Area

The study area corresponds to the department of Narifio, located
in southwestern Colombia with a coastline along the Pacific
Ocean. This region is characterized by its climatic diversity,
shaped by factors such as latitude, altitude, proximity to the
coast, and the direct influence of large-scale El Nifio and La
Nifia events. Its geographical location and oceanic exposure
make Nariflo a strategic territory for analyzing ocean—
atmosphere interactions and their impacts on natural and social
systems.
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Figure 1. Study Area Location — Department of Narifio

For this research, Landsat 7, 8, and 9 satellite imagery was
acquired from the United States Geological Survey (USGS),
enabling the estimation of Sea Surface Temperature (SST).
These images were processed in SNAP software, applying
radiometric and atmospheric corrections as well as surface
emissivity adjustments. In addition, hydrometeorological
records from the Instituto de Hidrologia, Meteorologia y
Estudios  Ambientales (IDEAM) were incorporated,
corresponding to stations within the area of influence.

Variable Type Source Unit
Sea Surface | Dependent USGS °C
Temperature (Landsat 7,
8,9)

Relative humidity | Independent IDEAM %
Temperature Independent IDEAM °C
Precipitation Independent IDEAM mm
Solar radiation Independent IDEAM h/day
Evapotranspiration | Independent IDEAM mm
Altitude Independent IDEAM ma.s.l.
Distance to coast Independent IDEAM km
Latitude Independent IDEAM decimal

degrees
Longitude Independent IDEAM decimal

degrees

Table 1. Study Variables

The variables considered included SST as the dependent
variable, and as explanatory variables: relative humidity,
precipitation, solar radiation, evapotranspiration, altitude,
distance to the coast, latitude, longitude, and wind speed. The
integration of satellite and ground-based data provided a robust
database for subsequent statistical and geostatistical analysis.

2.2. Methodology

The methodology integrated satellite image processing,
exploratory statistical analysis, and geostatistical modeling to
characterize the spatio-temporal variability of Sea Surface
Temperature (SST) in the department of Nariflo during the
2018-2023 period.

2.2.1. Satellite processing and SST derivation

Landsat 7, 8, and 9 thermal images were downloaded from the
United States Geological Survey (USGS). Thermal band
processing was carried out in SNAP software following three
stages: conversion of digital numbers (DN) to spectral radiance,
transformation of radiance to brightness temperature, and
correction by surface emissivity.

e  Conversion from DN to spectral radiance

Ly=Mp=@,,+4

where: -
Ly = spectral radiance (W-m2-sr'-pm™)

M
2., = digital pixel value

1 » A7 = calibration coefficients provided by the metadata

e  Radiance to brightness temperature
r=—f2
= X
In (E + 1)

where:
T = brightness temperature (Kelvin)

K, Ky = Landsat thermal sensor constants

e  Surface emissivity correction
T

== 1+ (%T) In ()

where:
A = effective wavelength

he .
p= P 1438+ 107" m=+ K
¢ = surface emissivity, generally estimated using NDVI
This methodological workflow enabled the conversion of

satellite imagery into a reliable, continuous SST variable
expressed in degrees Celsius.
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Figure 2. Final Band SST
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2.2.2. Exploratory statistical analysis
The dataset was subjected to exploratory statistical analysis to
assess the distribution and variability of the variables prior to
spatial modeling.

First, measures of central tendency (mean, median), dispersion
(variance, standard deviation, coefficient of variation), and
shape (skewness and kurtosis) were calculated, which allowed
for the identification of heterogeneity in SST and auxiliary
variables: relative humidity, precipitation, solar radiation,
evapotranspiration, altitude, latitude, longitude, distance to the
coast, and wind speed.
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Figure 3. Descriptive Statistics

Second, correlations between SST and auxiliary variables were
analyzed using Pearson and Spearman coefficients. This
analysis showed that latitude, longitude, solar radiation, and
wind speed exerted the strongest influence on SST, while
precipitation and altitude played a minor role.

Finally, normality of the distributions was assessed through
histograms, boxplots, QQ-plots, and hypothesis tests (Shapiro—
Wilk, Kolmogorov—Smirnov). In cases of non-normality,
logarithmic and Box—Cox transformations were applied to
improve symmetry and stabilize variance, ensuring compliance
with the assumptions required for geostatistical modeling.
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Figure 3. SST Histogram Transform

2.2.3. Geostatistical modelling

Geostatistical modeling aimed to characterize the spatial
dependence of SST and generate continuous prediction maps.
The process was organized into four phases: anisotropy
analysis, experimental variogram construction, theoretical
model fitting, and interpolation with validation.

e  Anisotropy analysis

Directional variograms (0°, 45°, 90°, and 135°) were built to
identify preferential directions of spatial correlation. Moderate
anisotropy was detected, associated with coastal orientation and
the influence of ocean currents.

e  Experimental variogram

N(R)

1 I
) = gy Q0 =2+
I=

where:
¥ (k= semivariance at distance
N{k) = number of point pairs separated by distance

Zi{x;), Z{x; + h) = SST values at locations *; and x; +

The experimental variogram revealed short-range spatial
dependence, consistent with the oceanic variability of the
region.
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Figure 4. Semivariogram Models

e  Theoretical model fitting

Spherical, exponential, and Gaussian models were evaluated.
The spherical model provided the best fit, with higher R? and
lower RMSE.

3h  R?
yihy=4Ce+ 53l o<h=a
Cp+C. h=a

where:

£; = nugget effect,

C =sill,

a = range of spatial dependence.
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Figure 5. Spherical Variogram Modeling
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e Interpolation and validation

The spatial interpolation of SST was carried out using ordinary
kriging (OK) and simple kriging (SK), with the fitted spherical
variogram as the spatial structure model. Additionally, Radial
Basis Functions (RBF) were implemented as a non-variogram-
based alternative for comparison. Interpolation and validation
were performed in a sequential process, as described below.

Interpolation procedure

For each unsampled location , SST was estimated as a weighted
linear combination of observed data:

3(xy) = Zu-,z{;x,}
=1
where:

?[I 0 ]= estimated SST at location

Z(x;) = observed SST values,

w; = kriging weights,

n = number of neighbors within the search radius.

Two different assumptions were applied:

Ordinary kriging (OK): assumes an unknown but locally
constant mean. Weights were obtained by solving the kriging
system with the unbiasedness constraint:

=1

Simple kriging (SK): assumes a known global mean m. Weights
were derived from the covariance function associated with the
spherical variogram:

Clhl=cCi0—vyih)
The search neighborhood was defined by:

A radius equal to the range parameter a of the spherical
variogram.

A maximum number of neighbors (20-30) to ensure numerical
stability.

Sectorization (four quadrants) to balance the spatial distribution
of neighbors.

The output consisted of:

Prediction maps of SST for both SK and OK.

.. . y - . .
Kriging variance maps &j({x), representing uncertainty of
prediction.

Validation procedure

To assess the accuracy and robustness of the interpolations, a
leave-one-out cross-validation (LOOCV) scheme was applied:
each observed data point was removed in turn and its value was
estimated using the remaining dataset.

For each wvalidation round, the following metrics were
calculated:

e  Coefficient of determination (R?)

2 !r‘:l[zi::-r!}I —2’{:1!]]:

- E!ﬂ:l[z{x!} _E]L

Indicates the proportion of variance in the observed data
explained by the predictions. Values close to 1 denote strong
predictive performance.

e Root Mean Square Error (RMSE)

[ n
|1 i s m
RMSE = !;Z[EI:I[:I—ZI:ILI]'
\'I TI=L

Measures the average magnitude of prediction errors, penalizing
large deviations.

e  Mean Error (ME)

n

1 v Er
ME :;Z Zlx;) — Z(x;)

i=1

Indicates whether the model systematically over- or
underestimates SST. Values close to zero suggest unbiased
predictions.

In addition to numerical indices, scatterplots of observed vs.
predicted SST values were generated to visually evaluate model
performance and detect potential biases at specific value ranges.

2.3. Experimental Results

The results obtained through interpolation and validation
procedures allowed the characterization of the spatio-temporal
variability of Sea Surface Temperature (SST) in Narifio during
the 2018-2023 period.
2.3.1. SST prediction maps

The interpolated maps revealed well-defined coast-ocean
gradients, with higher SST values nearshore and progressive
cooling towards offshore waters. These gradients are strongly
associated with solar radiation and reduced vertical mixing
in shallow areas. Temporally, positive anomalies were
observed during El Nifio episodes (2019 and 2023), with SST
up to +2 °C above the mean, while negative anomalies
emerged during La Nifda (2020-2021), with cooling of
similar magnitude. These anomalies closely matched NOAA’s
Oceanic Niflo Index (ONI) values for the same period.
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Figure 6. Interpolated SST maps: ordinary kriging
and simple kriging.
2.3.2. Kriging variance maps
Kriging variance maps showed higher uncertainty offshore and
in areas with sparse data, highlighting the dependence of
estimation reliability on the density and distribution of reference
observations. These maps provide insights not only into model
performance but also into where new stations or satellite
validation points should be prioritized to strengthen the
monitoring network.
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Figure 7. Kriging variance for ordinary kriging and
simple kriging.

2.3.3. Cross-validation

The leave-one-out cross-validation confirmed that ordinary

kriging achieved the best performance indicators, with higher R?
and lower errors compared to simple kriging and RBF.

Method R? RMSE (°C) ME (°C)
Simple 0.72 0.65 -0.08
kriging (SK)

Ordinary 0.84 0.49 0.02
kriging (OK)

RBF 0.68 0.72 -0.11

Table 2. Scatterplots of observed vs. predicted SST values for:
SK, OK, RBF.
Cross-validation revealed clear differences among methods:

Ordinary kriging with the spherical model achieved the best
performance (R? = 0.84; RMSE = 0.49 °C), confirming that the

mean is not homogeneous across the study area and that OK
better captures gradients.

Simple kriging showed weaker performance (R? = 0.72; RMSE
= 0.65 °C), indicating that assuming a constant mean reduces
local variability modeling.

RBF was the least robust (R*> = 0.68; RMSE = 0.72 °C),
producing smoother surfaces that tended to underestimate
thermal extremes.

The analysis demonstrates that SST variability in Nariflo is
shaped by a dual control:

e  Spatial: coast-ocean gradients and north—south
differences reflect the interplay of solar radiation,
shallow bathymetry, and ocean circulation.

e  Temporal: ENSO anomalies manifest rapidly along
the coast, demonstrating the high regional sensitivity
to large-scale climate forcing.

These findings imply that ocean variability cannot be
understood solely as a global phenomenon but as a process that
reshapes territorial dynamics at local scales. The detected
patterns are key for anticipating effects on water availability,
fisheries productivity, and territorial planning.

2.34. Radial Basis Function (RBF) Interpolation
Table 8 summarizes the performance of different Radial Basis
Functions (RBFs) applied to the interpolation of Sea Surface
Temperature (SST). Each model was evaluated using three key
parameters: the smoothing factor (ETA), the radius of influence
(Rho), and the Root Mean Square Prediction Error (RMSPE),
which quantifies predictive accuracy. These metrics allow
assessing each function’s ability to balance fitting precision and
predictive stability across the study domain.

The multiquadratic function showed intermediate performance
(ETA = 0.1248; Rho = 0.0968; RMSPE = 0.1868), reflecting
moderate accuracy and a stable interpolation capable of
capturing overall thermal variability, though with a higher
prediction error than other methods.

In contrast, the inverse multiquadratic function achieved the
lowest RMSPE (0.0132), with a high ETA value (1.2799) and a
nearly null Rho. This indicates a fine and stable fit with minimal
dispersion between observed and predicted values. Its numerical
consistency and generalization ability make it the most robust
and reliable RBF for representing SST variability in the Narifio
Pacific region.

Spline-type functions performed comparatively worse. Both the
Tension Spline and the Completely Regularized Spline yielded
similar  RMSPE values (~0.2035), suggesting limited
adaptability to the spatial structure of the data. The Tension
Spline (Rho = 1.6495) exhibited excessive rigidity, restricting
the model’s flexibility in areas with abrupt temperature
gradients. Meanwhile, the Completely Regularized Spline (Rho
= 0.1141) reduced rigidity but without substantial improvement
in accuracy.

The Thin-Plate Spline produced an exceptionally low RMSPE
(0.000996), suggesting an almost perfect fit. However, such a
result likely indicates overfitting, where the model adheres too
closely to observed data, reducing its predictive capability in
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regions with sparse sampling or highly variable oceanic
conditions.

Overall, despite the Thin-Plate Spline’s minimal numerical
error, the Inverse Multiquadratic function stands out as the most
balanced and reliable RBF, combining high accuracy, numerical
stability, and strong generalization performance.

Radial Basis ETA Rho RMSPE
Function
Multiquadratic | 1.25x10~" 9.68x102 1.87x107"
Inverse 1.28x10° 7.93x107® 1.32x1072
Multiquadratic
Tension 1.00x107%' 1.65x10° 2.03x107"
Spline
Completely 1.00x107%" 1.14x107" 2.03x107"
Regularized
Spline
Thin-Plate 9.97x10™* 0.00x10° 9.97x107*
Spline

2.4. Discussion

The results obtained for Narifio’s Pacific coast are consistent
with documented ENSO-related SST responses in tropical
oceans, showing warming during El Niflo and cooling during La
Nifa (Cheng et al., 2019; Puertas & Carvajal, 2008; Ocampo-
Marulanda et al., 2022). Unlike broader-scale analyses that
average over large areas, this study provides a fine-scale
quantification that resolves coastal gradients and short-range
dependencies. This contribution addresses a persistent gap in
Colombian coastal research, where SST variability has
traditionally been analyzed from sparse, station-based datasets
with limited spatial representativeness.

From a methodological perspective, ordinary kriging with a
spherical variogram model outperformed simple kriging and
radial basis functions, confirming previous findings that
emphasize its robustness when the mean cannot be assumed
constant across the study area (Hudson & Wackernagel, 1994,
Isaaks & Srivastava, 1989; Cressie, 1993). The use of kriging
variance maps added an explicit quantification of uncertainty—
an element rarely reported in regional SST studies but essential
for guiding future observation and interpolation strategies.

The association of SST with latitude, longitude, solar radiation,
and wind speed aligns with physical—statistical frameworks that
highlight the control of radiative forcing and surface mixing on
oceanic temperature patterns (Holdaway, 1996; Cheng et al.,
2019). Conversely, precipitation, humidity, and altitude
exhibited minor influence, reaffirming that coastal SST
variability responds primarily to continuous energy gradients
rather than episodic atmospheric events.

Beyond confirming these spatial relationships, the geostatistical
analysis revealed isotropic behavior and a short practical range
(~0.15), indicating that spatial autocorrelation decays rapidly
with distance. This implies that effective monitoring of
nearshore thermal variability requires high-density observation
networks to capture short-range processes accurately.
Strengthening the local network with automatic sensors and
oceanographic buoys—complementing IDEAM’s terrestrial
stations—would enable continuous monitoring and early
warning systems for ENSO-related thermal anomalies.

Scientifically, this research demonstrates the potential of
combining remote sensing and geostatistics to model ocean—
atmosphere coupling in tropical coastal environments. The
methodological framework developed here provides a replicable
approach that integrates Landsat imagery and IDEAM data,
bridging spatial modeling with local meteorological
information. Future studies should extend this framework
toward spatio-temporal models, incorporating dynamic
variables such as surface currents, solar radiation, and salinity,
and leveraging multi-sensor datasets from MODIS, Sentinel-3,
or VIIRS to enhance temporal continuity and predictive
capacity.

At the applied level, the findings offer a valuable technical
foundation for territorial planning, environmental management,
and climate adaptation in the Colombian Pacific. Identifying
areas of anomalous warming or cooling can inform fisheries
management, coastal agriculture planning, and marine
ecosystem conservation. Ultimately, the study confirms that
SST wvariability is a tangible expression of ocean—atmosphere
coupling, where energy gradients, radiation, and wind dynamics
act as key drivers of local climate behavior. Understanding
these mechanisms is critical to anticipate ENSO impacts and
support evidence-based decision-making for resilient and
sustainable coastal development.

3. Conclusions

The analysis of Sea Surface Temperature (SST) in the Pacific
coast of Narifio during the 2018-2023 period provided a
comprehensive understanding of the interaction between
oceanic and atmospheric processes governing regional climate
variability in southwestern Colombia. The spatio-temporal
characterization revealed two distinct thermal regimes—a warm
regime (19-21 °C) and a cold one (13-15 °C)—-closely
associated with the alternating phases of the El Nifio—Southern
Oscillation (ENSO). This pattern confirms the ocean’s
modulating role on coastal climate and its influence on
continental thermal stability.

The most influential factors controlling SST distribution were
latitude, longitude, distance from the coast, wind speed, solar
radiation, and evapotranspiration, representing energy transfer
and vertical mixing mechanisms that shape coastal ocean
dynamics. In contrast, precipitation, relative humidity, and
altitude had marginal effects, suggesting that SST variability is
driven primarily by continuous energetic gradients rather than
episodic atmospheric phenomena.

Geostatistical modeling confirmed isotropic behavior and
validated the spherical variogram model, with a low nugget, a
sill near 6, and a short practical range (~0.15). These results
indicate that spatial autocorrelation decays rapidly with
distance, emphasizing the importance of maintaining high-
density observation networks to accurately capture short-range
thermal variability. Among the interpolation techniques,
ordinary kriging achieved the best performance, complemented
by simple kriging and radial basis functions (RBF), which
provided versatility and stability in thermally heterogeneous
areas.
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From a scientific perspective, this study reinforces the value of
geostatistics and remote sensing as integrative tools for
representing marine thermal variability. The proposed
methodological framework is replicable and adaptable to future
research on ocean—atmosphere interactions in tropical regions.
From an applied standpoint, the findings offer a valuable
technical basis for territorial planning, environmental
management, and climate adaptation in the Colombian Pacific,
particularly in fisheries and coastal agriculture. Understanding
the mechanisms that modulate SST enables better anticipation
of ENSO impacts and global warming trends, contributing to
science-based and sustainable decision-making.
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